Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Aug 8;65(Pt 9):o2106. doi: 10.1107/S1600536809030803

1-(Benzothia­zol-2-yl)-3-(4-nitro­benzo­yl)thio­urea

Sohail Saeed a,*, Naghmana Rashid a, Rizwan Hussain b, Peter G Jones c
PMCID: PMC2970100  PMID: 21577521

Abstract

The mol­ecule of the title compound, C15H10N4O3S2, is almost planar (r.m.s. deviation = 0.1Å for all non-H atoms). An intra­molecular N—H⋯O=C hydrogen bond is observed. In the crystal, mol­ecules are connected into layers parallel to (10Inline graphic) by a classical inter­molecular hydrogen bond from the second NH group to a nitro O atom and by three weak hydrogen bonds of the C—H⋯X type (X = O or Sthione).

Related literature

For general background to the chemistry of thio­urea derivatives, see Choi et al. (2008); Jones et al. (2008); Su et al. (2006). For related structures, see: Saeed et al. (2008a ,b ,c ); Yunus et al. (2008).graphic file with name e-65-o2106-scheme1.jpg

Experimental

Crystal data

  • C15H10N4O3S2

  • M r = 358.39

  • Monoclinic, Inline graphic

  • a = 7.1596 (3) Å

  • b = 17.9071 (5) Å

  • c = 11.5768 (4) Å

  • β = 96.446 (4)°

  • V = 1474.85 (9) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 3.50 mm−1

  • T = 100 K

  • 0.20 × 0.10 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009) T min = 0.682, T max = 1.000 (expected range = 0.573–0.840)

  • 30943 measured reflections

  • 3026 independent reflections

  • 2834 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.078

  • S = 1.06

  • 3026 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030803/im2131sup1.cif

e-65-o2106-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030803/im2131Isup2.hkl

e-65-o2106-Isup2.hkl (148.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H01⋯O1 0.83 (2) 1.92 (2) 2.598 (2) 138 (2)
N2—H02⋯O2i 0.84 (2) 2.42 (2) 3.261 (2) 175 (2)
C5—H5⋯O1ii 0.95 2.55 3.462 (2) 161
C11—H11⋯O2i 0.95 2.41 3.318 (2) 159
C12—H12⋯S2iii 0.95 2.73 3.673 (1) 173
C7—H7⋯S2iv 0.95 2.91 3.563 (1) 127

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

The authors are grateful to Allama Iqbal Open University and the National Development Complex, Islamabad, Pakistan for the allocation of research and analytical laboratory facilities.

supplementary crystallographic information

Comment

Thiourea and its derivatives have found extensive applications in the field of medicine, agriculture and analytical chemistry. They are known to exhibit a wide variety of biological activities such as antiviral, anti-bacterial, antifungal, antitubercular, herbicidal, insecticidal and some epoxy resin curing agents containing amino functional groups (Saeedet al., 2008a,b,c). They have found broad areas of application e.g. in anion recognition, nonlinear optics and catalysis, and also display good coordination abilities (Choi et al., 2008; Jones et al., 2008; Su et al., 2006). As part of our research on coordination chemistry of thioureas, we are interested in the study of the influence of non-covalent interactions, especially hydrogen bonds and π-π stacking interactions, on the coordination modes of benzothiazoles bearing the 4- nitrobenzoylthiourea group with transition metal ions. Such coordination compounds of thiourea have been studied for various biological systems like antibactrial, antifungal and anticancer activities (Yunus et al., 2008).The importance of such work lies in the possibility that the next generation of thiourea derivatives might be more efficacious as antimicrobial and anticancer agents. However, a thorough investigation relating structure and activity of thiourea derivatives as well as their stability under biological conditions is required. These detailed investigations could be helpful in designing more potent antimicrobial and anticancer agents for therapeutic use. Condensation of acyl or aroyl thiocyanates with primary amines affords 1, 3-disubstituted thioureas in excellent yields in a single step. In the present paper, the crystal structure of the title compound is reported.

The molecule of the title compound is shown in Fig. 1. The molecule is approximately planar (r.m.s. deviation for all non-H atoms 0.1 Å). The two ring systems (S1–C7A plus N1, C8, N2; C10–C15 plus N4, C9) are essentially parallel (interplanar angle 1.06 (3)°), because non-zero torsion angles such as C11—C10—C9—N2 - 10.7 (2) and N1—C8—N2—C9 7.7 (2)° effectively cancel out.

An intramolecular hydrogen bond N1—H01···O1 is observed. The second classical H bond N2—H02···O2 combines with the three shortest "weak" H bonds H5···O1, H11···O2 and H12···S2 (Table 1) to form layers parallel to (101) (Fig. 2).

Experimental

A mixture of ammonium thiocyanate (0.1 mol) and 4-nitrobenzoyl chloride (0.1 mol) in anhydrous acetone (60 ml) was stirred for 40 min. 2-Aminobenzothiazole (0.1 mol) was added and the reaction mixture was refluxed for 2 h. After cooling, the reaction mixture was poured into 800 ml of acidified cold water (pH = 5). The resulting dark yellow solid was filtered and washed with cold acetone (yield 1.56 g, 87%). The title compound (I) was obtained as suitable crystals for X-ray analysis after recrystallization of the solid from a 1:1 ethanol- dichloromethane mixture.

Refinement

NH H atoms were refined freely. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å; hydrogen U values were fixed at 1.2 × U(eq) of the parent atom. Data are 99.3% complete to 2θ 145°.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound in the crystal. Ellipsoids correspond to 50% probability levels.

Fig. 2.

Fig. 2.

Packing diagram of the title compound viewed perpendicular to (101). Thin dashed lines represent "weak" and thick dashed lines classical H bonds. H atoms not involved in H bonds are omitted for clarity.

Crystal data

C15H10N4O3S2 F(000) = 736
Mr = 358.39 Dx = 1.614 Mg m3
Monoclinic, P21/n Cu Kα radiation, λ = 1.54184 Å
Hall symbol: -P 2yn Cell parameters from 21284 reflections
a = 7.1596 (3) Å θ = 3.8–75.7°
b = 17.9071 (5) Å µ = 3.50 mm1
c = 11.5768 (4) Å T = 100 K
β = 96.446 (4)° Lath, yellow
V = 1474.85 (9) Å3 0.20 × 0.10 × 0.05 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Nova A diffractometer 3026 independent reflections
Radiation source: Nova (Cu) X-ray Source 2834 reflections with I > 2σ(I)
mirror Rint = 0.040
Detector resolution: 10.3543 pixels mm-1 θmax = 75.9°, θmin = 4.6°
ω scans h = −8→9
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −22→22
Tmin = 0.682, Tmax = 1.000 l = −14→14
30943 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.7178P] where P = (Fo2 + 2Fc2)/3
3026 reflections (Δ/σ)max = 0.001
225 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.53606 (4) 0.470055 (17) 0.84776 (3) 0.01726 (10)
C2 0.44766 (17) 0.43337 (7) 0.71218 (11) 0.0165 (3)
N3 0.45826 (16) 0.36156 (6) 0.69808 (10) 0.0194 (2)
C3A 0.54057 (19) 0.32891 (8) 0.80022 (12) 0.0190 (3)
C4 0.5778 (2) 0.25256 (8) 0.81532 (13) 0.0232 (3)
H4 0.5452 0.2182 0.7538 0.028*
C5 0.6629 (2) 0.22814 (8) 0.92178 (13) 0.0248 (3)
H5 0.6894 0.1765 0.9331 0.030*
C6 0.7108 (2) 0.27842 (8) 1.01331 (12) 0.0234 (3)
H6 0.7681 0.2602 1.0859 0.028*
C7 0.67605 (19) 0.35414 (8) 0.99963 (12) 0.0209 (3)
H7 0.7094 0.3883 1.0614 0.025*
C7A 0.59024 (18) 0.37870 (7) 0.89188 (12) 0.0178 (3)
S2 0.43025 (6) 0.610190 (19) 0.71210 (3) 0.02877 (12)
N1 0.36489 (16) 0.47552 (6) 0.61966 (10) 0.0173 (2)
H01 0.316 (3) 0.4498 (11) 0.5646 (16) 0.029 (5)*
N2 0.25433 (16) 0.57570 (6) 0.50564 (10) 0.0179 (2)
H02 0.260 (3) 0.6224 (11) 0.5014 (16) 0.028 (5)*
N4 −0.17337 (16) 0.67589 (7) 0.00397 (10) 0.0215 (2)
O1 0.15674 (15) 0.46515 (5) 0.42156 (8) 0.0227 (2)
O2 −0.20909 (16) 0.74281 (6) 0.00649 (9) 0.0300 (3)
O3 −0.19731 (17) 0.63730 (6) −0.08377 (9) 0.0314 (3)
C8 0.34765 (18) 0.55045 (7) 0.61124 (12) 0.0183 (3)
C9 0.16239 (18) 0.53355 (7) 0.41710 (11) 0.0174 (3)
C10 0.07004 (18) 0.57425 (7) 0.31352 (11) 0.0168 (3)
C11 0.04521 (19) 0.65149 (7) 0.30881 (12) 0.0194 (3)
H11 0.0855 0.6812 0.3749 0.023*
C12 −0.03826 (19) 0.68511 (8) 0.20783 (12) 0.0200 (3)
H12 −0.0567 0.7376 0.2040 0.024*
C13 −0.09376 (18) 0.64017 (7) 0.11316 (11) 0.0177 (3)
C14 −0.07437 (19) 0.56315 (8) 0.11565 (11) 0.0188 (3)
H14 −0.1166 0.5338 0.0495 0.023*
C15 0.00793 (19) 0.53013 (7) 0.21676 (12) 0.0186 (3)
H15 0.0224 0.4774 0.2207 0.022*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.01993 (17) 0.01434 (16) 0.01670 (17) 0.00078 (11) −0.00157 (12) 0.00075 (10)
C2 0.0163 (6) 0.0159 (6) 0.0173 (6) −0.0001 (5) 0.0017 (5) 0.0013 (5)
N3 0.0218 (6) 0.0165 (6) 0.0194 (5) 0.0011 (4) −0.0001 (4) 0.0017 (4)
C3A 0.0190 (6) 0.0186 (7) 0.0192 (6) 0.0002 (5) 0.0017 (5) 0.0028 (5)
C4 0.0278 (7) 0.0171 (7) 0.0240 (7) 0.0003 (5) 0.0005 (6) 0.0008 (5)
C5 0.0277 (7) 0.0180 (7) 0.0284 (7) 0.0024 (5) 0.0022 (6) 0.0072 (6)
C6 0.0237 (7) 0.0235 (7) 0.0222 (7) 0.0015 (5) −0.0001 (5) 0.0076 (5)
C7 0.0205 (7) 0.0224 (7) 0.0192 (6) 0.0001 (5) −0.0002 (5) 0.0018 (5)
C7A 0.0161 (6) 0.0164 (6) 0.0209 (6) 0.0011 (5) 0.0021 (5) 0.0023 (5)
S2 0.0467 (2) 0.01438 (18) 0.02184 (19) −0.00151 (14) −0.01103 (15) 0.00050 (12)
N1 0.0206 (6) 0.0145 (5) 0.0159 (5) 0.0002 (4) −0.0023 (4) 0.0008 (4)
N2 0.0224 (6) 0.0122 (5) 0.0183 (5) 0.0002 (4) −0.0014 (4) 0.0016 (4)
N4 0.0201 (6) 0.0226 (6) 0.0206 (6) −0.0019 (4) −0.0025 (4) 0.0037 (5)
O1 0.0314 (5) 0.0138 (4) 0.0214 (5) 0.0004 (4) −0.0037 (4) 0.0006 (4)
O2 0.0372 (6) 0.0211 (5) 0.0294 (6) 0.0048 (4) −0.0073 (5) 0.0060 (4)
O3 0.0439 (7) 0.0301 (6) 0.0182 (5) −0.0027 (5) −0.0059 (4) −0.0006 (4)
C8 0.0190 (6) 0.0174 (6) 0.0182 (6) 0.0002 (5) 0.0012 (5) 0.0023 (5)
C9 0.0177 (6) 0.0168 (6) 0.0179 (6) 0.0006 (5) 0.0027 (5) 0.0000 (5)
C10 0.0156 (6) 0.0162 (6) 0.0186 (6) −0.0008 (5) 0.0019 (5) 0.0008 (5)
C11 0.0220 (7) 0.0160 (6) 0.0190 (6) −0.0003 (5) −0.0024 (5) −0.0019 (5)
C12 0.0215 (6) 0.0149 (6) 0.0227 (7) 0.0008 (5) −0.0015 (5) 0.0002 (5)
C13 0.0162 (6) 0.0194 (6) 0.0168 (6) 0.0001 (5) −0.0007 (5) 0.0026 (5)
C14 0.0191 (6) 0.0194 (6) 0.0178 (6) −0.0012 (5) 0.0011 (5) −0.0018 (5)
C15 0.0204 (6) 0.0143 (6) 0.0210 (7) −0.0006 (5) 0.0015 (5) −0.0005 (5)

Geometric parameters (Å, °)

S1—C7A 1.7443 (13) O1—C9 1.2269 (16)
S1—C2 1.7529 (13) C9—C10 1.4927 (18)
C2—N3 1.2994 (18) C10—C11 1.3949 (19)
C2—N1 1.3877 (17) C10—C15 1.4017 (19)
N3—C3A 1.3896 (17) C11—C12 1.3890 (18)
C3A—C4 1.4002 (19) C12—C13 1.3815 (19)
C3A—C7A 1.4009 (19) C13—C14 1.3863 (19)
C4—C5 1.383 (2) C14—C15 1.3828 (19)
C5—C6 1.403 (2) C4—H4 0.9500
C6—C7 1.385 (2) C5—H5 0.9500
C7—C7A 1.3982 (18) C6—H6 0.9500
S2—C8 1.6439 (14) C7—H7 0.9500
N1—C8 1.3499 (17) N1—H01 0.832 (19)
N2—C9 1.3791 (17) N2—H02 0.84 (2)
N2—C8 1.4007 (17) C11—H11 0.9500
N4—O3 1.2246 (16) C12—H12 0.9500
N4—O2 1.2264 (16) C14—H14 0.9500
N4—C13 1.4731 (16) C15—H15 0.9500
C7A—S1—C2 87.52 (6) C15—C10—C9 116.03 (11)
N3—C2—N1 117.86 (12) C12—C11—C10 120.24 (12)
N3—C2—S1 117.58 (10) C13—C12—C11 118.26 (12)
N1—C2—S1 124.55 (10) C12—C13—C14 122.94 (12)
C2—N3—C3A 109.55 (11) C12—C13—N4 118.49 (12)
N3—C3A—C4 125.00 (13) C14—C13—N4 118.56 (12)
N3—C3A—C7A 115.09 (12) C15—C14—C13 118.37 (12)
C4—C3A—C7A 119.89 (12) C14—C15—C10 120.15 (12)
C5—C4—C3A 118.59 (13) C5—C4—H4 120.7
C4—C5—C6 121.06 (13) C3A—C4—H4 120.7
C7—C6—C5 121.08 (13) C4—C5—H5 119.5
C6—C7—C7A 117.75 (13) C6—C5—H5 119.5
C7—C7A—C3A 121.62 (12) C7—C6—H6 119.5
C7—C7A—S1 128.12 (11) C5—C6—H6 119.5
C3A—C7A—S1 110.23 (10) C6—C7—H7 121.1
C8—N1—C2 128.62 (12) C7A—C7—H7 121.1
C9—N2—C8 127.82 (11) C8—N1—H01 117.8 (13)
O3—N4—O2 124.13 (12) C2—N1—H01 113.5 (13)
O3—N4—C13 118.13 (11) C9—N2—H02 121.6 (13)
O2—N4—C13 117.74 (11) C8—N2—H02 110.6 (13)
N1—C8—N2 114.50 (12) C12—C11—H11 119.9
N1—C8—S2 124.95 (10) C10—C11—H11 119.9
N2—C8—S2 120.54 (10) C13—C12—H12 120.9
O1—C9—N2 122.03 (12) C11—C12—H12 120.9
O1—C9—C10 120.50 (12) C15—C14—H14 120.8
N2—C9—C10 117.47 (11) C13—C14—H14 120.8
C11—C10—C15 120.00 (12) C14—C15—H15 119.9
C11—C10—C9 123.96 (12) C10—C15—H15 119.9
C7A—S1—C2—N3 −1.03 (11) C9—N2—C8—N1 7.7 (2)
C7A—S1—C2—N1 177.99 (12) C9—N2—C8—S2 −173.54 (11)
N1—C2—N3—C3A −178.55 (11) C8—N2—C9—O1 −1.8 (2)
S1—C2—N3—C3A 0.54 (15) C8—N2—C9—C10 178.80 (12)
C2—N3—C3A—C4 −178.51 (13) O1—C9—C10—C11 169.88 (13)
C2—N3—C3A—C7A 0.44 (16) N2—C9—C10—C11 −10.69 (19)
N3—C3A—C4—C5 179.12 (13) O1—C9—C10—C15 −10.64 (19)
C7A—C3A—C4—C5 0.2 (2) N2—C9—C10—C15 168.79 (12)
C3A—C4—C5—C6 0.3 (2) C15—C10—C11—C12 −1.0 (2)
C4—C5—C6—C7 −0.6 (2) C9—C10—C11—C12 178.44 (12)
C5—C6—C7—C7A 0.5 (2) C10—C11—C12—C13 −0.5 (2)
C6—C7—C7A—C3A 0.0 (2) C11—C12—C13—C14 1.8 (2)
C6—C7—C7A—S1 −177.83 (11) C11—C12—C13—N4 −176.88 (12)
N3—C3A—C7A—C7 −179.35 (12) O3—N4—C13—C12 169.77 (12)
C4—C3A—C7A—C7 −0.3 (2) O2—N4—C13—C12 −9.23 (19)
N3—C3A—C7A—S1 −1.19 (15) O3—N4—C13—C14 −8.94 (19)
C4—C3A—C7A—S1 177.82 (11) O2—N4—C13—C14 172.05 (12)
C2—S1—C7A—C7 179.17 (13) C12—C13—C14—C15 −1.4 (2)
C2—S1—C7A—C3A 1.17 (10) N4—C13—C14—C15 177.23 (12)
N3—C2—N1—C8 −175.86 (13) C13—C14—C15—C10 −0.2 (2)
S1—C2—N1—C8 5.1 (2) C11—C10—C15—C14 1.4 (2)
C2—N1—C8—N2 −179.42 (12) C9—C10—C15—C14 −178.12 (12)
C2—N1—C8—S2 1.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H01···O1 0.83 (2) 1.92 (2) 2.598 (2) 138 (2)
N2—H02···O2i 0.84 (2) 2.42 (2) 3.261 (2) 175 (2)
C5—H5···O1ii 0.95 2.55 3.462 (2) 161
C11—H11···O2i 0.95 2.41 3.318 (2) 159
C12—H12···S2iii 0.95 2.73 3.673 (1) 173
C7—H7···S2iv 0.95 2.91 3.563 (1) 127

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2; (ii) x+1/2, −y+1/2, z+1/2; (iii) x−1/2, −y+3/2, z−1/2; (iv) −x+1, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2131).

References

  1. Choi, M. K., Kim, H. N., Choi, H. J., Yoon, J. & Hyun, M. H. (2008). Tetrahedron Lett.49, 4522–4525.
  2. Jones, C. E., Turega, S. M., Clarke, M. L. & Philp, D. (2008). Tetrahedron Lett.49, 4666–4669.
  3. Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction, Yarnton, England.
  4. Saeed, S., Bhatti, M. H., Tahir, M. K. & Jones, P. G. (2008a). Acta Cryst. E64, o1369. [DOI] [PMC free article] [PubMed]
  5. Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008b). Acta Cryst. E64, o1485. [DOI] [PMC free article] [PubMed]
  6. Saeed, S., Bhatti, M. H., Yunus, U. & Jones, P. G. (2008c). Acta Cryst. E64, o1566. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1994). XP Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Su, B.-Q., Liu, G.-L., Sheng, L., Wang, X.-Q. & Xian, L. (2006). Phosphorus Sulphur Silicon, 181, 745–750.
  10. Yunus, U., Tahir, M. K., Bhatti, M. H., Ali, S. & Wong, W.-Y. (2008). Acta Cryst. E64, o20. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809030803/im2131sup1.cif

e-65-o2106-sup1.cif (19.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809030803/im2131Isup2.hkl

e-65-o2106-Isup2.hkl (148.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES