Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 26;65(Pt 10):m1247–m1248. doi: 10.1107/S1600536809038276

(μ-3-Acetyl-5-carboxyl­ato-4-methyl­pyrazolido-1:2κ4 N 2,O 3:N 1,O 5)-μ-chlorido-tetra­pyridine-1κ2 N,2κ2 N-chlorido-1κCl-dicopper(II) propan-2-ol solvate

Sergey Malinkin a,*, Larisa Penkova a, Vadim A Pavlenko a, Matti Haukka b, Igor O Fritsky a
PMCID: PMC2970235  PMID: 21577764

Abstract

The title compound, [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O, is a binuclear pyrazolate complex, in which the two CuII atoms have different coordination numbers and are connected by a bridging Cl atom. One CuII atom has a distorted square-pyramidal coordination environment formed by two pyridine N atoms, one bridging Cl atom and an N,O-chelating pyrazolate ligand. The other CuII atom adopts an octa­hedral geometry defined by two pyridine N atoms at the axial positions, two Cl atoms and the coordinated pyrazolate ligand in the equatorial plane. An O—H⋯O hydrogen bond connects the complex mol­ecules and propan-2-ol solvent mol­ecules into pairs. These pairs form columns along the a axis.

Related literature

For other 3,5-substituted-1H-pyrazolate complexes, see: Driessen et al. (2003); Eisenwiener et al. (2007); King et al. (2004); Li (2005); Penkova et al. (2008); Tretyakov et al. (2008).graphic file with name e-65-m1247-scheme1.jpg

Experimental

Crystal data

  • [Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O

  • M r = 740.61

  • Monoclinic, Inline graphic

  • a = 16.4130 (4) Å

  • b = 12.6351 (2) Å

  • c = 16.5739 (4) Å

  • β = 107.2145 (12)°

  • V = 3283.12 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 100 K

  • 0.24 × 0.16 × 0.13 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.718, T max = 0.832

  • 45344 measured reflections

  • 8719 independent reflections

  • 6355 reflections with I > 2σ(I)

  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.086

  • S = 1.03

  • 8719 reflections

  • 402 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038276/hy2229sup1.cif

e-65-m1247-sup1.cif (28.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038276/hy2229Isup2.hkl

e-65-m1247-Isup2.hkl (426.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Cu1—N1 1.9814 (18)
Cu1—N3 2.0609 (18)
Cu1—N4 2.0371 (18)
Cu1—O1 2.5878 (17)
Cu1—Cl1 2.2634 (6)
Cu1—Cl2 2.8621 (6)
Cu2—N2 1.9549 (18)
Cu2—N5 2.0097 (18)
Cu2—N6 2.1987 (18)
Cu2—O2 2.0340 (16)
Cu2—Cl2 2.3036 (6)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H3O⋯O3 0.95 1.82 2.734 (3) 160

Acknowledgments

The authors thank the Ministry of Education and Science of Ukraine for financial support (grant No. F28/241-2009).

supplementary crystallographic information

Comment

Pyrazole-based chelating ligands form a variety of coordination complexes providing various coordination geometries and nuclearities (Eisenwiener et al., 2007). In the synthesis of supramolecular inorganic architectures by design, the assembly of molecular units in predefined arrangements is a key goal (Tretyakov et al., 2008). Linear bi- and trinuclear copper(II) complexes are of interest as models for the active sites of multicopper proteins, like ascorbate oxidase, ceruloplasmin and laccase (Driessen et al., 2003), and are also of interest for a better understanding of the magnetic properties of multicopper compounds (Penkova et al., 2008). The preparation and crystal structure of the title compound, a novel binuclear pyrazolate complex based on 5-acetyl-4-methyl-1H-pyrazol-3-carboxylic acid incorporating two Cu centres in different coordination environments, are reported herein. The complex was obtained as a product of the hydrolytic cleavage of L (see Scheme 2) in the presence of Cu ions.

In the molecular structure, the CuII atoms adopt different types of coordination geometries (Fig. 1). The geometry around Cu2 is distorted square-pyramidal. The Cu2—N2 bond distance is 1.9549 (18) Å (Table 1), close to those observed in the pyrazolato-bridged, linear trinuclear CuII complex reported by Driessen et al. (2003) [average Cu—N = 1.965 (5) Å]. The carboxylate group is in the basal plane with Cu2—O2 distance similar to that observed in the structure reported by Li (2005) [Cu—O = 2.016 (3) Å]. The N atom of a pyridine molecule occupies the apical position with Cu2—N6 distance of 2.1987 (18) Å. The Cu1 atom is situated in a slightly distorted octahedral environment formed by two N atoms belonging to the pyridine molecules occupying the axial positions, two Cl atoms (one of which is bridging) and N and O atoms of the pyrazolate ligand providing an N,O-chelating coordination mode with Cu—N = 1.9814 (18) Å.

The pyrazolate ring and one Cl atom bridge two CuII ions. The intermetallic separation Cu1—Cu2 is 3.9067 (4) Å, which is similar to that seen in the structure reported by King et al. (2004) (3.962 Å).

The crystal packing is presented in Fig. 2. An O—H···O hydrogen bond connects the complex molecule and propan-2-ol solvent molecule in pair. These units are stacked along the crystallographic b axis, forming a column-like structure. The two pyridine molecules interact through an intramolecular π–stacking interaction with a distance of 3.869 (1) Å between the centroids of the pyridine rings in the complex.

Experimental

Copper(II) chloride dihydrate (0.05 g, 0.29 mmol) was dissolved in DMF (4 ml), and mixed with solution of L (0.078 g, 0.29 mmol) in DMF (3 ml). Then to the reaction mixture pyridine was added within 24 h . Blue block-shaped crystals of the title compound were obtained upon slow diffusion of propan-2-ol vapour into dark-green solution during two weeks (the solution turns blue over time). Analysis calculated for C30H34Cl2Cu2N6O4: C 48.61, H 4.59, N 11.34%; found: C 48.45, H 4.70, N 11.43%.

Refinement

H atom attached to O atom was located from the difference Fourier map, and refined with Uiso = 1.5 Ueq(O). The remaining H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.95–1.00 Å and with Uiso = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the title compound. Displacement ellipsoids are shown at the 50% probability level. Hydrogen bonds are indicated by dashed lines. H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Crystal packing of the title compound.

Fig. 3.

Fig. 3.

The structural formula of L.

Crystal data

[Cu2(C7H6N2O3)Cl2(C5H5N)4]·C3H8O F(000) = 1520
Mr = 740.61 Dx = 1.498 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 14278 reflections
a = 16.4130 (4) Å θ = 1.0–30.0°
b = 12.6351 (2) Å µ = 1.50 mm1
c = 16.5739 (4) Å T = 100 K
β = 107.2145 (12)° Block, green-blue
V = 3283.12 (12) Å3 0.24 × 0.16 × 0.13 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer 8719 independent reflections
Radiation source: fine-focus sealed tube 6355 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.058
Detector resolution: 9 pixels mm-1 θmax = 29.0°, θmin = 2.6°
φ and ω scans with κ offset h = −22→22
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −17→17
Tmin = 0.718, Tmax = 0.832 l = −21→22
45344 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.086 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0362P)2 + 1.5874P] where P = (Fo2 + 2Fc2)/3
8719 reflections (Δ/σ)max = 0.001
402 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.47 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.152430 (17) −0.09197 (2) 0.372827 (16) 0.01651 (7)
Cu2 0.227801 (17) 0.202366 (19) 0.406284 (16) 0.01633 (7)
Cl1 0.03110 (3) −0.17696 (4) 0.37302 (3) 0.02075 (12)
Cl2 0.09566 (3) 0.12326 (4) 0.35994 (3) 0.01988 (12)
O1 0.25807 (11) −0.24098 (12) 0.36521 (10) 0.0256 (4)
O2 0.34674 (10) 0.26096 (12) 0.42092 (9) 0.0216 (3)
O3 0.47931 (11) 0.21282 (13) 0.42382 (11) 0.0305 (4)
H3O 0.5189 0.2845 0.3481 0.046*
O4 0.55635 (13) 0.32508 (17) 0.32569 (13) 0.0460 (5)
N1 0.26482 (11) −0.02909 (13) 0.37947 (11) 0.0167 (4)
N2 0.28640 (12) 0.07195 (13) 0.39256 (11) 0.0165 (4)
N3 0.12367 (12) −0.10132 (14) 0.24327 (11) 0.0181 (4)
N4 0.18472 (12) −0.08623 (13) 0.50126 (11) 0.0186 (4)
N5 0.18432 (12) 0.35174 (14) 0.38697 (11) 0.0191 (4)
N6 0.24312 (12) 0.20815 (14) 0.54257 (11) 0.0207 (4)
C1 0.33529 (14) −0.08399 (17) 0.37618 (13) 0.0179 (4)
C2 0.32611 (15) −0.19962 (17) 0.36623 (14) 0.0208 (5)
C3 0.40018 (16) −0.26389 (19) 0.36067 (16) 0.0293 (6)
H3A 0.3827 −0.3380 0.3498 0.044*
H3B 0.4462 −0.2588 0.4140 0.044*
H3C 0.4204 −0.2372 0.3145 0.044*
C4 0.40414 (14) −0.01443 (18) 0.38640 (13) 0.0202 (5)
C5 0.49426 (15) −0.0362 (2) 0.38719 (15) 0.0266 (5)
H5A 0.5251 0.0308 0.3904 0.040*
H5B 0.4941 −0.0738 0.3354 0.040*
H5C 0.5225 −0.0800 0.4363 0.040*
C6 0.36967 (14) 0.08353 (17) 0.39700 (13) 0.0180 (5)
C7 0.40334 (15) 0.19301 (18) 0.41462 (13) 0.0210 (5)
C8 0.09276 (14) −0.19093 (17) 0.20156 (14) 0.0205 (5)
H8 0.0852 −0.2509 0.2332 0.025*
C9 0.07149 (15) −0.19954 (18) 0.11467 (15) 0.0240 (5)
H9 0.0503 −0.2644 0.0874 0.029*
C10 0.08148 (16) −0.1127 (2) 0.06806 (15) 0.0275 (5)
H10 0.0667 −0.1163 0.0082 0.033*
C11 0.11359 (16) −0.02000 (19) 0.11047 (15) 0.0290 (6)
H11 0.1212 0.0411 0.0801 0.035*
C12 0.13440 (15) −0.01797 (18) 0.19762 (15) 0.0236 (5)
H12 0.1573 0.0454 0.2264 0.028*
C13 0.13414 (15) −0.03639 (17) 0.53964 (14) 0.0220 (5)
H13 0.0846 −0.0015 0.5056 0.026*
C14 0.15093 (16) −0.03359 (19) 0.62622 (15) 0.0276 (6)
H14 0.1138 0.0029 0.6511 0.033*
C15 0.22260 (18) −0.0847 (2) 0.67623 (16) 0.0328 (6)
H15 0.2354 −0.0844 0.7360 0.039*
C16 0.27560 (17) −0.1365 (2) 0.63733 (16) 0.0335 (6)
H16 0.3254 −0.1721 0.6701 0.040*
C17 0.25461 (16) −0.13519 (19) 0.55032 (15) 0.0264 (5)
H17 0.2911 −0.1704 0.5240 0.032*
C18 0.23103 (16) 0.42893 (18) 0.43517 (14) 0.0247 (5)
H18 0.2827 0.4103 0.4767 0.030*
C19 0.20695 (16) 0.53372 (17) 0.42661 (15) 0.0261 (5)
H19 0.2411 0.5861 0.4621 0.031*
C20 0.13255 (16) 0.56161 (18) 0.36572 (14) 0.0241 (5)
H20 0.1146 0.6334 0.3588 0.029*
C21 0.08464 (14) 0.48361 (17) 0.31503 (14) 0.0202 (5)
H21 0.0335 0.5009 0.2722 0.024*
C22 0.11246 (14) 0.37959 (17) 0.32779 (13) 0.0183 (5)
H22 0.0792 0.3259 0.2931 0.022*
C23 0.31973 (18) 0.1915 (2) 0.59788 (16) 0.0394 (7)
H23 0.3664 0.1773 0.5767 0.047*
C24 0.33449 (19) 0.1939 (3) 0.68440 (16) 0.0445 (8)
H24 0.3899 0.1810 0.7217 0.053*
C25 0.26752 (18) 0.2153 (2) 0.71528 (16) 0.0342 (6)
H25 0.2755 0.2164 0.7744 0.041*
C26 0.18849 (16) 0.23518 (19) 0.65927 (15) 0.0273 (5)
H26 0.1414 0.2526 0.6791 0.033*
C27 0.17882 (15) 0.22930 (17) 0.57336 (14) 0.0214 (5)
H27 0.1238 0.2409 0.5349 0.026*
C28 0.6574 (2) 0.4623 (3) 0.3462 (2) 0.0615 (10)
H28A 0.7052 0.4127 0.3547 0.092*
H28B 0.6775 0.5276 0.3776 0.092*
H28C 0.6342 0.4785 0.2859 0.092*
C29 0.58876 (19) 0.4128 (2) 0.37756 (18) 0.0424 (7)
H29 0.6153 0.3871 0.4366 0.051*
C30 0.5193 (3) 0.4877 (3) 0.3776 (3) 0.0765 (12)
H30A 0.4981 0.5210 0.3219 0.115*
H30B 0.5411 0.5422 0.4206 0.115*
H30C 0.4727 0.4492 0.3903 0.115*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01760 (15) 0.01758 (14) 0.01463 (14) −0.00056 (10) 0.00519 (11) −0.00005 (10)
Cu2 0.01967 (15) 0.01512 (13) 0.01380 (14) 0.00081 (10) 0.00435 (11) −0.00014 (10)
Cl1 0.0200 (3) 0.0225 (3) 0.0202 (3) −0.0027 (2) 0.0066 (2) 0.0001 (2)
Cl2 0.0195 (3) 0.0164 (2) 0.0236 (3) 0.0010 (2) 0.0061 (2) 0.0000 (2)
O1 0.0276 (10) 0.0197 (8) 0.0289 (9) 0.0014 (7) 0.0077 (8) −0.0007 (7)
O2 0.0233 (9) 0.0209 (8) 0.0198 (8) −0.0023 (7) 0.0049 (7) −0.0015 (6)
O3 0.0215 (9) 0.0342 (9) 0.0352 (10) −0.0071 (7) 0.0076 (8) −0.0003 (8)
O4 0.0422 (12) 0.0577 (13) 0.0413 (12) −0.0113 (10) 0.0171 (10) −0.0037 (10)
N1 0.0183 (10) 0.0164 (9) 0.0145 (9) 0.0024 (7) 0.0036 (8) 0.0000 (7)
N2 0.0176 (10) 0.0176 (9) 0.0139 (9) −0.0010 (7) 0.0039 (7) 0.0000 (7)
N3 0.0175 (10) 0.0202 (9) 0.0170 (9) 0.0015 (7) 0.0055 (8) 0.0003 (7)
N4 0.0209 (10) 0.0178 (9) 0.0172 (9) −0.0029 (7) 0.0057 (8) 0.0006 (7)
N5 0.0263 (11) 0.0173 (9) 0.0134 (9) 0.0013 (8) 0.0053 (8) 0.0004 (7)
N6 0.0218 (10) 0.0239 (10) 0.0162 (9) 0.0068 (8) 0.0052 (8) 0.0009 (7)
C1 0.0181 (11) 0.0231 (11) 0.0119 (10) 0.0032 (9) 0.0037 (9) −0.0011 (8)
C2 0.0244 (13) 0.0216 (11) 0.0148 (11) 0.0051 (10) 0.0034 (9) −0.0008 (9)
C3 0.0271 (14) 0.0269 (12) 0.0322 (14) 0.0080 (10) 0.0061 (11) −0.0076 (10)
C4 0.0195 (12) 0.0276 (12) 0.0132 (11) 0.0024 (9) 0.0044 (9) 0.0003 (9)
C5 0.0177 (12) 0.0361 (14) 0.0256 (13) 0.0032 (10) 0.0061 (10) −0.0036 (10)
C6 0.0196 (12) 0.0230 (11) 0.0112 (10) 0.0000 (9) 0.0042 (9) 0.0001 (8)
C7 0.0218 (13) 0.0269 (12) 0.0128 (11) −0.0027 (10) 0.0029 (9) 0.0034 (9)
C8 0.0229 (12) 0.0190 (11) 0.0204 (11) 0.0013 (9) 0.0077 (10) 0.0005 (9)
C9 0.0236 (13) 0.0240 (12) 0.0252 (12) −0.0005 (10) 0.0085 (10) −0.0066 (10)
C10 0.0279 (14) 0.0381 (14) 0.0177 (12) −0.0016 (11) 0.0085 (10) −0.0013 (10)
C11 0.0365 (15) 0.0288 (13) 0.0214 (12) −0.0064 (11) 0.0083 (11) 0.0038 (10)
C12 0.0256 (13) 0.0231 (12) 0.0232 (12) −0.0044 (10) 0.0087 (10) 0.0002 (9)
C13 0.0265 (13) 0.0188 (11) 0.0218 (12) 0.0001 (9) 0.0088 (10) 0.0011 (9)
C14 0.0382 (16) 0.0264 (12) 0.0223 (12) −0.0020 (11) 0.0151 (12) −0.0036 (10)
C15 0.0403 (16) 0.0418 (15) 0.0165 (12) −0.0052 (12) 0.0084 (11) −0.0013 (11)
C16 0.0316 (15) 0.0447 (16) 0.0214 (13) 0.0066 (12) 0.0035 (11) 0.0069 (11)
C17 0.0242 (13) 0.0336 (13) 0.0209 (12) 0.0032 (10) 0.0060 (10) −0.0003 (10)
C18 0.0301 (14) 0.0225 (12) 0.0172 (11) −0.0003 (10) 0.0002 (10) −0.0012 (9)
C19 0.0363 (15) 0.0171 (11) 0.0219 (12) −0.0024 (10) 0.0040 (11) −0.0043 (9)
C20 0.0356 (14) 0.0169 (11) 0.0236 (12) 0.0017 (10) 0.0146 (11) 0.0046 (9)
C21 0.0192 (12) 0.0238 (11) 0.0189 (11) 0.0024 (9) 0.0076 (9) 0.0055 (9)
C22 0.0194 (12) 0.0206 (11) 0.0157 (11) −0.0024 (9) 0.0064 (9) −0.0002 (8)
C23 0.0300 (15) 0.072 (2) 0.0174 (13) 0.0209 (14) 0.0083 (11) 0.0048 (13)
C24 0.0322 (16) 0.080 (2) 0.0190 (13) 0.0164 (15) 0.0046 (12) 0.0038 (14)
C25 0.0401 (16) 0.0475 (16) 0.0159 (12) −0.0050 (13) 0.0095 (12) −0.0070 (11)
C26 0.0268 (14) 0.0343 (13) 0.0254 (13) −0.0073 (11) 0.0147 (11) −0.0083 (10)
C27 0.0211 (12) 0.0210 (11) 0.0220 (12) −0.0021 (9) 0.0064 (10) −0.0022 (9)
C28 0.063 (2) 0.090 (3) 0.0310 (17) −0.040 (2) 0.0120 (16) −0.0058 (17)
C29 0.0398 (17) 0.0536 (18) 0.0330 (16) −0.0096 (14) 0.0097 (13) −0.0041 (13)
C30 0.082 (3) 0.056 (2) 0.095 (3) 0.008 (2) 0.030 (2) −0.010 (2)

Geometric parameters (Å, °)

Cu1—N1 1.9814 (18) C9—H9 0.9500
Cu1—N3 2.0609 (18) C10—C11 1.387 (3)
Cu1—N4 2.0371 (18) C10—H10 0.9500
Cu1—O1 2.5878 (17) C11—C12 1.383 (3)
Cu1—Cl1 2.2634 (6) C11—H11 0.9500
Cu1—Cl2 2.8621 (6) C12—H12 0.9500
Cu2—N2 1.9549 (18) C13—C14 1.379 (3)
Cu2—N5 2.0097 (18) C13—H13 0.9500
Cu2—N6 2.1987 (18) C14—C15 1.382 (4)
Cu2—O2 2.0340 (16) C14—H14 0.9500
Cu2—Cl2 2.3036 (6) C15—C16 1.390 (4)
O1—C2 1.229 (3) C15—H15 0.9500
O2—C7 1.292 (3) C16—C17 1.380 (3)
O3—C7 1.236 (3) C16—H16 0.9500
O4—C29 1.407 (3) C17—H17 0.9500
O4—H3O 0.9550 C18—C19 1.377 (3)
N1—N2 1.325 (2) C18—H18 0.9500
N1—C1 1.364 (3) C19—C20 1.380 (3)
N2—C6 1.355 (3) C19—H19 0.9500
N3—C12 1.338 (3) C20—C21 1.380 (3)
N3—C8 1.345 (3) C20—H20 0.9500
N4—C13 1.343 (3) C21—C22 1.387 (3)
N4—C17 1.344 (3) C21—H21 0.9500
N5—C22 1.339 (3) C22—H22 0.9500
N5—C18 1.347 (3) C23—C24 1.382 (4)
N6—C27 1.328 (3) C23—H23 0.9500
N6—C23 1.335 (3) C24—C25 1.370 (4)
C1—C4 1.402 (3) C24—H24 0.9500
C1—C2 1.473 (3) C25—C26 1.376 (4)
C2—C3 1.487 (3) C25—H25 0.9500
C3—H3A 0.9800 C26—C27 1.387 (3)
C3—H3B 0.9800 C26—H26 0.9500
C3—H3C 0.9800 C27—H27 0.9500
C4—C6 1.393 (3) C28—C29 1.509 (4)
C4—C5 1.501 (3) C28—H28A 0.9800
C5—H5A 0.9800 C28—H28B 0.9800
C5—H5B 0.9800 C28—H28C 0.9800
C5—H5C 0.9800 C29—C30 1.482 (5)
C6—C7 1.486 (3) C29—H29 1.0000
C8—C9 1.382 (3) C30—H30A 0.9800
C8—H8 0.9500 C30—H30B 0.9800
C9—C10 1.379 (3) C30—H30C 0.9800
N1—Cu1—N4 88.72 (7) C10—C9—C8 119.1 (2)
N1—Cu1—N3 90.19 (7) C10—C9—H9 120.5
N4—Cu1—N3 177.86 (7) C8—C9—H9 120.5
N1—Cu1—Cl1 174.40 (5) C9—C10—C11 118.6 (2)
N4—Cu1—Cl1 88.41 (5) C9—C10—H10 120.7
N3—Cu1—Cl1 92.52 (5) C11—C10—H10 120.7
N1—Cu1—O1 70.62 (7) C12—C11—C10 119.0 (2)
N3—Cu1—O1 81.82 (6) C12—C11—H11 120.5
N4—Cu1—O1 96.09 (6) C10—C11—H11 120.5
Cl1—Cu1—O1 104.91 (4) N3—C12—C11 122.9 (2)
Cl2—Cu1—O1 153.60 (4) N3—C12—H12 118.6
N1—Cu1—Cl2 84.28 (5) C11—C12—H12 118.6
N3—Cu1—Cl2 90.44 (5) N4—C13—C14 122.9 (2)
N4—Cu1—Cl2 91.29 (5) N4—C13—H13 118.5
Cl1—Cu1—Cl2 100.59 (2) C14—C13—H13 118.5
N2—Cu2—N5 159.53 (7) C13—C14—C15 119.0 (2)
N2—Cu2—O2 80.38 (7) C13—C14—H14 120.5
N5—Cu2—O2 87.72 (7) C15—C14—H14 120.5
N2—Cu2—N6 103.71 (7) C14—C15—C16 118.7 (2)
N5—Cu2—N6 93.42 (7) C14—C15—H15 120.7
O2—Cu2—N6 92.95 (7) C16—C15—H15 120.7
N2—Cu2—Cl2 92.44 (5) C17—C16—C15 118.8 (2)
N5—Cu2—Cl2 95.71 (6) C17—C16—H16 120.6
O2—Cu2—Cl2 166.73 (5) C15—C16—H16 120.6
N6—Cu2—Cl2 99.62 (5) N4—C17—C16 122.8 (2)
C7—O2—Cu2 115.87 (14) N4—C17—H17 118.6
C29—O4—H3O 110.8 C16—C17—H17 118.6
N2—N1—C1 107.93 (18) N5—C18—C19 122.6 (2)
N2—N1—Cu1 126.48 (14) N5—C18—H18 118.7
C1—N1—Cu1 125.49 (14) C19—C18—H18 118.7
N1—N2—C6 109.22 (17) C18—C19—C20 119.1 (2)
N1—N2—Cu2 135.57 (15) C18—C19—H19 120.5
C6—N2—Cu2 115.20 (14) C20—C19—H19 120.5
C12—N3—C8 117.68 (19) C21—C20—C19 119.0 (2)
C12—N3—Cu1 121.06 (15) C21—C20—H20 120.5
C8—N3—Cu1 121.26 (15) C19—C20—H20 120.5
C13—N4—C17 117.8 (2) C20—C21—C22 118.8 (2)
C13—N4—Cu1 120.37 (15) C20—C21—H21 120.6
C17—N4—Cu1 121.81 (15) C22—C21—H21 120.6
C22—N5—C18 117.88 (19) N5—C22—C21 122.7 (2)
C22—N5—Cu2 123.91 (15) N5—C22—H22 118.7
C18—N5—Cu2 118.20 (15) C21—C22—H22 118.7
C27—N6—C23 117.5 (2) N6—C23—C24 123.3 (2)
C27—N6—Cu2 122.62 (15) N6—C23—H23 118.3
C23—N6—Cu2 119.87 (16) C24—C23—H23 118.3
N1—C1—C4 109.83 (19) C25—C24—C23 118.6 (3)
N1—C1—C2 116.7 (2) C25—C24—H24 120.7
C4—C1—C2 133.4 (2) C23—C24—H24 120.7
O1—C2—C1 119.1 (2) C24—C25—C26 119.0 (2)
O1—C2—C3 121.5 (2) C24—C25—H25 120.5
C1—C2—C3 119.3 (2) C26—C25—H25 120.5
C2—C3—H3A 109.5 C25—C26—C27 118.8 (2)
C2—C3—H3B 109.5 C25—C26—H26 120.6
H3A—C3—H3B 109.5 C27—C26—H26 120.6
C2—C3—H3C 109.5 N6—C27—C26 122.9 (2)
H3A—C3—H3C 109.5 N6—C27—H27 118.6
H3B—C3—H3C 109.5 C26—C27—H27 118.6
C6—C4—C1 103.25 (19) C29—C28—H28A 109.5
C6—C4—C5 126.7 (2) C29—C28—H28B 109.5
C1—C4—C5 130.0 (2) H28A—C28—H28B 109.5
C4—C5—H5A 109.5 C29—C28—H28C 109.5
C4—C5—H5B 109.5 H28A—C28—H28C 109.5
H5A—C5—H5B 109.5 H28B—C28—H28C 109.5
C4—C5—H5C 109.5 O4—C29—C30 110.6 (3)
H5A—C5—H5C 109.5 O4—C29—C28 107.5 (2)
H5B—C5—H5C 109.5 C30—C29—C28 112.9 (3)
N2—C6—C4 109.76 (19) O4—C29—H29 108.6
N2—C6—C7 114.94 (19) C30—C29—H29 108.6
C4—C6—C7 135.3 (2) C28—C29—H29 108.6
O3—C7—O2 125.4 (2) C29—C30—H30A 109.5
O3—C7—C6 121.0 (2) C29—C30—H30B 109.5
O2—C7—C6 113.6 (2) H30A—C30—H30B 109.5
N3—C8—C9 122.8 (2) C29—C30—H30C 109.5
N3—C8—H8 118.6 H30A—C30—H30C 109.5
C9—C8—H8 118.6 H30B—C30—H30C 109.5
N2—Cu2—O2—C7 0.53 (15) C4—C1—C2—C3 −3.8 (4)
N5—Cu2—O2—C7 −162.76 (15) N1—C1—C4—C6 0.8 (2)
N6—Cu2—O2—C7 103.94 (15) C2—C1—C4—C6 −176.6 (2)
Cl2—Cu2—O2—C7 −57.4 (3) N1—C1—C4—C5 −179.8 (2)
N4—Cu1—N1—N2 −78.06 (17) C2—C1—C4—C5 2.8 (4)
N3—Cu1—N1—N2 103.78 (17) N1—N2—C6—C4 −0.1 (2)
N4—Cu1—N1—C1 97.87 (17) Cu2—N2—C6—C4 179.96 (14)
N3—Cu1—N1—C1 −80.29 (17) N1—N2—C6—C7 −177.94 (17)
C1—N1—N2—C6 0.6 (2) Cu2—N2—C6—C7 2.1 (2)
Cu1—N1—N2—C6 177.10 (14) C1—C4—C6—N2 −0.5 (2)
C1—N1—N2—Cu2 −179.44 (15) C5—C4—C6—N2 −179.9 (2)
Cu1—N1—N2—Cu2 −2.9 (3) C1—C4—C6—C7 176.8 (2)
N5—Cu2—N2—N1 −126.1 (2) C5—C4—C6—C7 −2.6 (4)
O2—Cu2—N2—N1 178.6 (2) Cu2—O2—C7—O3 −177.94 (17)
N6—Cu2—N2—N1 87.9 (2) Cu2—O2—C7—C6 0.4 (2)
Cl2—Cu2—N2—N1 −12.64 (19) N2—C6—C7—O3 176.8 (2)
N5—Cu2—N2—C6 53.8 (3) C4—C6—C7—O3 −0.3 (4)
O2—Cu2—N2—C6 −1.45 (14) N2—C6—C7—O2 −1.6 (3)
N6—Cu2—N2—C6 −92.15 (15) C4—C6—C7—O2 −178.8 (2)
Cl2—Cu2—N2—C6 167.33 (14) C12—N3—C8—C9 −0.5 (3)
N1—Cu1—N3—C12 −49.00 (18) Cu1—N3—C8—C9 178.93 (17)
Cl1—Cu1—N3—C12 135.90 (17) N3—C8—C9—C10 −0.6 (4)
N1—Cu1—N3—C8 131.61 (17) C8—C9—C10—C11 0.8 (4)
Cl1—Cu1—N3—C8 −43.49 (17) C9—C10—C11—C12 0.0 (4)
N1—Cu1—N4—C13 124.85 (17) C8—N3—C12—C11 1.3 (3)
Cl1—Cu1—N4—C13 −59.96 (16) Cu1—N3—C12—C11 −178.08 (18)
N1—Cu1—N4—C17 −57.93 (18) C10—C11—C12—N3 −1.1 (4)
Cl1—Cu1—N4—C17 117.26 (17) C17—N4—C13—C14 0.0 (3)
N2—Cu2—N5—C22 84.2 (3) Cu1—N4—C13—C14 177.31 (17)
O2—Cu2—N5—C22 138.41 (18) N4—C13—C14—C15 −0.4 (4)
N6—Cu2—N5—C22 −128.77 (18) C13—C14—C15—C16 0.5 (4)
Cl2—Cu2—N5—C22 −28.74 (17) C14—C15—C16—C17 −0.1 (4)
N2—Cu2—N5—C18 −94.3 (3) C13—N4—C17—C16 0.4 (3)
O2—Cu2—N5—C18 −40.15 (17) Cu1—N4—C17—C16 −176.94 (19)
N6—Cu2—N5—C18 52.67 (18) C15—C16—C17—N4 −0.3 (4)
Cl2—Cu2—N5—C18 152.70 (16) C22—N5—C18—C19 1.1 (3)
N2—Cu2—N6—C27 −133.26 (17) Cu2—N5—C18—C19 179.71 (19)
N5—Cu2—N6—C27 58.05 (18) N5—C18—C19—C20 −0.7 (4)
O2—Cu2—N6—C27 145.94 (17) C18—C19—C20—C21 −0.2 (4)
Cl2—Cu2—N6—C27 −38.34 (17) C19—C20—C21—C22 0.8 (3)
N2—Cu2—N6—C23 47.7 (2) C18—N5—C22—C21 −0.4 (3)
N5—Cu2—N6—C23 −121.0 (2) Cu2—N5—C22—C21 −179.01 (16)
O2—Cu2—N6—C23 −33.1 (2) C20—C21—C22—N5 −0.5 (3)
Cl2—Cu2—N6—C23 142.7 (2) C27—N6—C23—C24 0.9 (4)
N2—N1—C1—C4 −0.9 (2) Cu2—N6—C23—C24 179.9 (2)
Cu1—N1—C1—C4 −177.46 (14) N6—C23—C24—C25 −0.6 (5)
N2—N1—C1—C2 177.02 (17) C23—C24—C25—C26 −1.0 (4)
Cu1—N1—C1—C2 0.5 (3) C24—C25—C26—C27 2.1 (4)
N1—C1—C2—O1 −3.2 (3) C23—N6—C27—C26 0.4 (3)
C4—C1—C2—O1 174.1 (2) Cu2—N6—C27—C26 −178.65 (17)
N1—C1—C2—C3 178.91 (19) C25—C26—C27—N6 −1.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H3O···O3 0.95 1.82 2.734 (3) 160

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2229).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst.38, 381–388.
  2. Driessen, W. L., Chang, L., Finnazo, C., Gorter, S., Rehorst, D., Reedijk, J., Lutz, M. & Spek, A. L. (2003). Inorg. Chim. Acta, 350, 25–31.
  3. Eisenwiener, A., Neuburger, M. & Kaden, T. A. (2007). Dalton Trans. pp. 218–233. [DOI] [PubMed]
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. King, P., Clerac, R., Anson, C. E. & Powell, A. K. (2004). Dalton Trans. pp. 852–861. [DOI] [PubMed]
  6. Li, X.-H. (2005). Acta Cryst. E61, m2405–m2407.
  7. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Penkova, L., Demeshko, S., Haukka, M., Pavlenko, V. A., Meyer, F. & Fritsky, I. O. (2008). Z. Anorg. Allg. Chem.634, 2428–2436.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Tretyakov, E. V., Tolstikov, S. E., Gorelik, E. V., Fedin, M. V., Romanenko, G. V., Bogomyakov, A. S. & Ovcharenko, V. I. (2008). Polyhedron, 27, 739–749.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038276/hy2229sup1.cif

e-65-m1247-sup1.cif (28.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038276/hy2229Isup2.hkl

e-65-m1247-Isup2.hkl (426.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES