Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 12;65(Pt 10):o2451. doi: 10.1107/S1600536809036204

Piperidinium 4-hydr­oxy-3-methoxy­carbon­yl-1,2-benzothia­zin-2-ide 1,1-dioxide

Muhammad Nadeem Arshad a, Muhammad Zia-ur-Rehman b, Naveed Ahmed c, Islam Ullah Khan a,*
PMCID: PMC2970237  PMID: 21577906

Abstract

In the anion of the title compound, C5H12N+·C10H8NO5S, the thia­zine ring adopts a distorted half-chair conformation and the enolic H atom is involved in an intra­molecular O—H⋯O hydrogen bond, forming a six-membered ring. The anions and cations are connected via N—H⋯N and N—H⋯O inter­actions.

Related literature

For the synthesis of related mol­ecules, see: Zia-ur-Rehman et al. (2005, 2006); Braun (1923). For the biological activity of 1,2-benzothia­zine1,1-dioxides, see: Bihovsky et al. (2004); Turck et al. (1996); Zia-ur-Rehman et al. (2009). For related structures, see: Golič & Leban (1987).graphic file with name e-65-o2451-scheme1.jpg

Experimental

Crystal data

  • C5H12N+·C10H8NO5S

  • M r = 340.39

  • Monoclinic, Inline graphic

  • a = 12.0423 (5) Å

  • b = 9.1791 (3) Å

  • c = 14.5193 (5) Å

  • β = 90.556 (2)°

  • V = 1604.85 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.33 × 0.29 mm

Data collection

  • Bruker KAPPA APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2007) T min = 0.921, T max = 0.940

  • 16000 measured reflections

  • 3690 independent reflections

  • 2896 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.103

  • S = 1.03

  • 3690 reflections

  • 216 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809036204/bt5055sup1.cif

e-65-o2451-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036204/bt5055Isup2.hkl

e-65-o2451-Isup2.hkl (180.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O4 0.82 1.86 2.577 (2) 145
N1—H1N⋯N2i 0.932 (19) 1.951 (19) 2.881 (2) 175.4 (18)
N1—H2N⋯O2ii 0.87 (2) 1.91 (2) 2.7739 (18) 172.4 (18)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to PCSIR Laboratories Complex, Lahore, for the provision of necessary facilities to complete this work.

supplementary crystallographic information

Comment

Owing to their application as non-steroidal anti-inflammatory agents (Turck et al., 1996), considerable attention has been given to synthetic and structural investigations of 1,2-benzothiazine1,1-dioxides and their precursor intermediates (Golič & Leban, 1987). These are known to possess a versatile range of biological activities and have been synthesized continuously since the very first synthesis (Braun, 1923). Among these, Piroxicam (Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic action and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Besides, these have also been found to be used for the treatment of rheumatoid arthritis, ankylosing spondylitis, osteoarthrosis and other inflammatory rheumatic and non- rheumatic processes, including onsets and traumatologic lesions. Some of the 3,4-dihydro-1,2-benzothiazine-3-carboxylate 1,1-dioxide α-ketomide and P(2)—P(3) peptide mimetic aldehyde compounds act as potent calpain I inhibitors (Bihovsky et al., 2004) while 1,2-benzothiazin-3-yl-quinazolin-4(3H)-ones possess anti-bacterial properties (Zia-ur-Rehman et al., 2006). As part of a research program synthesizing various bioactive benzothiazines (Zia-ur-Rehman et al., 2005, 2006, 2009), we, herein report the crystal structure of the title compound (Scheme and figure 1). The asymmetric unit contains one piperidinum cation and one 4-hydroxy-3-(methoxycarbonyl)-1,2-benzothiazin-2-ide 1,1-dioxide anion. The piperidinium cation displays a typical chair conformation. The thiazine ring of the anion, involving two double bonds, exhibits a distorted half-chair conformation and the enolic hydrogen on O1 is involved in intramolecular hydrogen bonding giving rise to a six membered hydrogen bond ring (Table 1). Both the ions are linked together through N—H···N and N—H···O interactions. Adjacent asymmetric units are linked through intermolecular N—H···O hydrogen bonds, resulting in zigzag chains lying along the b axis (Figure 2).

Experimental

A mixture of methyl 4-hydroxy-2H-1,2-benzothiazine-3-carboxylate-1,1-dioxide (2.693 g; 10.0 mmoles), piperidine (1.02 g, 12.0 mmoles) and toluene (25.0 ml) was heated to reflux for an hour. Solvent and excess piperdine were removed under vacuum and the resulting solids were dried and crystallized from ethanol. Yield: 78%.

Refinement

All hydrogen atoms were identified in the difference map. Those bonded to O and C were fixed in ideal positions and treated as riding on their parent atoms. The following distances were used: Methyl C—H 0.98 Å. °, aromatic C—H 0.95 Å and O—H 0.84 Å. U(H) was set to 1.2Ueq of the parent atoms or 1.5Ueq for methyl groups. The coordinates of the H atom bonded to N were refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level. Hydrogen atoms bonded to C omitted for clarity.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C5H12N+·C10H8NO5S F(000) = 720
Mr = 340.39 Dx = 1.409 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 6881 reflections
a = 12.0423 (5) Å θ = 2.6–27.4°
b = 9.1791 (3) Å µ = 0.23 mm1
c = 14.5193 (5) Å T = 296 K
β = 90.556 (2)° Needle, white yellow
V = 1604.85 (10) Å3 0.39 × 0.33 × 0.29 mm
Z = 4

Data collection

Bruker KAPPA APEXII CCD diffractometer 3690 independent reflections
Radiation source: fine-focus sealed tube 2896 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker 2007) h = −15→15
Tmin = 0.921, Tmax = 0.940 k = −11→11
16000 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0492P)2 + 0.5427P] where P = (Fo2 + 2Fc2)/3
3690 reflections (Δ/σ)max = 0.001
216 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.34 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.46805 (3) 0.74091 (4) 0.76725 (3) 0.02947 (12)
O1 0.48950 (11) 0.80132 (14) 0.85705 (8) 0.0461 (3)
O2 0.38877 (9) 0.62124 (13) 0.76755 (8) 0.0388 (3)
O3 0.51396 (13) 0.69087 (18) 0.47854 (8) 0.0570 (4)
H3 0.4706 0.7429 0.4497 0.085*
O4 0.36167 (13) 0.88585 (17) 0.45879 (8) 0.0598 (4)
O5 0.30030 (10) 1.00194 (13) 0.58304 (8) 0.0428 (3)
N1 0.33595 (12) 0.12173 (16) 0.77625 (10) 0.0354 (3)
H2N 0.2658 (17) 0.113 (2) 0.7631 (13) 0.042*
H1N 0.3719 (16) 0.041 (2) 0.7515 (13) 0.042*
N2 0.43544 (11) 0.86485 (14) 0.69844 (9) 0.0334 (3)
C1 0.59021 (13) 0.64809 (18) 0.62624 (12) 0.0358 (4)
C2 0.67446 (15) 0.5623 (2) 0.58853 (15) 0.0502 (5)
H2A 0.6768 0.5474 0.5252 0.060*
C3 0.75373 (15) 0.4998 (2) 0.64477 (17) 0.0576 (6)
H3A 0.8079 0.4405 0.6191 0.069*
C4 0.75421 (15) 0.5235 (2) 0.73845 (17) 0.0536 (5)
H4 0.8104 0.4843 0.7752 0.064*
C5 0.67134 (14) 0.60531 (19) 0.77759 (14) 0.0425 (4)
H5 0.6711 0.6216 0.8408 0.051*
C6 0.58827 (12) 0.66317 (17) 0.72195 (11) 0.0322 (3)
C7 0.50910 (14) 0.72383 (19) 0.56940 (11) 0.0359 (4)
C8 0.43901 (13) 0.82600 (18) 0.60482 (10) 0.0319 (3)
C9 0.36534 (14) 0.90591 (19) 0.54163 (11) 0.0366 (4)
C10 0.22478 (18) 1.0821 (2) 0.52354 (13) 0.0553 (5)
H10A 0.1749 1.0154 0.4934 0.083*
H10B 0.2664 1.1342 0.4781 0.083*
H10C 0.1829 1.1499 0.5597 0.083*
C11 0.37737 (15) 0.25674 (18) 0.73166 (12) 0.0396 (4)
H11A 0.3354 0.3399 0.7534 0.047*
H11B 0.3670 0.2498 0.6655 0.047*
C12 0.49815 (17) 0.2779 (2) 0.75380 (14) 0.0483 (5)
H12A 0.5242 0.3667 0.7249 0.058*
H12B 0.5404 0.1971 0.7292 0.058*
C13 0.51701 (19) 0.2874 (2) 0.85636 (15) 0.0592 (6)
H13A 0.4815 0.3743 0.8800 0.071*
H13B 0.5960 0.2945 0.8694 0.071*
C14 0.47016 (19) 0.1542 (2) 0.90404 (13) 0.0560 (5)
H14A 0.5143 0.0697 0.8880 0.067*
H14B 0.4758 0.1676 0.9702 0.067*
C15 0.35025 (17) 0.1258 (2) 0.87800 (13) 0.0517 (5)
H15A 0.3268 0.0336 0.9040 0.062*
H15B 0.3038 0.2020 0.9033 0.062*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0313 (2) 0.0288 (2) 0.0283 (2) 0.00206 (15) −0.00296 (14) 0.00160 (15)
O1 0.0628 (8) 0.0457 (7) 0.0298 (6) 0.0067 (6) −0.0103 (5) −0.0026 (5)
O2 0.0301 (6) 0.0365 (6) 0.0498 (7) −0.0018 (5) 0.0027 (5) 0.0071 (5)
O3 0.0690 (10) 0.0707 (10) 0.0313 (7) 0.0207 (8) 0.0058 (6) −0.0064 (6)
O4 0.0770 (10) 0.0738 (10) 0.0285 (6) 0.0239 (8) −0.0077 (6) 0.0021 (6)
O5 0.0503 (7) 0.0440 (7) 0.0339 (6) 0.0158 (6) −0.0076 (5) 0.0031 (5)
N1 0.0295 (7) 0.0335 (8) 0.0431 (8) 0.0014 (6) −0.0020 (6) −0.0021 (6)
N2 0.0425 (7) 0.0295 (7) 0.0280 (6) 0.0070 (6) −0.0034 (5) −0.0003 (5)
C1 0.0305 (8) 0.0330 (8) 0.0439 (9) −0.0015 (7) 0.0060 (7) 0.0023 (7)
C2 0.0409 (10) 0.0493 (11) 0.0606 (12) 0.0078 (9) 0.0150 (9) −0.0001 (10)
C3 0.0320 (9) 0.0491 (12) 0.0918 (17) 0.0096 (9) 0.0121 (10) 0.0026 (11)
C4 0.0289 (9) 0.0453 (11) 0.0863 (16) 0.0027 (8) −0.0118 (9) 0.0105 (11)
C5 0.0342 (8) 0.0358 (9) 0.0573 (11) −0.0029 (7) −0.0120 (8) 0.0066 (8)
C6 0.0258 (7) 0.0268 (8) 0.0438 (9) −0.0035 (6) −0.0018 (6) 0.0021 (7)
C7 0.0375 (9) 0.0401 (9) 0.0301 (8) −0.0004 (7) 0.0038 (6) 0.0003 (7)
C8 0.0350 (8) 0.0322 (8) 0.0284 (7) −0.0001 (7) −0.0011 (6) 0.0022 (6)
C9 0.0417 (9) 0.0363 (9) 0.0317 (8) −0.0004 (8) −0.0021 (7) 0.0030 (7)
C10 0.0630 (13) 0.0602 (13) 0.0426 (10) 0.0239 (10) −0.0116 (9) 0.0095 (9)
C11 0.0444 (9) 0.0312 (9) 0.0430 (9) −0.0001 (7) −0.0060 (7) 0.0015 (7)
C12 0.0467 (10) 0.0394 (10) 0.0589 (12) −0.0109 (8) −0.0033 (9) 0.0003 (9)
C13 0.0645 (14) 0.0474 (12) 0.0653 (13) −0.0078 (10) −0.0238 (11) −0.0101 (10)
C14 0.0728 (14) 0.0560 (13) 0.0389 (10) 0.0058 (11) −0.0160 (9) −0.0044 (9)
C15 0.0611 (12) 0.0534 (12) 0.0409 (10) 0.0075 (10) 0.0129 (9) 0.0001 (9)

Geometric parameters (Å, °)

S1—O1 1.4379 (12) C4—H4 0.9300
S1—O2 1.4554 (12) C5—C6 1.385 (2)
S1—N2 1.5618 (13) C5—H5 0.9300
S1—C6 1.7483 (16) C7—C8 1.366 (2)
O3—C7 1.3553 (19) C8—C9 1.467 (2)
O3—H3 0.8200 C10—H10A 0.9600
O4—C9 1.217 (2) C10—H10B 0.9600
O5—C9 1.327 (2) C10—H10C 0.9600
O5—C10 1.449 (2) C11—C12 1.499 (3)
N1—C15 1.486 (2) C11—H11A 0.9700
N1—C11 1.487 (2) C11—H11B 0.9700
N1—H2N 0.87 (2) C12—C13 1.507 (3)
N1—H1N 0.93 (2) C12—H12A 0.9700
N2—C8 1.4063 (19) C12—H12B 0.9700
C1—C6 1.397 (2) C13—C14 1.516 (3)
C1—C2 1.400 (2) C13—H13A 0.9700
C1—C7 1.450 (2) C13—H13B 0.9700
C2—C3 1.375 (3) C14—C15 1.512 (3)
C2—H2A 0.9300 C14—H14A 0.9700
C3—C4 1.377 (3) C14—H14B 0.9700
C3—H3A 0.9300 C15—H15A 0.9700
C4—C5 1.376 (3) C15—H15B 0.9700
O1—S1—O2 113.61 (8) O4—C9—O5 122.16 (16)
O1—S1—N2 109.94 (7) O4—C9—C8 123.95 (16)
O2—S1—N2 113.00 (7) O5—C9—C8 113.88 (14)
O1—S1—C6 110.88 (8) O5—C10—H10A 109.5
O2—S1—C6 103.81 (7) O5—C10—H10B 109.5
N2—S1—C6 105.11 (7) H10A—C10—H10B 109.5
C7—O3—H3 109.5 O5—C10—H10C 109.5
C9—O5—C10 115.92 (14) H10A—C10—H10C 109.5
C15—N1—C11 112.06 (15) H10B—C10—H10C 109.5
C15—N1—H2N 108.9 (12) N1—C11—C12 110.10 (15)
C11—N1—H2N 108.1 (13) N1—C11—H11A 109.6
C15—N1—H1N 110.7 (11) C12—C11—H11A 109.6
C11—N1—H1N 109.6 (11) N1—C11—H11B 109.6
H2N—N1—H1N 107.3 (17) C12—C11—H11B 109.6
C8—N2—S1 115.08 (11) H11A—C11—H11B 108.2
C6—C1—C2 117.64 (16) C11—C12—C13 110.86 (17)
C6—C1—C7 120.06 (14) C11—C12—H12A 109.5
C2—C1—C7 122.27 (17) C13—C12—H12A 109.5
C3—C2—C1 120.25 (19) C11—C12—H12B 109.5
C3—C2—H2A 119.9 C13—C12—H12B 109.5
C1—C2—H2A 119.9 H12A—C12—H12B 108.1
C2—C3—C4 121.11 (18) C12—C13—C14 110.59 (16)
C2—C3—H3A 119.4 C12—C13—H13A 109.5
C4—C3—H3A 119.4 C14—C13—H13A 109.5
C5—C4—C3 119.85 (18) C12—C13—H13B 109.5
C5—C4—H4 120.1 C14—C13—H13B 109.5
C3—C4—H4 120.1 H13A—C13—H13B 108.1
C4—C5—C6 119.40 (19) C15—C14—C13 112.54 (17)
C4—C5—H5 120.3 C15—C14—H14A 109.1
C6—C5—H5 120.3 C13—C14—H14A 109.1
C5—C6—C1 121.54 (16) C15—C14—H14B 109.1
C5—C6—S1 122.21 (14) C13—C14—H14B 109.1
C1—C6—S1 115.89 (12) H14A—C14—H14B 107.8
O3—C7—C8 123.54 (15) N1—C15—C14 110.74 (15)
O3—C7—C1 114.31 (15) N1—C15—H15A 109.5
C8—C7—C1 122.03 (15) C14—C15—H15A 109.5
C7—C8—N2 124.26 (14) N1—C15—H15B 109.5
C7—C8—C9 118.70 (14) C14—C15—H15B 109.5
N2—C8—C9 116.99 (14) H15A—C15—H15B 108.1
O1—S1—N2—C8 165.08 (12) C2—C1—C7—O3 7.3 (2)
O2—S1—N2—C8 −66.84 (13) C6—C1—C7—C8 9.0 (3)
C6—S1—N2—C8 45.69 (13) C2—C1—C7—C8 −168.87 (17)
C6—C1—C2—C3 −2.0 (3) O3—C7—C8—N2 −177.84 (16)
C7—C1—C2—C3 175.93 (18) C1—C7—C8—N2 −2.0 (3)
C1—C2—C3—C4 −2.0 (3) O3—C7—C8—C9 −0.5 (3)
C2—C3—C4—C5 3.1 (3) C1—C7—C8—C9 175.28 (15)
C3—C4—C5—C6 −0.1 (3) S1—N2—C8—C7 −29.7 (2)
C4—C5—C6—C1 −4.0 (3) S1—N2—C8—C9 152.98 (12)
C4—C5—C6—S1 168.73 (14) C10—O5—C9—O4 −0.2 (3)
C2—C1—C6—C5 5.0 (2) C10—O5—C9—C8 −179.11 (16)
C7—C1—C6—C5 −172.97 (16) C7—C8—C9—O4 0.8 (3)
C2—C1—C6—S1 −168.17 (13) N2—C8—C9—O4 178.31 (17)
C7—C1—C6—S1 13.8 (2) C7—C8—C9—O5 179.66 (15)
O1—S1—C6—C5 28.75 (16) N2—C8—C9—O5 −2.8 (2)
O2—S1—C6—C5 −93.61 (15) C15—N1—C11—C12 59.0 (2)
N2—S1—C6—C5 147.50 (14) N1—C11—C12—C13 −58.6 (2)
O1—S1—C6—C1 −158.11 (12) C11—C12—C13—C14 55.4 (2)
O2—S1—C6—C1 79.53 (13) C12—C13—C14—C15 −52.5 (2)
N2—S1—C6—C1 −39.36 (14) C11—N1—C15—C14 −55.5 (2)
C6—C1—C7—O3 −174.80 (15) C13—C14—C15—N1 52.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O4 0.82 1.86 2.577 (2) 145
N1—H1N···N2i 0.932 (19) 1.951 (19) 2.881 (2) 175.4 (18)
N1—H2N···O2ii 0.87 (2) 1.91 (2) 2.7739 (18) 172.4 (18)

Symmetry codes: (i) x, y−1, z; (ii) −x+1/2, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5055).

References

  1. Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett 14, 1035–1038. [DOI] [PubMed]
  2. Braun, J. (1923). Chem. Ber 56, 2332–2343.
  3. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Golič, L. & Leban, I. (1987). Acta Cryst. C43, 280–282.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  9. Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol 36, 79–84. [DOI] [PubMed]
  10. Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc 26,1771–1775.
  11. Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull 54, 1175–1178. [DOI] [PubMed]
  12. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809036204/bt5055sup1.cif

e-65-o2451-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036204/bt5055Isup2.hkl

e-65-o2451-Isup2.hkl (180.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES