Abstract
In the title compound, C15H11NO2S, a new thio-benzoxazole derivative, the dihedral angle between the benzoxazole ring and the phenyl ring is 9.91 (9)°. An interesting feature of the crystal structure is the short C⋯S [3.4858 (17) Å] contact, which is shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, molecules are linked together by zigzag intermolecular C—H⋯N interactions into a column along the a axis. The crystal structure is further stabilized by intermolecular π–π interactions [centroid–centroid = 3.8048 (10) Å].
Related literature
For applications of 2-(benzo[d]oxazol-2-ylthio)-1-phenylethanone and β-keto-sulfones in organic synthesis, see: Marco et al. (1995 ▶); Fuju et al. (1988 ▶); Ni et al. (2006 ▶). For uses of haloalkyl sulfones, see: Grossert et al. (1984 ▶); Oishi et al. (1988 ▶); Antane et al. (2004 ▶). For their biological activity, see: Padmavathi et al. (2008 ▶). For bond-length data, see: Allen et al. (1987 ▶). For hydrogen-bond motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C15H11NO2S
M r = 269.31
Orthorhombic,
a = 4.8580 (2) Å
b = 14.0780 (5) Å
c = 18.6840 (7) Å
V = 1277.82 (8) Å3
Z = 4
Mo Kα radiation
μ = 0.25 mm−1
T = 296 K
0.50 × 0.10 × 0.10 mm
Data collection
Bruker SMART APEXII CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005 ▶) T min = 0.886, T max = 0.976
13902 measured reflections
3659 independent reflections
3175 reflections with I > 2σ(I)
R int = 0.037
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.093
S = 1.04
3659 reflections
172 parameters
H-atom parameters constrained
Δρmax = 0.35 e Å−3
Δρmin = −0.19 e Å−3
Absolute structure: Flack (1983 ▶), 1514 Friedel pairs
Flack parameter: 0.07 (7)
Data collection: APEX2 (Bruker, 2005 ▶); cell refinement: SAINT (Bruker, 2005 ▶); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2004 ▶); program(s) used to refine structure: SHELXTL (Sheldrick, 2008 ▶); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 ▶).
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033960/at2859sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033960/at2859Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C5—H5A⋯N1i | 0.93 | 2.56 | 3.395 (2) | 149 |
Symmetry code: (i)
.
Acknowledgments
We thank the University of Isfahan and the University of Malaya for supporting this work.
supplementary crystallographic information
Comment
2-(Benzo[d]oxazol-2-ylthio)-1-phenylethanone is of great importance in organic synthesis and β-Keto-sulfones are a very important group of intermediates as they are precursors for Michael and Knoevenagel reactions and are used in the preparation of acetylenes, allenes, chalcones, vinyl sulfones, polyfunctionalized 4H-pyrans and ketones (Marco et al., 1995; Fuju et al., 1988; Ni et al., 2006). In addition, β-keto-sulfones can be converted into optically active β-hydroxy-sulfones, halomethyl sulfones and dihalomethyl sulfones. Halomethyl sulfones and dihalomethyl sulfones are very good α-carbanion stabilizing substituents and precursors for the preparation of alkenes, aziridines, epoxides, and β-hydroxy-sulfones. Haloalkyl sulfones are useful in preventing aquatic organisms from attaching to fishing nets and ship hulls (Grossert et al., 1984; Oishi et al., 1988; Antane et al., 2004). They also possess other biological properties such as herbicidal, bactericidal antifungal and insecticidal. Recently sulfone-linked heterocycles were prepared and have been showed antimicrobial activity (Padmavathi et al., 2008). We prepared this compound as a precursor for synthesis of gem-difluoromethylene- containing heterocycle.
In the molecule of the title compound, (Fig. 1), a new thio-benzoxazole derivative, the dihedral angle between the benzoxazole ring and the phenyl ring is 9.91 (9)°. The interesting feature of the crystal structure is the short C6···S1i [3.4858 (17) Å; (i) -1 + x, y, z] contact which is shorter than the sum of the van der Waals radii of these atoms. In the crystal structure, the molecules are linked together by a zig-zag intermolecular C—H···N interactions (Table 1) which packed into a column along the a axis (Fig. 2). The crystal structure is further stabilized by the intramolecular π–π interactions [Cg1···Cg2i = 3.8048 (10) Å].
Experimental
Sodium carbonate (4.5 mmol) was added to a stirred solution of 2-mercaptobenzoxazole (3 mmol) in ethanol (15 mL) and water (15 mL) and stirred in room temperature for 30 min. α-Bromoacetophenone (3 mmol) was added to the reaction mixture and stirring was continued for 1h. The reaction was monitored by TLC and after 60 min. showed the complete disappearance of starting material. The reaction mixture was poured into 100 mL of 1M HCl containing 50 g of crushed ice. The product was filtered under vacuum and filtrate washed with 10 mL ice-cold ethanol and 10 mL water. Recrystalization from petrol ether and filtration gave the title compound. m.p.: 397-398 K; 1H NMR (400 MHz; CDCl3): δ 7.86-7.21 (m, 9H), 4.58 (s, 2H). 13C NMR (126 MHz; CDCl3): δ 194.1 (C═O), 164.3, 148.9, 140.8, 136.1, 132.6, 128.0, 127.8, 124.1, 122.9, 118.3, 109.6, 37.3. IR (KBr, cm-1 ): 3027, 2581, 1671 (C═O), 1593, 1492, 1447, 1382, 1326, 1291, 1230, 1182, 1025, 993, 738. Analysis calculated for C15H11NO2S: C 66.89, H 4.12, N 5.20%. Found: C 66.96, H 4.06, N 5.17%.
Refinement
All of the hydrogen atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model approximation with Uiso (H) = 1.2 Ueq (C). In the presence of sufficient anomalous scattering the absolute structure was determined (1514 Friedel pairs).
Figures
Fig. 1.
The molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering.
Fig. 2.
The crystal packing of the title compound, viewed down the c-axis, showing linking of the molecules along the a-axis through intermolecular C—H···N interactions. Intermolecular interactions are drawn as dashed lines.
Crystal data
| C15H11NO2S | Dx = 1.400 Mg m−3 |
| Mr = 269.31 | Melting point: 398 K |
| Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: P 2ac 2ab | Cell parameters from 4173 reflections |
| a = 4.8580 (2) Å | θ = 2.6–28.2° |
| b = 14.0780 (5) Å | µ = 0.25 mm−1 |
| c = 18.6840 (7) Å | T = 296 K |
| V = 1277.82 (8) Å3 | Needle, colourless |
| Z = 4 | 0.50 × 0.10 × 0.10 mm |
| F(000) = 560 |
Data collection
| Bruker SMART APEXII CCD area-detector diffractometer | 3659 independent reflections |
| Radiation source: fine-focus sealed tube | 3175 reflections with I > 2σ(I) |
| graphite | Rint = 0.037 |
| φ and ω scans | θmax = 30.0°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −6→6 |
| Tmin = 0.886, Tmax = 0.976 | k = −19→19 |
| 13902 measured reflections | l = −26→26 |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.040 | H-atom parameters constrained |
| wR(F2) = 0.093 | w = 1/[σ2(Fo2) + (0.0487P)2 + 0.1389P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.04 | (Δ/σ)max = 0.001 |
| 3659 reflections | Δρmax = 0.35 e Å−3 |
| 172 parameters | Δρmin = −0.19 e Å−3 |
| 0 restraints | Absolute structure: Flack (1983), 1514 Friedel pairs |
| Primary atom site location: structure-invariant direct methods | Flack parameter: 0.07 (7) |
Special details
| Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment. |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| S1 | 0.01065 (10) | 0.44145 (3) | 0.66514 (2) | 0.02920 (11) | |
| O1 | 0.3102 (3) | 0.29909 (9) | 0.71157 (6) | 0.0295 (3) | |
| N1 | 0.4022 (3) | 0.33643 (10) | 0.59627 (7) | 0.0250 (3) | |
| C1 | 0.5079 (4) | 0.23556 (11) | 0.68726 (8) | 0.0262 (3) | |
| C2 | 0.6325 (4) | 0.16254 (14) | 0.72375 (10) | 0.0346 (4) | |
| H2A | 0.5895 | 0.1480 | 0.7710 | 0.042* | |
| C3 | 0.8271 (4) | 0.11206 (14) | 0.68500 (10) | 0.0366 (4) | |
| H3A | 0.9193 | 0.0621 | 0.7071 | 0.044* | |
| C4 | 0.8889 (4) | 0.13370 (13) | 0.61400 (10) | 0.0341 (4) | |
| H4A | 1.0209 | 0.0980 | 0.5900 | 0.041* | |
| C5 | 0.7576 (4) | 0.20749 (13) | 0.57839 (9) | 0.0292 (4) | |
| H5A | 0.7982 | 0.2218 | 0.5310 | 0.035* | |
| C6 | 0.5639 (3) | 0.25876 (12) | 0.61651 (8) | 0.0244 (3) | |
| C7 | 0.2612 (3) | 0.35517 (12) | 0.65300 (8) | 0.0251 (3) | |
| C8 | −0.0098 (4) | 0.47588 (12) | 0.57236 (8) | 0.0289 (3) | |
| H8A | 0.1664 | 0.5008 | 0.5567 | 0.035* | |
| H8B | −0.0536 | 0.4209 | 0.5432 | 0.035* | |
| C9 | −0.2291 (3) | 0.55059 (12) | 0.56314 (9) | 0.0266 (3) | |
| C10 | −0.2762 (4) | 0.58747 (12) | 0.48943 (9) | 0.0264 (3) | |
| C11 | −0.4792 (4) | 0.65637 (12) | 0.47888 (10) | 0.0337 (4) | |
| H11A | −0.5823 | 0.6780 | 0.5175 | 0.040* | |
| C12 | −0.5275 (5) | 0.69250 (13) | 0.41129 (11) | 0.0396 (5) | |
| H12A | −0.6630 | 0.7383 | 0.4045 | 0.048* | |
| C13 | −0.3744 (4) | 0.66049 (14) | 0.35363 (11) | 0.0397 (5) | |
| H13A | −0.4070 | 0.6850 | 0.3082 | 0.048* | |
| C14 | −0.1733 (4) | 0.59220 (15) | 0.36330 (10) | 0.0375 (4) | |
| H14A | −0.0713 | 0.5707 | 0.3244 | 0.045* | |
| C15 | −0.1237 (4) | 0.55572 (14) | 0.43100 (10) | 0.0312 (4) | |
| H15A | 0.0120 | 0.5099 | 0.4374 | 0.037* | |
| O2 | −0.3588 (3) | 0.57915 (10) | 0.61422 (7) | 0.0390 (3) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| S1 | 0.0334 (2) | 0.0325 (2) | 0.02181 (18) | 0.0053 (2) | 0.00128 (18) | −0.00418 (15) |
| O1 | 0.0362 (7) | 0.0345 (6) | 0.0179 (5) | 0.0024 (5) | 0.0020 (5) | 0.0012 (5) |
| N1 | 0.0279 (7) | 0.0290 (7) | 0.0180 (6) | 0.0018 (6) | −0.0013 (5) | −0.0011 (5) |
| C1 | 0.0289 (8) | 0.0297 (7) | 0.0200 (6) | −0.0035 (8) | 0.0007 (7) | 0.0003 (5) |
| C2 | 0.0439 (11) | 0.0348 (9) | 0.0253 (8) | −0.0017 (8) | −0.0021 (8) | 0.0072 (7) |
| C3 | 0.0413 (11) | 0.0305 (9) | 0.0381 (10) | 0.0046 (8) | −0.0074 (8) | 0.0052 (8) |
| C4 | 0.0343 (9) | 0.0313 (9) | 0.0367 (10) | 0.0049 (8) | 0.0024 (8) | −0.0049 (8) |
| C5 | 0.0322 (9) | 0.0335 (9) | 0.0219 (8) | −0.0007 (8) | 0.0020 (7) | −0.0034 (7) |
| C6 | 0.0283 (9) | 0.0263 (8) | 0.0185 (7) | −0.0028 (6) | −0.0038 (6) | −0.0009 (6) |
| C7 | 0.0276 (8) | 0.0279 (8) | 0.0198 (7) | −0.0024 (7) | −0.0030 (6) | −0.0012 (6) |
| C8 | 0.0290 (8) | 0.0332 (8) | 0.0243 (7) | 0.0037 (8) | 0.0008 (8) | 0.0017 (6) |
| C9 | 0.0253 (8) | 0.0227 (7) | 0.0316 (8) | −0.0029 (7) | 0.0008 (6) | −0.0021 (7) |
| C10 | 0.0251 (8) | 0.0221 (8) | 0.0322 (9) | −0.0040 (6) | −0.0028 (7) | 0.0011 (6) |
| C11 | 0.0319 (9) | 0.0282 (8) | 0.0409 (9) | 0.0010 (8) | −0.0054 (8) | −0.0018 (7) |
| C12 | 0.0377 (11) | 0.0300 (9) | 0.0512 (11) | 0.0011 (9) | −0.0159 (10) | 0.0046 (8) |
| C13 | 0.0438 (11) | 0.0370 (10) | 0.0383 (10) | −0.0096 (9) | −0.0134 (8) | 0.0083 (8) |
| C14 | 0.0359 (10) | 0.0449 (11) | 0.0317 (9) | −0.0048 (9) | −0.0024 (8) | 0.0045 (8) |
| C15 | 0.0287 (8) | 0.0335 (9) | 0.0313 (8) | 0.0005 (8) | −0.0023 (7) | 0.0035 (8) |
| O2 | 0.0440 (8) | 0.0376 (7) | 0.0355 (7) | 0.0095 (6) | 0.0076 (6) | −0.0020 (6) |
Geometric parameters (Å, °)
| S1—C7 | 1.7343 (17) | C8—C9 | 1.507 (2) |
| S1—C8 | 1.8028 (16) | C8—H8A | 0.9700 |
| O1—C7 | 1.3704 (19) | C8—H8B | 0.9700 |
| O1—C1 | 1.389 (2) | C9—O2 | 1.212 (2) |
| N1—C7 | 1.290 (2) | C9—C10 | 1.489 (2) |
| N1—C6 | 1.398 (2) | C10—C15 | 1.393 (3) |
| C1—C2 | 1.374 (2) | C10—C11 | 1.397 (3) |
| C1—C6 | 1.389 (2) | C11—C12 | 1.381 (2) |
| C2—C3 | 1.387 (3) | C11—H11A | 0.9300 |
| C2—H2A | 0.9300 | C12—C13 | 1.385 (3) |
| C3—C4 | 1.394 (3) | C12—H12A | 0.9300 |
| C3—H3A | 0.9300 | C13—C14 | 1.383 (3) |
| C4—C5 | 1.389 (3) | C13—H13A | 0.9300 |
| C4—H4A | 0.9300 | C14—C15 | 1.386 (3) |
| C5—C6 | 1.383 (2) | C14—H14A | 0.9300 |
| C5—H5A | 0.9300 | C15—H15A | 0.9300 |
| C7—S1—C8 | 95.81 (8) | S1—C8—H8A | 109.7 |
| C7—O1—C1 | 103.29 (12) | C9—C8—H8B | 109.7 |
| C7—N1—C6 | 103.67 (14) | S1—C8—H8B | 109.7 |
| C2—C1—O1 | 128.62 (15) | H8A—C8—H8B | 108.2 |
| C2—C1—C6 | 124.18 (18) | O2—C9—C10 | 122.17 (16) |
| O1—C1—C6 | 107.20 (14) | O2—C9—C8 | 120.60 (16) |
| C1—C2—C3 | 115.13 (17) | C10—C9—C8 | 117.23 (14) |
| C1—C2—H2A | 122.4 | C15—C10—C11 | 119.18 (16) |
| C3—C2—H2A | 122.4 | C15—C10—C9 | 122.08 (16) |
| C2—C3—C4 | 122.13 (18) | C11—C10—C9 | 118.74 (16) |
| C2—C3—H3A | 118.9 | C12—C11—C10 | 120.30 (18) |
| C4—C3—H3A | 118.9 | C12—C11—H11A | 119.8 |
| C5—C4—C3 | 121.36 (18) | C10—C11—H11A | 119.9 |
| C5—C4—H4A | 119.3 | C11—C12—C13 | 120.01 (18) |
| C3—C4—H4A | 119.3 | C11—C12—H12A | 120.0 |
| C6—C5—C4 | 117.13 (16) | C13—C12—H12A | 120.0 |
| C6—C5—H5A | 121.4 | C14—C13—C12 | 120.29 (18) |
| C4—C5—H5A | 121.4 | C14—C13—H13A | 119.9 |
| C5—C6—C1 | 120.06 (16) | C12—C13—H13A | 119.9 |
| C5—C6—N1 | 130.61 (15) | C13—C14—C15 | 119.98 (19) |
| C1—C6—N1 | 109.33 (15) | C13—C14—H14A | 120.0 |
| N1—C7—O1 | 116.50 (15) | C15—C14—H14A | 120.0 |
| N1—C7—S1 | 128.59 (13) | C14—C15—C10 | 120.25 (17) |
| O1—C7—S1 | 114.90 (11) | C14—C15—H15A | 119.9 |
| C9—C8—S1 | 109.67 (12) | C10—C15—H15A | 119.9 |
| C9—C8—H8A | 109.7 | ||
| C7—O1—C1—C2 | −179.71 (19) | C1—O1—C7—S1 | 178.11 (12) |
| C7—O1—C1—C6 | 0.52 (17) | C8—S1—C7—N1 | 8.41 (18) |
| O1—C1—C2—C3 | −178.94 (17) | C8—S1—C7—O1 | −170.44 (13) |
| C6—C1—C2—C3 | 0.8 (3) | C7—S1—C8—C9 | 177.42 (12) |
| C1—C2—C3—C4 | −0.5 (3) | S1—C8—C9—O2 | 0.7 (2) |
| C2—C3—C4—C5 | 0.0 (3) | S1—C8—C9—C10 | −179.75 (13) |
| C3—C4—C5—C6 | 0.3 (3) | O2—C9—C10—C15 | 178.88 (17) |
| C4—C5—C6—C1 | 0.0 (2) | C8—C9—C10—C15 | −0.7 (2) |
| C4—C5—C6—N1 | 179.14 (16) | O2—C9—C10—C11 | −0.8 (3) |
| C2—C1—C6—C5 | −0.5 (3) | C8—C9—C10—C11 | 179.60 (16) |
| O1—C1—C6—C5 | 179.26 (15) | C15—C10—C11—C12 | 0.0 (3) |
| C2—C1—C6—N1 | −179.86 (17) | C9—C10—C11—C12 | 179.69 (17) |
| O1—C1—C6—N1 | −0.08 (18) | C10—C11—C12—C13 | 0.0 (3) |
| C7—N1—C6—C5 | −179.68 (17) | C11—C12—C13—C14 | 0.2 (3) |
| C7—N1—C6—C1 | −0.43 (18) | C12—C13—C14—C15 | −0.2 (3) |
| C6—N1—C7—O1 | 0.83 (19) | C13—C14—C15—C10 | 0.1 (3) |
| C6—N1—C7—S1 | −178.00 (13) | C11—C10—C15—C14 | 0.0 (3) |
| C1—O1—C7—N1 | −0.89 (19) | C9—C10—C15—C14 | −179.73 (17) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C5—H5A···N1i | 0.93 | 2.56 | 3.395 (2) | 149 |
Symmetry codes: (i) x+1/2, −y+1/2, −z+1.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2859).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Antane, S., Bernotas, R., Li, Y., David, M. R. & Yan, Y. (2004). Synth. Commun.34, 2443–2449.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
- Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C. & Polidori, G. (2004). J. Appl. Cryst.37, 258–264.
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Fuju, M., Nakamura, K., Mekata, H., Oka, S. & Ohno, A. (1988). Bull. Chem. Soc. Jpn, 61, 495–500.
- Grossert, J. S., Dubey, P. K., Gill, G. H., Cameron, T. S. & Gardner, P. A. (1984). Can. J. Chem.62, 798–807.
- Marco, J. L., Fernandez, N., Khira, I., Fernandez, P. & Romero, A. J. (1995). J. Org. Chem.60, 6678–6679.
- Ni, C., Li, Y. & Hu, J. (2006). J. Org. Chem.71, 6829–6833. [DOI] [PubMed]
- Oishi, Y., Watanabe, T., Kusa, K., Kazama, M. & Koniya, K. (1988). Jpn Patent JP63 243 067, 212359.
- Padmavathi, V., Thriveni, T., Sudhakar Reddy, G. & Deepti, D. (2008). Eur. J. Med. Chem.43, 917–924. [DOI] [PubMed]
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809033960/at2859sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809033960/at2859Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


