Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 12;65(Pt 9):o2137. doi: 10.1107/S1600536809031122

3-(4-Chloro­phen­yl)-1-(4-nitro­phen­yl)benzo[f]quinoline

Shu-Liang Wang a,*, Qing Li a, Xiang-Shan Wang a, Shu-Jiang Tu a
PMCID: PMC2970097  PMID: 21577547

Abstract

In the title compound, C25H15ClN2O2, the pyridine ring is inclined at angles of 6.89 (7), 4.24 (9) and 66.98 (4)° with respect to the naphthalene, chloro­phenyl and nitro­phenyl rings, respectively. The two substituent aromatic rings make a dihedral angle of 71.1 (1)° with one another. C—H⋯π and π–π stacking are present in the crystal structure; the π–π stacking [centroid–centroid distance between the pyridyl rings of adjacent mol­ecules= 3.7838 (11) Å] links the mol­ecules into dimers, while the C—H⋯Cg type π–ring inter­actons link the mol­ecules into a chain structure along c.

Related literature

Quinoline and its derivatives are inter­mediates in organic synthesis and are useful dyes, see: Brock et al. (1999). They possess a broad spectrum of biological activity, such as anti­asthmatic, anti­inflammatory and anti­malarial, see: Fokialakis et al. (2002); Ma et al. (2004); Sawada et al. (2004). In addition, quinoline derivatives have been evaluated as anti­cancer and anthelmintic agents, see: Sakata et al. (1988). For related structures, see: Tu et al. (2006); Xie et al. (2009).graphic file with name e-65-o2137-scheme1.jpg

Experimental

Crystal data

  • C25H15ClN2O2

  • M r = 410.84

  • Triclinic, Inline graphic

  • a = 9.1390 (12) Å

  • b = 9.5350 (11) Å

  • c = 11.9668 (17) Å

  • α = 108.182 (4)°

  • β = 105.366 (4)°

  • γ = 92.739 (3)°

  • V = 945.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 113 K

  • 0.34 × 0.32 × 0.22 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 1999) T min = 0.926, T max = 0.952

  • 11798 measured reflections

  • 4467 independent reflections

  • 3779 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.129

  • S = 1.06

  • 4467 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure/MSC (Rigaku/MSC (2003).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031122/pv2192sup1.cif

e-65-o2137-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031122/pv2192Isup2.hkl

e-65-o2137-Isup2.hkl (218.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24⋯Cgi 0.95 2.72 3.510 (12) 142

Symmetry code: (i) Inline graphic. Cg is the centroid of the C14–C19 ring.

Acknowledgments

We are grateful to the Natural Science Foundation (08KJD150019) and the Qing Lan Project (08QLT001) of Jiangsu Education Committee for financial support.

supplementary crystallographic information

Comment

Quinoline and its derivatives represent an important class of nitrogen-containing heterocycles as they constitute useful intermediates in organic synthesis and are useful dyes (Brock et al., 1999). They are well known in the pharmaceutical industry and have been shown to possess a broad spectrum of biological activities including such as antiasthmatic, antiinflammatory and antimalarial activity (Sawada, et al., 2004; Ma et al., 2004; Fokialakis et al., 2002). In addition, quinoline derivatives have been evaluated as anticancer and anthelmintic agents (Sakata et al., 1988). We report here the preparation and crystal structure of 3-(4-chlorophenyl)-1-(4-nitrophenyl)benzo[f]quinoline, (I).

In the structure of (I) (Fig. 1), the benzoquinoline moiety is not quite planar as C3 deviates by 0.169 (1) Å from the mean-plane formed by the atoms N1/C1–C13. The pyridine ring is inclined at angles 6.89 (7), 4.24 (9) and 66.98 (4) ° with respect to the naphthalene (C4–C13), and phenyl rings C14–C19 and C20–C25, respectively. The two phenyl rings make a dihedral angle of 71.1 (1) °.

The C—H···π and π–π stacking are present in the crystal structure of (I). The π–π stacking (Cg···Cg distance 3.7838 (11) Å between the pyridyl rings of adjacent molecules) links the molecules into dimmers, while the C24—H24A···Cg stacking links the molecules into polymers (Figure 2).

The following crystal structures of compounds closely related to (I) have been reported: 13-(4-fluorophenyl)-12H-benzo[f]indeno[1,2-b]quinolin-12-one (Tu et al., 2006) and 5-(4-bromophenyl)-1,2,3,4-tetrahydrobenzo[a]phenanthridine (Xie et al., 2009).

Experimental

The title compound, (I), was prepared by the reaction of 4-chlorobenzaldehyde (2 mmol, 0.281 g), naphthalen-2-amine (2 mmol, 0.283 g) and 2-bromoacetophenone (2 mmol, 0.498 g) in THF (10 ml) at 338 K catalyzed by iodine. m.p. 559–561 K. The single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution of (I).

Refinement

H-atoms were included at geometrically idealized positions and refined in riding-model approximation with the following constraints: C—H distances were set to 0.95 Å and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) plotted with 50% probability of displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The molecular packing diagram showing the C—H···π and π–π stacking in the crystal of (I).

Crystal data

C25H15ClN2O2 Z = 2
Mr = 410.84 F(000) = 424
Triclinic, P1 Dx = 1.443 Mg m3
Hall symbol: -P 1 Melting point = 559–561 K
a = 9.1390 (12) Å Mo Kα radiation, λ = 0.71070 Å
b = 9.5350 (11) Å Cell parameters from 3276 reflections
c = 11.9668 (17) Å θ = 1.9–27.9°
α = 108.182 (4)° µ = 0.23 mm1
β = 105.366 (4)° T = 113 K
γ = 92.739 (3)° Block, yellow
V = 945.6 (2) Å3 0.34 × 0.32 × 0.22 mm

Data collection

Rigaku Saturn diffractometer 4467 independent reflections
Radiation source: rotating anode 3779 reflections with I > 2σ(I)
confocal Rint = 0.034
Detector resolution: 14.63 pixels mm-1 θmax = 27.9°, θmin = 2.3°
ω scans h = −12→12
Absorption correction: multi-scan (CrystalClear; Rigaku, 1999) k = −12→12
Tmin = 0.926, Tmax = 0.952 l = −15→15
11798 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0619P)2 + 0.2446P] where P = (Fo2 + 2Fc2)/3
4467 reflections (Δ/σ)max = 0.001
271 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.47 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 −0.44740 (5) 1.45046 (5) 0.65255 (4) 0.03265 (15)
O1 0.11873 (18) 0.19922 (14) 0.55020 (13) 0.0390 (4)
O2 0.20781 (16) 0.29045 (15) 0.43402 (12) 0.0373 (3)
N1 0.09795 (15) 1.16854 (15) 0.97919 (12) 0.0190 (3)
N2 0.16218 (16) 0.30287 (16) 0.52288 (13) 0.0237 (3)
C1 0.03104 (17) 1.11236 (17) 0.85802 (15) 0.0180 (3)
C2 0.05962 (18) 0.97511 (17) 0.78672 (15) 0.0197 (3)
H2 0.0085 0.9370 0.7008 0.024*
C3 0.16056 (18) 0.89462 (17) 0.83916 (14) 0.0178 (3)
C4 0.24330 (17) 0.95634 (17) 0.96652 (15) 0.0181 (3)
C5 0.20143 (17) 1.09302 (17) 1.03223 (15) 0.0184 (3)
C6 0.26619 (18) 1.15733 (18) 1.16297 (15) 0.0212 (3)
H6 0.2361 1.2475 1.2062 0.025*
C7 0.36952 (19) 1.09148 (19) 1.22567 (15) 0.0228 (4)
H7 0.4074 1.1337 1.3128 0.027*
C8 0.42320 (18) 0.95928 (18) 1.16351 (15) 0.0208 (3)
C9 0.36459 (18) 0.89220 (17) 1.03335 (15) 0.0193 (3)
C10 0.43260 (18) 0.77063 (18) 0.97623 (16) 0.0221 (4)
H10 0.4000 0.7273 0.8890 0.027*
C11 0.54513 (19) 0.71333 (19) 1.04391 (17) 0.0253 (4)
H11 0.5879 0.6308 1.0029 0.030*
C12 0.59711 (19) 0.7757 (2) 1.17264 (17) 0.0265 (4)
H12 0.6725 0.7342 1.2192 0.032*
C13 0.53780 (19) 0.89731 (19) 1.23024 (16) 0.0244 (4)
H13 0.5746 0.9411 1.3173 0.029*
C14 −0.08359 (18) 1.19683 (17) 0.80328 (15) 0.0187 (3)
C15 −0.17082 (19) 1.14279 (18) 0.67950 (15) 0.0224 (4)
H15 −0.1543 1.0514 0.6265 0.027*
C16 −0.28137 (19) 1.22157 (19) 0.63335 (16) 0.0237 (4)
H16 −0.3407 1.1840 0.5492 0.028*
C17 −0.30481 (18) 1.35505 (19) 0.71036 (16) 0.0222 (4)
C18 −0.21770 (19) 1.41347 (19) 0.83272 (16) 0.0236 (4)
H18 −0.2323 1.5067 0.8845 0.028*
C19 −0.10882 (19) 1.33288 (18) 0.87788 (15) 0.0209 (3)
H19 −0.0497 1.3713 0.9620 0.025*
C20 0.16339 (17) 0.74070 (17) 0.75715 (15) 0.0184 (3)
C21 0.21663 (19) 0.71865 (18) 0.65500 (15) 0.0216 (3)
H21 0.2540 0.8023 0.6383 0.026*
C22 0.21556 (18) 0.57585 (18) 0.57745 (15) 0.0214 (3)
H22 0.2528 0.5604 0.5082 0.026*
C23 0.15882 (18) 0.45621 (17) 0.60359 (14) 0.0193 (3)
C24 0.09988 (19) 0.47391 (18) 0.70168 (15) 0.0221 (4)
H24 0.0590 0.3899 0.7161 0.027*
C25 0.10213 (19) 0.61767 (18) 0.77824 (15) 0.0215 (3)
H25 0.0616 0.6326 0.8458 0.026*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0261 (2) 0.0316 (3) 0.0412 (3) 0.01053 (18) 0.0055 (2) 0.0162 (2)
O1 0.0580 (9) 0.0188 (6) 0.0367 (8) 0.0056 (6) 0.0139 (7) 0.0046 (6)
O2 0.0424 (8) 0.0319 (7) 0.0299 (7) 0.0032 (6) 0.0144 (6) −0.0031 (6)
N1 0.0188 (7) 0.0175 (6) 0.0199 (7) 0.0015 (5) 0.0058 (6) 0.0054 (5)
N2 0.0208 (7) 0.0257 (7) 0.0182 (7) 0.0025 (6) 0.0012 (6) 0.0022 (6)
C1 0.0174 (7) 0.0159 (7) 0.0211 (8) 0.0008 (6) 0.0073 (6) 0.0057 (6)
C2 0.0201 (8) 0.0176 (7) 0.0193 (8) 0.0014 (6) 0.0053 (6) 0.0041 (6)
C3 0.0188 (7) 0.0149 (7) 0.0202 (8) 0.0015 (6) 0.0085 (6) 0.0042 (6)
C4 0.0175 (8) 0.0159 (7) 0.0216 (8) 0.0009 (6) 0.0073 (6) 0.0060 (6)
C5 0.0176 (7) 0.0166 (7) 0.0211 (8) 0.0013 (6) 0.0067 (6) 0.0056 (6)
C6 0.0229 (8) 0.0178 (7) 0.0206 (8) 0.0006 (6) 0.0070 (7) 0.0031 (6)
C7 0.0243 (8) 0.0227 (8) 0.0188 (8) 0.0001 (7) 0.0048 (7) 0.0053 (7)
C8 0.0192 (8) 0.0196 (8) 0.0249 (9) −0.0003 (6) 0.0066 (7) 0.0094 (7)
C9 0.0176 (7) 0.0181 (7) 0.0235 (8) 0.0005 (6) 0.0075 (6) 0.0080 (7)
C10 0.0194 (8) 0.0216 (8) 0.0266 (9) 0.0029 (6) 0.0084 (7) 0.0082 (7)
C11 0.0209 (8) 0.0228 (8) 0.0354 (10) 0.0054 (7) 0.0107 (7) 0.0118 (8)
C12 0.0224 (8) 0.0281 (9) 0.0340 (10) 0.0061 (7) 0.0069 (8) 0.0182 (8)
C13 0.0235 (8) 0.0262 (9) 0.0232 (9) 0.0004 (7) 0.0033 (7) 0.0114 (7)
C14 0.0189 (8) 0.0169 (7) 0.0211 (8) 0.0016 (6) 0.0067 (6) 0.0072 (6)
C15 0.0251 (8) 0.0173 (8) 0.0231 (9) 0.0036 (6) 0.0065 (7) 0.0049 (7)
C16 0.0242 (8) 0.0232 (8) 0.0209 (9) 0.0017 (7) 0.0027 (7) 0.0072 (7)
C17 0.0182 (8) 0.0223 (8) 0.0289 (9) 0.0042 (6) 0.0074 (7) 0.0120 (7)
C18 0.0260 (9) 0.0197 (8) 0.0260 (9) 0.0055 (7) 0.0103 (7) 0.0062 (7)
C19 0.0227 (8) 0.0199 (8) 0.0188 (8) 0.0032 (6) 0.0061 (7) 0.0049 (7)
C20 0.0167 (7) 0.0165 (7) 0.0193 (8) 0.0041 (6) 0.0035 (6) 0.0037 (6)
C21 0.0239 (8) 0.0188 (8) 0.0221 (8) 0.0034 (6) 0.0067 (7) 0.0069 (7)
C22 0.0220 (8) 0.0243 (8) 0.0175 (8) 0.0057 (6) 0.0060 (7) 0.0058 (7)
C23 0.0183 (8) 0.0166 (7) 0.0175 (8) 0.0048 (6) 0.0019 (6) 0.0010 (6)
C24 0.0230 (8) 0.0175 (8) 0.0247 (9) 0.0024 (6) 0.0061 (7) 0.0064 (7)
C25 0.0240 (8) 0.0194 (8) 0.0216 (8) 0.0032 (6) 0.0097 (7) 0.0054 (7)

Geometric parameters (Å, °)

Cl1—C17 1.7414 (17) C11—H11 0.9500
O1—N2 1.2142 (19) C12—C13 1.368 (2)
O2—N2 1.2165 (19) C12—H12 0.9500
N1—C1 1.333 (2) C13—H13 0.9500
N1—C5 1.359 (2) C14—C19 1.396 (2)
N2—C23 1.487 (2) C14—C15 1.398 (2)
C1—C2 1.401 (2) C15—C16 1.388 (2)
C1—C14 1.490 (2) C15—H15 0.9500
C2—C3 1.377 (2) C16—C17 1.383 (2)
C2—H2 0.9500 C16—H16 0.9500
C3—C4 1.424 (2) C17—C18 1.385 (2)
C3—C20 1.495 (2) C18—C19 1.386 (2)
C4—C5 1.425 (2) C18—H18 0.9500
C4—C9 1.464 (2) C19—H19 0.9500
C5—C6 1.432 (2) C20—C21 1.393 (2)
C6—C7 1.351 (2) C20—C25 1.396 (2)
C6—H6 0.9500 C21—C22 1.386 (2)
C7—C8 1.432 (2) C21—H21 0.9500
C7—H7 0.9500 C22—C23 1.386 (2)
C8—C13 1.412 (2) C22—H22 0.9500
C8—C9 1.423 (2) C23—C24 1.384 (2)
C9—C10 1.413 (2) C24—C25 1.386 (2)
C10—C11 1.379 (2) C24—H24 0.9500
C10—H10 0.9500 C25—H25 0.9500
C11—C12 1.402 (3)
C1—N1—C5 118.45 (14) C12—C13—C8 121.65 (16)
O1—N2—O2 124.78 (15) C12—C13—H13 119.2
O1—N2—C23 117.66 (14) C8—C13—H13 119.2
O2—N2—C23 117.56 (14) C19—C14—C15 118.20 (15)
N1—C1—C2 121.44 (14) C19—C14—C1 119.49 (14)
N1—C1—C14 117.00 (14) C15—C14—C1 122.29 (14)
C2—C1—C14 121.43 (14) C16—C15—C14 120.53 (15)
C3—C2—C1 121.03 (15) C16—C15—H15 119.7
C3—C2—H2 119.5 C14—C15—H15 119.7
C1—C2—H2 119.5 C17—C16—C15 119.71 (15)
C2—C3—C4 119.17 (14) C17—C16—H16 120.1
C2—C3—C20 115.55 (14) C15—C16—H16 120.1
C4—C3—C20 125.06 (14) C16—C17—C18 121.18 (15)
C3—C4—C5 115.47 (14) C16—C17—Cl1 119.34 (13)
C3—C4—C9 125.96 (14) C18—C17—Cl1 119.48 (13)
C5—C4—C9 118.57 (14) C17—C18—C19 118.48 (15)
N1—C5—C4 124.14 (15) C17—C18—H18 120.8
N1—C5—C6 115.65 (14) C19—C18—H18 120.8
C4—C5—C6 120.19 (14) C18—C19—C14 121.87 (15)
C7—C6—C5 120.86 (15) C18—C19—H19 119.1
C7—C6—H6 119.6 C14—C19—H19 119.1
C5—C6—H6 119.6 C21—C20—C25 119.49 (15)
C6—C7—C8 121.35 (15) C21—C20—C3 120.79 (14)
C6—C7—H7 119.3 C25—C20—C3 119.58 (14)
C8—C7—H7 119.3 C22—C21—C20 120.64 (15)
C13—C8—C9 119.58 (15) C22—C21—H21 119.7
C13—C8—C7 120.33 (15) C20—C21—H21 119.7
C9—C8—C7 120.06 (15) C23—C22—C21 118.27 (15)
C10—C9—C8 117.29 (15) C23—C22—H22 120.9
C10—C9—C4 124.07 (15) C21—C22—H22 120.9
C8—C9—C4 118.58 (14) C24—C23—C22 122.69 (15)
C11—C10—C9 121.62 (16) C24—C23—N2 118.94 (15)
C11—C10—H10 119.2 C22—C23—N2 118.37 (14)
C9—C10—H10 119.2 C23—C24—C25 118.12 (15)
C10—C11—C12 120.63 (16) C23—C24—H24 120.9
C10—C11—H11 119.7 C25—C24—H24 120.9
C12—C11—H11 119.7 C24—C25—C20 120.71 (15)
C13—C12—C11 119.08 (15) C24—C25—H25 119.6
C13—C12—H12 120.5 C20—C25—H25 119.6
C11—C12—H12 120.5
C5—N1—C1—C2 3.2 (2) C9—C8—C13—C12 1.5 (2)
C5—N1—C1—C14 179.07 (13) C7—C8—C13—C12 −176.50 (15)
N1—C1—C2—C3 −1.3 (2) N1—C1—C14—C19 3.9 (2)
C14—C1—C2—C3 −177.01 (14) C2—C1—C14—C19 179.74 (15)
C1—C2—C3—C4 −3.6 (2) N1—C1—C14—C15 −174.37 (15)
C1—C2—C3—C20 171.36 (14) C2—C1—C14—C15 1.5 (2)
C2—C3—C4—C5 6.1 (2) C19—C14—C15—C16 −1.2 (2)
C20—C3—C4—C5 −168.31 (14) C1—C14—C15—C16 177.03 (15)
C2—C3—C4—C9 −173.89 (14) C14—C15—C16—C17 0.3 (3)
C20—C3—C4—C9 11.7 (3) C15—C16—C17—C18 1.3 (3)
C1—N1—C5—C4 −0.2 (2) C15—C16—C17—Cl1 −178.25 (13)
C1—N1—C5—C6 −178.50 (14) C16—C17—C18—C19 −1.9 (3)
C3—C4—C5—N1 −4.4 (2) Cl1—C17—C18—C19 177.61 (12)
C9—C4—C5—N1 175.56 (14) C17—C18—C19—C14 1.0 (3)
C3—C4—C5—C6 173.80 (14) C15—C14—C19—C18 0.6 (2)
C9—C4—C5—C6 −6.2 (2) C1—C14—C19—C18 −177.75 (15)
N1—C5—C6—C7 179.58 (15) C2—C3—C20—C21 66.7 (2)
C4—C5—C6—C7 1.2 (2) C4—C3—C20—C21 −118.66 (18)
C5—C6—C7—C8 2.9 (3) C2—C3—C20—C25 −108.78 (17)
C6—C7—C8—C13 176.32 (15) C4—C3—C20—C25 65.8 (2)
C6—C7—C8—C9 −1.7 (2) C25—C20—C21—C22 −2.9 (2)
C13—C8—C9—C10 −4.0 (2) C3—C20—C21—C22 −178.39 (15)
C7—C8—C9—C10 174.05 (14) C20—C21—C22—C23 0.7 (2)
C13—C8—C9—C4 178.58 (14) C21—C22—C23—C24 1.7 (2)
C7—C8—C9—C4 −3.4 (2) C21—C22—C23—N2 −178.06 (14)
C3—C4—C9—C10 10.0 (3) O1—N2—C23—C24 −3.1 (2)
C5—C4—C9—C10 −170.04 (15) O2—N2—C23—C24 176.60 (14)
C3—C4—C9—C8 −172.80 (14) O1—N2—C23—C22 176.65 (15)
C5—C4—C9—C8 7.2 (2) O2—N2—C23—C22 −3.6 (2)
C8—C9—C10—C11 3.6 (2) C22—C23—C24—C25 −1.8 (2)
C4—C9—C10—C11 −179.09 (15) N2—C23—C24—C25 177.99 (14)
C9—C10—C11—C12 −0.7 (3) C23—C24—C25—C20 −0.5 (2)
C10—C11—C12—C13 −1.9 (3) C21—C20—C25—C24 2.8 (2)
C11—C12—C13—C8 1.5 (3) C3—C20—C25—C24 178.38 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C24—H24···Cgi 0.95 2.72 3.510 (12) 142

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2192).

References

  1. Brock, E. D., Lewis, D. M., Yousaf, T. I. & Harper, H. H. (1999). World Patent WO 9951688.
  2. Fokialakis, N., Magiatis, P., Chinou, L., Mitaku, S. & Tillequin, F. (2002). Chem. Pharm. Bull 50, 413–414. [DOI] [PubMed]
  3. Ma, Z., Hano, Y., Nomura, T. & Chen, Y. (2004). Bioorg. Med. Chem. Lett 14, 1193–1196. [DOI] [PubMed]
  4. Rigaku (1999). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Rigaku/MSC (2003). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  6. Sakata, G., Makino, K. & Karasawa, Y. (1988). Heterocycles, 27, 2481–2515.
  7. Sawada, Y., Kayakiri, H., Abe, Y., Mizutani, T., Inamura, N., Asano, M., Hatori, C., Aramori, I., Oku, T. & Tanaka, H. (2004). J. Med. Chem 47, 2853–2863. [DOI] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tu, S.-J., Zhang, Y. & Jia, R.-H. (2006). Acta Cryst. E62, o3930–o3931.
  10. Xie, H.-S., Zhang, A.-L. & Su, L. (2009). Acta Cryst. E65, o1074. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809031122/pv2192sup1.cif

e-65-o2137-sup1.cif (21.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809031122/pv2192Isup2.hkl

e-65-o2137-Isup2.hkl (218.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES