Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 26;65(Pt 10):o2551–o2552. doi: 10.1107/S1600536809036940

5-Dichloro­acetyl-4-methyl-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one hemihydrate

K Ravichandran a, P Sakthivel b, S Ponnuswamy b, M Shalini b, M N Ponnuswamy a,*
PMCID: PMC2970202  PMID: 21577993

Abstract

There are two crystallographically independent organic mol­ecules in the asymmetric unit of the title compound, C12H12Cl2N2O2·0.5H2O. The benzodiazepine ring adopts a distorted boat conformation in both molecules. The crystal packing is controlled by N—H⋯O, C—H⋯O and O—H⋯O intra- and inter­molecular hydrogen bonds. A graph-set motif of R 3 3(14) dimer formation by a combination of N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds stabilizes the mol­ecules and extends along a axis.

Related literature

For the anti­convulsant activity of benzodiazepine, see: MacDonald (2002). For their hypnotic effect, see: Gringauz (1999). For their use in the treatment of gastrointestinal and central nervous system disorders, see: Rahbaek et al. (1999). For other therapeutic applications, see: Albright et al. (1998); Lee et al. (1999). For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For details of the preparation of the title compound, see: Venkatraj et al. (2008).graphic file with name e-65-o2551-scheme1.jpg

Experimental

Crystal data

  • C12H12Cl2N2O2·0.5H2O

  • M r = 592.29

  • Monoclinic, Inline graphic

  • a = 8.5470 (3) Å

  • b = 18.0837 (6) Å

  • c = 8.8697 (3) Å

  • β = 95.405 (2)°

  • V = 1364.82 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 293 K

  • 0.26 × 0.24 × 0.22 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.884, T max = 0.901

  • 14191 measured reflections

  • 5599 independent reflections

  • 4873 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.110

  • S = 1.04

  • 5599 reflections

  • 352 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983), 2698 Friedel pairs

  • Flack parameter: 0.06 (6)

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036940/bt5048sup1.cif

e-65-o2551-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036940/bt5048Isup2.hkl

e-65-o2551-Isup2.hkl (268.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1A⋯O3 0.87 (4) 2.08 (4) 2.927 (4) 164 (3)
O3—H2W⋯O1Bi 0.80 (4) 2.02 (4) 2.815 (4) 173 (4)
C8A—H8A⋯O2Aii 0.93 2.51 3.268 (4) 139
C10B—H10B⋯O2Biii 0.93 2.39 3.179 (4) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection and the management of Kandaswami Kandar’s College, Velur, Namakkal, India, for their encouragement to pursue the programme.

supplementary crystallographic information

Comment

The anticonvulsant activity of benzodiazepines has been utilized clinically in patients to treat specific seizure types or conditions, i.e., akinetic, myoclonic, absence variant seizures as well as to help terminate status epilepticusor serial seizures (MacDonald, 2002). Benzodiazepines are used for the purpose of hypnotic effects, owing to their less toxic and less severe withdrawal effects when compared with barbiturates (Gringauz, 1999). Benzodiazepines from aspergillus include asperlicin, which is used for treatment of gastrointestinal and central nervous system (CNS) disorders (Rahbaek et al.,1999). The other therapeutic applications (Lee et al., 1999) of benzodiazepines include vasopressin antagonists (Albright et al., 1998). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. There are two crystallographically independent molecules in the asymmetric unit. The benzodiazepine rings in the two molecules adopt a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for the ring in molecule A are: q2 = 0.959 (3) Å, q3 = 0.150 (3) Å, φ2 = 136.1 (2)°, φ3 = 359.8 (1)° and Δ2(C4A)= 8.1 (3)°; for the ring in molecule B are: q2 = 0.962 (3) Å, q3 = 0.168 (3) Å, φ2 = 141.4 (2)°, φ3 = 5.3 (1)° and Δ2(C4B)= 3.4 (3)°. The sum of the bond angles at N1A(359.0°), N1B(359.2), N5A(358.8) and N5B(359.9°) of the benzodiazepine rings in both the molecules are in accordance with sp2 hybridization.

The crystal packing is controlled by N—H···O, C—H···O and O—H···O types of intermolecular interactions in addition to van der Waals forces. The water molecule connects the molecules A and B through N1A—H1A···O3 and O3—H2W···O1B hydrogen bonds. Thus the combination of N1A—H1A···O3, O3—H2W···O1B and C3A—H3A···O2B hydrogen bonds form a graph set motif of R33(14) dimer (Bernstein et al., 1995) which stabilize the molecules. Atom C8A at (x, y, z) donates a proton to O2A (x - 1, y, z), which forms a C7 one dimensional chain running along a–axis. The intermolecular hydrogen bond C10B—H10B···O2B also connects the molecule into an another C7 chain running along b–axis (Fig. 2).

Experimental

To a solution of tetrahydro-4-methyl-1,5-benzodiazepin-2-one (0.88 g) in anhydrous benzene (50 ml) was added triethylamine (2.8 ml) and dichloroacetyl chloride (1.90 ml). The contents were allowed to reflux on a water bath for 6hrs. The reaction mixture was washed with sodium bicarbonate solution (10%), water and dried. Evaporation of the solvent results a crude mass and further crystallization from ethanol gives colorless crystals (Venkatraj et al., 2008).

Refinement

The Nitrogen and Oxygen H atoms were refined and the other H atoms positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the molecule showing the thermal ellipsoids are drawn at 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed down c–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C12H12Cl2N2O2·0.5H2O F(000) = 612
Mr = 592.29 Dx = 1.441 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4629 reflections
a = 8.5470 (3) Å θ = 2.3–26.5°
b = 18.0837 (6) Å µ = 0.48 mm1
c = 8.8697 (3) Å T = 293 K
β = 95.405 (2)° Block, colourless
V = 1364.82 (8) Å3 0.26 × 0.24 × 0.22 mm
Z = 2

Data collection

Bruker Kappa APEXII area-detector diffractometer 5599 independent reflections
Radiation source: fine-focus sealed tube 4873 reflections with I > 2σ(I)
graphite Rint = 0.022
ω and φ scans θmax = 26.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −10→10
Tmin = 0.884, Tmax = 0.901 k = −22→22
14191 measured reflections l = −11→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.110 w = 1/[σ2(Fo2) + (0.0438P)2 + 0.7028P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.006
5599 reflections Δρmax = 0.46 e Å3
352 parameters Δρmin = −0.62 e Å3
1 restraint Absolute structure: Flack (1983),2698 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.06 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1A 1.62028 (16) −0.29670 (7) 1.77856 (13) 0.0941 (4)
Cl1B 1.04826 (15) 0.13662 (6) 0.96558 (15) 0.0906 (4)
Cl2A 1.48485 (16) −0.15064 (6) 1.74118 (13) 0.0858 (3)
Cl2B 0.8172 (2) 0.15716 (9) 1.17529 (14) 0.1300 (7)
O1A 1.5519 (3) −0.46993 (14) 1.2925 (3) 0.0594 (6)
O1B 1.0719 (3) −0.07368 (15) 0.6539 (2) 0.0573 (6)
O2A 1.6504 (3) −0.20942 (14) 1.4809 (3) 0.0635 (7)
O2B 0.7429 (3) 0.02505 (17) 1.0049 (4) 0.0852 (9)
O3 1.2224 (4) −0.56267 (15) 1.5161 (4) 0.0677 (7)
H1W 1.279 (6) −0.601 (3) 1.502 (6) 0.108 (19)*
H2W 1.140 (5) −0.570 (2) 1.467 (4) 0.059 (11)*
N1A 1.3405 (3) −0.42583 (13) 1.3919 (3) 0.0403 (5)
H1A 1.325 (4) −0.469 (2) 1.432 (4) 0.057 (10)*
N1B 1.2097 (3) −0.03383 (14) 0.8658 (3) 0.0399 (5)
H1B 1.261 (3) −0.0095 (17) 0.811 (3) 0.031 (7)*
C2A 1.4518 (3) −0.42199 (16) 1.2939 (3) 0.0420 (6)
C2B 1.1026 (3) −0.07798 (16) 0.7907 (3) 0.0410 (6)
C3A 1.4398 (4) −0.35821 (17) 1.1848 (3) 0.0462 (7)
H3A 1.3314 −0.3539 1.1423 0.055*
H3B 1.5028 −0.3694 1.1023 0.055*
C3B 1.0275 (4) −0.13513 (16) 0.8847 (3) 0.0465 (7)
H3C 1.1089 −0.1594 0.9505 0.056*
H3D 0.9773 −0.1723 0.8178 0.056*
C4A 1.4920 (3) −0.28414 (16) 1.2521 (3) 0.0441 (7)
H4A 1.6071 −0.2832 1.2637 0.053*
C4B 0.9057 (4) −0.10270 (17) 0.9813 (4) 0.0490 (7)
H4B 0.8130 −0.0886 0.9140 0.059*
N5A 1.4357 (2) −0.27668 (12) 1.4044 (2) 0.0368 (5)
N5B 0.9699 (3) −0.03578 (14) 1.0580 (2) 0.0403 (5)
C6A 1.2763 (3) −0.29648 (16) 1.4220 (3) 0.0355 (5)
C6B 1.1307 (3) −0.03545 (15) 1.1206 (3) 0.0363 (6)
C7A 1.1664 (3) −0.24204 (17) 1.4443 (3) 0.0457 (7)
H7A 1.1961 −0.1926 1.4462 0.055*
C7B 1.1690 (4) −0.03548 (18) 1.2758 (3) 0.0485 (7)
H7B 1.0906 −0.0415 1.3407 0.058*
C8A 1.0148 (3) −0.2607 (2) 1.4635 (4) 0.0548 (8)
H8A 0.9424 −0.2242 1.4820 0.066*
C8B 1.3225 (4) −0.0267 (2) 1.3344 (4) 0.0587 (9)
H8B 1.3482 −0.0259 1.4386 0.070*
C9A 0.9695 (3) −0.3334 (2) 1.4554 (4) 0.0530 (8)
H9A 0.8658 −0.3458 1.4675 0.064*
C9B 1.4383 (4) −0.01891 (19) 1.2369 (4) 0.0571 (9)
H9B 1.5418 −0.0109 1.2758 0.069*
C10A 1.0749 (3) −0.38800 (17) 1.4298 (4) 0.0467 (7)
H10A 1.0422 −0.4370 1.4237 0.056*
C10B 1.4017 (3) −0.02294 (17) 1.0826 (4) 0.0461 (7)
H10B 1.4812 −0.0194 1.0182 0.055*
C11A 1.2304 (3) −0.37036 (15) 1.4130 (3) 0.0353 (5)
C11B 1.2482 (3) −0.03216 (15) 1.0231 (3) 0.0363 (5)
C12A 1.4358 (6) −0.2213 (2) 1.1517 (4) 0.0707 (11)
H12A 1.3230 −0.2210 1.1396 0.106*
H12B 1.4751 −0.2271 1.0544 0.106*
H12C 1.4733 −0.1755 1.1964 0.106*
C12B 0.8546 (5) −0.1577 (3) 1.0958 (5) 0.0806 (12)
H12D 0.9429 −0.1705 1.1660 0.121*
H12E 0.8147 −0.2015 1.0443 0.121*
H12F 0.7738 −0.1361 1.1498 0.121*
C13A 1.5282 (3) −0.23943 (16) 1.5082 (3) 0.0425 (6)
C13B 0.8785 (3) 0.02480 (19) 1.0567 (3) 0.0483 (7)
C14A 1.4827 (4) −0.2412 (2) 1.6705 (3) 0.0516 (7)
H14A 1.3773 −0.2624 1.6720 0.062*
C14B 0.9587 (5) 0.0969 (2) 1.1152 (4) 0.0651 (10)
H14B 1.0379 0.0860 1.1995 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1A 0.1134 (9) 0.0939 (8) 0.0740 (7) 0.0444 (7) 0.0047 (6) 0.0100 (6)
Cl1B 0.1093 (9) 0.0570 (6) 0.1045 (8) −0.0225 (6) 0.0047 (7) 0.0035 (6)
Cl2A 0.1158 (9) 0.0691 (6) 0.0740 (6) 0.0202 (6) 0.0169 (6) −0.0282 (5)
Cl2B 0.1609 (13) 0.1493 (13) 0.0748 (7) 0.1052 (12) −0.0141 (7) −0.0412 (8)
O1A 0.0640 (14) 0.0558 (13) 0.0609 (13) 0.0228 (12) 0.0193 (11) 0.0018 (11)
O1B 0.0562 (13) 0.0768 (16) 0.0377 (11) −0.0032 (12) −0.0020 (9) −0.0029 (11)
O2A 0.0445 (12) 0.0707 (16) 0.0778 (16) −0.0228 (11) 0.0190 (11) −0.0222 (13)
O2B 0.0332 (12) 0.087 (2) 0.133 (3) 0.0137 (13) −0.0012 (14) 0.0200 (19)
O3 0.0578 (16) 0.0485 (14) 0.093 (2) 0.0005 (13) −0.0113 (15) 0.0087 (13)
N1A 0.0465 (13) 0.0319 (13) 0.0435 (13) 0.0045 (10) 0.0100 (10) 0.0037 (10)
N1B 0.0367 (12) 0.0480 (13) 0.0360 (12) −0.0030 (11) 0.0087 (10) 0.0039 (11)
C2A 0.0474 (16) 0.0378 (15) 0.0408 (14) 0.0031 (13) 0.0035 (12) −0.0043 (12)
C2B 0.0388 (14) 0.0439 (16) 0.0400 (15) 0.0031 (12) 0.0026 (11) −0.0056 (12)
C3A 0.0575 (18) 0.0471 (16) 0.0348 (13) 0.0020 (14) 0.0083 (12) −0.0023 (12)
C3B 0.0504 (17) 0.0371 (15) 0.0511 (16) −0.0102 (13) −0.0010 (13) −0.0056 (12)
C4A 0.0461 (16) 0.0472 (17) 0.0404 (14) −0.0062 (13) 0.0108 (12) −0.0014 (13)
C4B 0.0382 (15) 0.0495 (18) 0.0588 (19) −0.0087 (13) 0.0016 (13) 0.0007 (14)
N5A 0.0328 (11) 0.0392 (12) 0.0394 (11) −0.0022 (9) 0.0082 (9) −0.0032 (9)
N5B 0.0282 (11) 0.0521 (14) 0.0409 (12) 0.0018 (10) 0.0047 (9) 0.0010 (11)
C6A 0.0277 (12) 0.0417 (14) 0.0367 (13) 0.0022 (11) 0.0010 (10) 0.0018 (11)
C6B 0.0334 (13) 0.0375 (13) 0.0372 (13) 0.0031 (11) −0.0004 (10) 0.0018 (11)
C7A 0.0420 (15) 0.0402 (16) 0.0552 (17) 0.0070 (12) 0.0057 (13) 0.0037 (13)
C7B 0.0540 (17) 0.0523 (17) 0.0390 (14) 0.0062 (14) 0.0031 (12) 0.0047 (13)
C8A 0.0372 (16) 0.057 (2) 0.071 (2) 0.0182 (14) 0.0091 (14) 0.0025 (16)
C8B 0.071 (2) 0.060 (2) 0.0419 (16) 0.0053 (18) −0.0129 (15) −0.0005 (15)
C9A 0.0292 (15) 0.065 (2) 0.0648 (19) −0.0016 (14) 0.0056 (13) 0.0010 (17)
C9B 0.0434 (17) 0.057 (2) 0.066 (2) −0.0052 (15) −0.0182 (15) 0.0001 (16)
C10A 0.0376 (15) 0.0460 (17) 0.0563 (17) −0.0072 (12) 0.0031 (13) −0.0004 (13)
C10B 0.0328 (13) 0.0472 (17) 0.0568 (17) −0.0013 (12) −0.0033 (12) 0.0023 (14)
C11A 0.0356 (13) 0.0376 (14) 0.0326 (12) −0.0005 (11) 0.0032 (10) −0.0005 (11)
C11B 0.0342 (13) 0.0347 (13) 0.0393 (13) 0.0007 (11) 0.0009 (10) 0.0015 (11)
C12A 0.104 (3) 0.049 (2) 0.061 (2) −0.0015 (19) 0.019 (2) 0.0172 (17)
C12B 0.083 (3) 0.075 (3) 0.087 (3) −0.036 (2) 0.026 (2) 0.004 (2)
C13A 0.0333 (14) 0.0402 (15) 0.0551 (16) −0.0060 (12) 0.0107 (12) −0.0084 (13)
C13B 0.0353 (15) 0.0581 (19) 0.0525 (17) 0.0096 (14) 0.0086 (13) 0.0103 (15)
C14A 0.0420 (15) 0.064 (2) 0.0482 (16) 0.0011 (14) 0.0015 (12) −0.0146 (15)
C14B 0.073 (2) 0.064 (2) 0.0539 (19) 0.0303 (18) −0.0134 (17) −0.0112 (16)

Geometric parameters (Å, °)

Cl1A—C14A 1.759 (3) N5B—C13B 1.345 (4)
Cl1B—C14B 1.748 (4) N5B—C6B 1.432 (3)
Cl2A—C14A 1.754 (3) C6A—C7A 1.388 (4)
Cl2B—C14B 1.748 (4) C6A—C11A 1.393 (4)
O1A—C2A 1.219 (4) C6B—C7B 1.385 (4)
O1B—C2B 1.220 (3) C6B—C11B 1.387 (4)
O2A—C13A 1.221 (3) C7A—C8A 1.365 (4)
O2B—C13B 1.206 (4) C7A—H7A 0.9300
O3—H1W 0.86 (6) C7B—C8B 1.374 (5)
O3—H2W 0.80 (4) C7B—H7B 0.9300
N1A—C2A 1.349 (4) C8A—C9A 1.370 (5)
N1A—C11A 1.400 (4) C8A—H8A 0.9300
N1A—H1A 0.87 (4) C8B—C9B 1.381 (5)
N1B—C2B 1.343 (4) C8B—H8B 0.9300
N1B—C11B 1.403 (3) C9A—C10A 1.370 (4)
N1B—H1B 0.81 (3) C9A—H9A 0.9300
C2A—C3A 1.503 (4) C9B—C10B 1.376 (5)
C2B—C3B 1.508 (4) C9B—H9B 0.9300
C3A—C4A 1.516 (4) C10A—C11A 1.389 (4)
C3A—H3A 0.9700 C10A—H10A 0.9300
C3A—H3B 0.9700 C10B—C11B 1.378 (4)
C3B—C4B 1.527 (5) C10B—H10B 0.9300
C3B—H3C 0.9700 C12A—H12A 0.9600
C3B—H3D 0.9700 C12A—H12B 0.9600
C4A—N5A 1.482 (3) C12A—H12C 0.9600
C4A—C12A 1.495 (5) C12B—H12D 0.9600
C4A—H4A 0.9800 C12B—H12E 0.9600
C4B—N5B 1.469 (4) C12B—H12F 0.9600
C4B—C12B 1.515 (5) C13A—C14A 1.526 (4)
C4B—H4B 0.9800 C13B—C14B 1.540 (5)
N5A—C13A 1.338 (4) C14A—H14A 0.9800
N5A—C6A 1.431 (3) C14B—H14B 0.9800
H1W—O3—H2W 106 (5) C7A—C8A—C9A 119.9 (3)
C2A—N1A—C11A 125.0 (2) C7A—C8A—H8A 120.1
C2A—N1A—H1A 117 (2) C9A—C8A—H8A 120.1
C11A—N1A—H1A 117 (2) C7B—C8B—C9B 119.4 (3)
C2B—N1B—C11B 126.2 (3) C7B—C8B—H8B 120.3
C2B—N1B—H1B 114 (2) C9B—C8B—H8B 120.3
C11B—N1B—H1B 119 (2) C10A—C9A—C8A 120.9 (3)
O1A—C2A—N1A 120.5 (3) C10A—C9A—H9A 119.6
O1A—C2A—C3A 123.0 (3) C8A—C9A—H9A 119.6
N1A—C2A—C3A 116.4 (3) C10B—C9B—C8B 120.5 (3)
O1B—C2B—N1B 121.9 (3) C10B—C9B—H9B 119.7
O1B—C2B—C3B 122.0 (3) C8B—C9B—H9B 119.7
N1B—C2B—C3B 116.1 (2) C9A—C10A—C11A 120.2 (3)
C2A—C3A—C4A 115.1 (2) C9A—C10A—H10A 119.9
C2A—C3A—H3A 108.5 C11A—C10A—H10A 119.9
C4A—C3A—H3A 108.5 C9B—C10B—C11B 120.4 (3)
C2A—C3A—H3B 108.5 C9B—C10B—H10B 119.8
C4A—C3A—H3B 108.5 C11B—C10B—H10B 119.8
H3A—C3A—H3B 107.5 C10A—C11A—C6A 118.8 (2)
C2B—C3B—C4B 113.3 (2) C10A—C11A—N1A 120.8 (3)
C2B—C3B—H3C 108.9 C6A—C11A—N1A 120.4 (2)
C4B—C3B—H3C 108.9 C10B—C11B—C6B 119.0 (3)
C2B—C3B—H3D 108.9 C10B—C11B—N1B 120.6 (3)
C4B—C3B—H3D 108.9 C6B—C11B—N1B 120.3 (2)
H3C—C3B—H3D 107.7 C4A—C12A—H12A 109.5
N5A—C4A—C12A 111.1 (3) C4A—C12A—H12B 109.5
N5A—C4A—C3A 109.3 (2) H12A—C12A—H12B 109.5
C12A—C4A—C3A 111.8 (3) C4A—C12A—H12C 109.5
N5A—C4A—H4A 108.2 H12A—C12A—H12C 109.5
C12A—C4A—H4A 108.2 H12B—C12A—H12C 109.5
C3A—C4A—H4A 108.2 C4B—C12B—H12D 109.5
N5B—C4B—C12B 110.4 (3) C4B—C12B—H12E 109.5
N5B—C4B—C3B 109.4 (2) H12D—C12B—H12E 109.5
C12B—C4B—C3B 112.3 (3) C4B—C12B—H12F 109.5
N5B—C4B—H4B 108.2 H12D—C12B—H12F 109.5
C12B—C4B—H4B 108.2 H12E—C12B—H12F 109.5
C3B—C4B—H4B 108.2 O2A—C13A—N5A 123.3 (3)
C13A—N5A—C6A 123.9 (2) O2A—C13A—C14A 119.7 (3)
C13A—N5A—C4A 116.8 (2) N5A—C13A—C14A 116.9 (2)
C6A—N5A—C4A 118.1 (2) O2B—C13B—N5B 122.9 (3)
C13B—N5B—C6B 122.4 (3) O2B—C13B—C14B 120.4 (3)
C13B—N5B—C4B 118.4 (2) N5B—C13B—C14B 116.5 (3)
C6B—N5B—C4B 119.1 (2) C13A—C14A—Cl2A 108.8 (2)
C7A—C6A—C11A 119.8 (2) C13A—C14A—Cl1A 108.0 (2)
C7A—C6A—N5A 120.2 (3) Cl2A—C14A—Cl1A 110.73 (17)
C11A—C6A—N5A 120.0 (2) C13A—C14A—H14A 109.7
C7B—C6B—C11B 120.2 (2) Cl2A—C14A—H14A 109.7
C7B—C6B—N5B 120.9 (3) Cl1A—C14A—H14A 109.7
C11B—C6B—N5B 118.8 (2) C13B—C14B—Cl2B 109.4 (3)
C8A—C7A—C6A 120.4 (3) C13B—C14B—Cl1B 107.7 (2)
C8A—C7A—H7A 119.8 Cl2B—C14B—Cl1B 109.9 (2)
C6A—C7A—H7A 119.8 C13B—C14B—H14B 109.9
C8B—C7B—C6B 120.2 (3) Cl2B—C14B—H14B 109.9
C8B—C7B—H7B 119.9 Cl1B—C14B—H14B 109.9
C6B—C7B—H7B 119.9
C11A—N1A—C2A—O1A 173.3 (3) C7B—C8B—C9B—C10B −2.6 (5)
C11A—N1A—C2A—C3A −9.3 (4) C8A—C9A—C10A—C11A 0.6 (5)
C11B—N1B—C2B—O1B 177.0 (3) C8B—C9B—C10B—C11B 2.3 (5)
C11B—N1B—C2B—C3B −5.4 (4) C9A—C10A—C11A—C6A −0.2 (4)
O1A—C2A—C3A—C4A −106.8 (3) C9A—C10A—C11A—N1A 177.8 (3)
N1A—C2A—C3A—C4A 75.9 (3) C7A—C6A—C11A—C10A −1.4 (4)
O1B—C2B—C3B—C4B −107.2 (3) N5A—C6A—C11A—C10A −179.7 (2)
N1B—C2B—C3B—C4B 75.2 (3) C7A—C6A—C11A—N1A −179.4 (2)
C2A—C3A—C4A—N5A −40.6 (4) N5A—C6A—C11A—N1A 2.2 (4)
C2A—C3A—C4A—C12A −164.0 (3) C2A—N1A—C11A—C10A 138.6 (3)
C2B—C3B—C4B—N5B −46.2 (3) C2A—N1A—C11A—C6A −43.4 (4)
C2B—C3B—C4B—C12B −169.2 (3) C9B—C10B—C11B—C6B 1.6 (4)
C12A—C4A—N5A—C13A −90.1 (3) C9B—C10B—C11B—N1B 177.9 (3)
C3A—C4A—N5A—C13A 146.1 (3) C7B—C6B—C11B—C10B −5.2 (4)
C12A—C4A—N5A—C6A 78.1 (3) N5B—C6B—C11B—C10B 172.3 (3)
C3A—C4A—N5A—C6A −45.7 (3) C7B—C6B—C11B—N1B 178.5 (3)
C12B—C4B—N5B—C13B −102.0 (3) N5B—C6B—C11B—N1B −3.9 (4)
C3B—C4B—N5B—C13B 134.0 (3) C2B—N1B—C11B—C10B 141.2 (3)
C12B—C4B—N5B—C6B 83.0 (3) C2B—N1B—C11B—C6B −42.6 (4)
C3B—C4B—N5B—C6B −41.1 (3) C6A—N5A—C13A—O2A −164.1 (3)
C13A—N5A—C6A—C7A 58.9 (4) C4A—N5A—C13A—O2A 3.3 (4)
C4A—N5A—C6A—C7A −108.3 (3) C6A—N5A—C13A—C14A 21.3 (4)
C13A—N5A—C6A—C11A −122.8 (3) C4A—N5A—C13A—C14A −171.3 (3)
C4A—N5A—C6A—C11A 70.0 (3) C6B—N5B—C13B—O2B −179.7 (3)
C13B—N5B—C6B—C7B 75.4 (4) C4B—N5B—C13B—O2B 5.4 (4)
C4B—N5B—C6B—C7B −109.8 (3) C6B—N5B—C13B—C14B 4.5 (4)
C13B—N5B—C6B—C11B −102.1 (3) C4B—N5B—C13B—C14B −170.4 (3)
C4B—N5B—C6B—C11B 72.7 (3) O2A—C13A—C14A—Cl2A 53.9 (3)
C11A—C6A—C7A—C8A 2.6 (4) N5A—C13A—C14A—Cl2A −131.2 (2)
N5A—C6A—C7A—C8A −179.0 (3) O2A—C13A—C14A—Cl1A −66.3 (3)
C11B—C6B—C7B—C8B 4.9 (5) N5A—C13A—C14A—Cl1A 108.5 (3)
N5B—C6B—C7B—C8B −172.6 (3) O2B—C13B—C14B—Cl2B 27.4 (4)
C6A—C7A—C8A—C9A −2.3 (5) N5B—C13B—C14B—Cl2B −156.7 (2)
C6B—C7B—C8B—C9B −1.0 (5) O2B—C13B—C14B—Cl1B −92.0 (3)
C7A—C8A—C9A—C10A 0.7 (5) N5B—C13B—C14B—Cl1B 84.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4A—H4A···O2A 0.98 2.34 2.694 (4) 100
C4B—H4B···O2B 0.98 2.31 2.715 (4) 104
N1A—H1A···O3 0.87 (4) 2.08 (4) 2.927 (4) 164 (3)
O3—H2W···O1Bi 0.80 (4) 2.02 (4) 2.815 (4) 173 (4)
C3A—H3A···O2Bi 0.97 2.60 3.038 (4) 108
C8A—H8A···O2Aii 0.93 2.51 3.268 (4) 139
C10B—H10B···O2Biii 0.93 2.39 3.179 (4) 143

Symmetry codes: (i) −x+2, y−1/2, −z+2; (ii) x−1, y, z; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5048).

References

  1. Albright, J. D., Feich, M. F., Santos, E. G. D., Dusza, J. P., Sum, F.-W., Venkatesan, A. M., Coupet, J., Chan, P. S., Ru, X., Mazandarani, H. & Bailey, T. (1998). J. Med. Chem.41, 2442–2444. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc. Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Gringauz, A. (1999). Introduction to Medicinal Chemistry, pp. 578–580. New York: Wiley-VCH.
  8. Lee, J., Gauthier, D. & Rivero, R. A. (1999). J. Org. Chem, 64, 3060–3064. [DOI] [PubMed]
  9. MacDonald, R. L. (2002). Benzodiazepines Mechanisms of Action. In Antiepileptic Drugs, 5th ed., edited by R. H. Levy, R. H. Mattson, B. S. Meldrum & E. Perucca, pp. 179–186. Philadelphia: Lippincott Williams and Wilkins.
  10. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  11. Rahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem.64, 1689–1692. [DOI] [PubMed]
  12. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Venkatraj, M., Ponnuswamy, S. & Jeyaraman, R. (2008). Indian J. Chem. Sect. B, 47, 129–135.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036940/bt5048sup1.cif

e-65-o2551-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036940/bt5048Isup2.hkl

e-65-o2551-Isup2.hkl (268.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES