Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 9;65(Pt 10):o2387. doi: 10.1107/S1600536809034485

9-Meth­oxy-6a,11a-dimethyl-6a,11a-dihydro-6H-1-benzofuro[3,2-c]chromen-3-ol from Dalbergia oliveri

Sujittra Deesamer a, Warinthorn Chavasiri a,*, Narongsak Chaichit b, Nongnuj Muangsin a, Udom Kokpol a
PMCID: PMC2970239  PMID: 21577851

Abstract

The title compound, commonly known as (+)-(6aS,11aS)-medicarpin, C16H14O4, was isolated from Dalbergia oliveri and displays a rigid mol­ecule consisting of four fused rings. The benzofuran system is inclined at an angle of 76.49 (2)° with respect to the chroman unit. The compound exists as a polymeric chain arising from inter­molecular O—H⋯O bonding.

Related literature

For general background to (+)-(6aS,11aS)-medicarpin, see: Deesamer et al. (2007); Hargreaves et al. (1976). For a related structure, see: Aree et al. (2003).graphic file with name e-65-o2387-scheme1.jpg

Experimental

Crystal data

  • C16H14O4

  • M r = 270.27

  • Monoclinic, Inline graphic

  • a = 6.6289 (3) Å

  • b = 8.7963 (4) Å

  • c = 11.3150 (5) Å

  • β = 99.4820 (10)°

  • V = 650.76 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Bruker SMART diffractometer

  • Absorption correction: none

  • 4783 measured reflections

  • 1949 independent reflections

  • 2867 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.093

  • S = 1.09

  • 1949 reflections

  • 182 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: SMART (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034485/ng2631sup1.cif

e-65-o2387-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034485/ng2631Isup2.hkl

e-65-o2387-Isup2.hkl (93.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O3i 0.82 2.07 2.882 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors gratefully acknowledge funding from the Royal Golden Jubilee PhD program (RGJ), the Center for Petroleum, Petrochemicals and Advanced Materials, the A1–B1 project and the Faculty of Science of Chulalongkorn University.

supplementary crystallographic information

Comment

Dalbergia Oliveri Gamble is widely found in Thailand and used in traditional Thai medicine for treament of chronic ulcer. One of major compositions of CH2Cl2 crude products extracted from the heartwoods of Dalbergia Oliveri (Deesamer et al., 2007) was (+)(6aS,11aS)-Medicarpin. It was identified as phytoalexin (Hargreaves et al., 1976).

The rigid molecule of the title compound consists of four fused rings adopts a bent-shaped conformation. The benzofuran ring system is inclined at the angle of 76.49 (2)° with respect to the chroman moiety. The tetrahydropyranyl group adopts an envelope conformation with atom C6 deviates from the plane by 0.4144 Å.

The compound exists as a polymeric chain arising from intermolecular O—H···O bonding.

Experimental

Four kilograms of dried and powder heartwoods of D. oliveri were extracted with hexane. The marc was then extracted with CH2Cl2, EtOAc and MeOH, respectively. The CH2Cl2 crudeextract was subjected to silica gel colume chromatography eluting with 60%EtOAc:Hexane to afford the title compound (3.92 g). The suitable single crystals of the title compound were recrystallized from acetone-water as colourless needle crystals.

m.p. 132.0–133.5°C; m/z: 270[M+]

The specific rotation of D3 as [α]D+ 223.1° (c 0.16 in acetone, at 20°C) indicated the absolute configuration to be (+)(6aS,11aS)-medicarpin.

1H-NMR (CDCl3): δ (p.p.m.) 3.55(1H,m,H-6a), 3.65 (1H, dd, J =10.9 and 10.9 Hz, H-6ax), 4.26 (1H, dd, J = 4.8, 10.9 Hz, H-6eq) and 5.23 (1H, d, J = 6.7 Hz, H-116a),

Refinement

All non-hydrogen atoms were anisotropically refined. The hydrogen atoms were positioned geometrically and refined using a riding model, with C—H = 0.93Å (aromatic), 0.97Å (CH2) and 0.98Å (CH3), and O—H = 0.82 Å, and Uiso(H) = 1.2Ueq (Caromatic), 1.5Ueq (CCH2), 1.5Ueq (CCH3) and 1.2Ueq (CO), respectively. In the structure, Friedel pairs [1949] were merged and the stereochemistry assumed from the specific rotation and the previously reported structure (Deesamer et al. 2007).

Figures

Fig. 1.

Fig. 1.

View of the title compound (50% probability displacement ellipsoids)

Fig. 2.

Fig. 2.

Packing diagram of a polymeric hydrogen bonding chain along the c axis.

Crystal data

C16H14O4 Z = 2
Mr = 270.27 F(000) = 284
Monoclinic, P21 Dx = 1.379 Mg m3
Hall symbol: P 2yb Mo Kα radiation, λ = 0.71073 Å
a = 6.6289 (3) Å µ = 0.10 mm1
b = 8.7963 (4) Å T = 293 K
c = 11.3150 (5) Å Needle, colourless
β = 99.482 (1)° 0.40 × 0.25 × 0.20 mm
V = 650.76 (5) Å3

Data collection

Bruker SMART diffractometer Rint = 0.013
Radiation source: Mo θmax = 30.4°, θmin = 1.8°
ω scans h = −7→9
4783 measured reflections k = −12→12
3198 independent reflections l = −15→13
1949 reflections with I > 2σ(I)

Refinement

Refinement on F2 1 restraint
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0583P)2 + 0.0162P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.093 (Δ/σ)max < 0.001
S = 1.09 Δρmax = 0.16 e Å3
1949 reflections Δρmin = −0.18 e Å3
182 parameters

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.0057 (2) 0.4390 (2) 0.69102 (16) 0.0414 (4)
H1 −0.1252 0.398 0.6736 0.05*
C2 0.0496 (3) 0.5393 (3) 0.78509 (16) 0.0458 (4)
H2 −0.0512 0.5664 0.8294 0.055*
C3 0.2455 (3) 0.6001 (2) 0.81356 (14) 0.0413 (4)
C4 0.3960 (3) 0.5576 (2) 0.74813 (15) 0.0399 (4)
H4 0.5278 0.5962 0.7678 0.048*
C4A 0.3482 (2) 0.45666 (19) 0.65285 (14) 0.0351 (3)
C6 0.4820 (3) 0.2767 (2) 0.53202 (17) 0.0426 (4)
H6A 0.4918 0.1964 0.5915 0.051*
H6B 0.5928 0.2632 0.4867 0.051*
C6A 0.2800 (2) 0.26311 (19) 0.44829 (15) 0.0365 (3)
H6A1 0.2669 0.1601 0.4149 0.044*
C6B 0.2447 (2) 0.37674 (19) 0.34730 (14) 0.0338 (3)
C7 0.3662 (3) 0.4270 (2) 0.26630 (15) 0.0393 (3)
H7 0.5007 0.3937 0.2723 0.047*
C8 0.2854 (3) 0.5275 (2) 0.17639 (16) 0.0424 (4)
H8 0.367 0.5633 0.123 0.051*
C9 0.0829 (3) 0.5752 (2) 0.16556 (14) 0.0388 (4)
C10 −0.0419 (3) 0.5288 (2) 0.24674 (15) 0.0374 (3)
H10 −0.1764 0.5621 0.2409 0.045*
C10A 0.0455 (2) 0.43038 (19) 0.33679 (13) 0.0332 (3)
C11A 0.0957 (2) 0.29610 (19) 0.51234 (15) 0.0363 (3)
H11A 0.0382 0.2002 0.5358 0.044*
C11B 0.1513 (2) 0.39649 (18) 0.62068 (14) 0.0343 (3)
C12 −0.1997 (3) 0.7026 (3) 0.04448 (19) 0.0579 (5)
H12A −0.2266 0.7714 −0.0221 0.087*
H12B −0.2447 0.7474 0.113 0.087*
H12C −0.2719 0.6091 0.0244 0.087*
O1 0.50439 (17) 0.42138 (16) 0.59175 (11) 0.0436 (3)
O2 −0.05777 (17) 0.37602 (17) 0.42345 (10) 0.0401 (3)
O3 0.0152 (2) 0.67276 (19) 0.07158 (11) 0.0518 (4)
O4 0.2992 (2) 0.7012 (2) 0.90549 (12) 0.0550 (4)
H4A 0.2102 0.7028 0.9479 0.083*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0296 (7) 0.0524 (10) 0.0410 (8) −0.0031 (7) 0.0021 (6) 0.0049 (8)
C2 0.0390 (8) 0.0594 (11) 0.0391 (8) 0.0030 (8) 0.0070 (7) 0.0028 (8)
C3 0.0482 (9) 0.0424 (9) 0.0321 (7) −0.0012 (7) 0.0026 (6) 0.0048 (7)
C4 0.0368 (7) 0.0448 (9) 0.0372 (7) −0.0089 (6) 0.0034 (6) 0.0037 (7)
C4A 0.0323 (7) 0.0385 (8) 0.0343 (7) −0.0031 (6) 0.0045 (6) 0.0059 (6)
C6 0.0361 (7) 0.0445 (10) 0.0460 (9) 0.0054 (7) 0.0030 (7) 0.0002 (7)
C6A 0.0372 (8) 0.0295 (7) 0.0414 (8) 0.0010 (6) 0.0022 (6) −0.0007 (6)
C6B 0.0347 (7) 0.0306 (7) 0.0354 (7) 0.0000 (6) 0.0039 (6) −0.0039 (6)
C7 0.0361 (7) 0.0411 (8) 0.0420 (8) 0.0012 (6) 0.0102 (6) −0.0054 (7)
C8 0.0455 (9) 0.0459 (9) 0.0379 (8) −0.0007 (7) 0.0130 (7) −0.0007 (7)
C9 0.0474 (9) 0.0392 (9) 0.0296 (7) 0.0014 (7) 0.0055 (6) −0.0027 (6)
C10 0.0359 (7) 0.0423 (8) 0.0331 (7) 0.0048 (6) 0.0035 (6) −0.0023 (6)
C10A 0.0336 (7) 0.0359 (7) 0.0301 (6) −0.0033 (6) 0.0049 (5) −0.0032 (6)
C11A 0.0351 (7) 0.0338 (8) 0.0384 (8) −0.0057 (6) 0.0010 (6) 0.0056 (6)
C11B 0.0310 (6) 0.0360 (8) 0.0342 (7) −0.0033 (6) 0.0004 (5) 0.0071 (6)
C12 0.0621 (12) 0.0648 (13) 0.0431 (9) 0.0143 (11) −0.0022 (9) 0.0089 (9)
O1 0.0305 (5) 0.0527 (8) 0.0482 (6) −0.0086 (5) 0.0087 (4) −0.0075 (6)
O2 0.0299 (5) 0.0536 (7) 0.0358 (5) −0.0032 (5) 0.0020 (4) 0.0073 (5)
O3 0.0604 (8) 0.0588 (9) 0.0363 (6) 0.0084 (7) 0.0076 (5) 0.0106 (6)
O4 0.0639 (9) 0.0619 (9) 0.0394 (7) −0.0071 (7) 0.0088 (6) −0.0089 (6)

Geometric parameters (Å, °)

C1—C2 1.376 (3) C6B—C10A 1.389 (2)
C1—C11B 1.399 (2) C7—C8 1.387 (3)
C1—H1 0.93 C7—H7 0.93
C2—C3 1.393 (3) C8—C9 1.393 (2)
C2—H2 0.93 C8—H8 0.93
C3—O4 1.370 (2) C9—O3 1.382 (2)
C3—C4 1.388 (3) C9—C10 1.395 (2)
C4—C4A 1.392 (2) C10—C10A 1.389 (2)
C4—H4 0.93 C10—H10 0.93
C4A—O1 1.372 (2) C10A—O2 1.3709 (19)
C4A—C11B 1.400 (2) C11A—O2 1.484 (2)
C6—O1 1.437 (2) C11A—C11B 1.507 (2)
C6—C6A 1.512 (2) C11A—H11A 0.98
C6—H6A 0.97 C12—O3 1.431 (3)
C6—H6B 0.97 C12—H12A 0.96
C6A—C6B 1.507 (2) C12—H12B 0.96
C6A—C11A 1.547 (2) C12—H12C 0.96
C6A—H6A1 0.98 O4—H4A 0.82
C6B—C7 1.389 (2)
C2—C1—C11B 122.26 (15) C6B—C7—H7 120.3
C2—C1—H1 118.9 C7—C8—C9 120.45 (16)
C11B—C1—H1 118.9 C7—C8—H8 119.8
C1—C2—C3 119.68 (17) C9—C8—H8 119.8
C1—C2—H2 120.2 O3—C9—C8 116.15 (16)
C3—C2—H2 120.2 O3—C9—C10 122.38 (15)
O4—C3—C4 117.40 (16) C8—C9—C10 121.46 (16)
O4—C3—C2 122.73 (17) C10A—C10—C9 116.39 (15)
C4—C3—C2 119.87 (17) C10A—C10—H10 121.8
C3—C4—C4A 119.56 (15) C9—C10—H10 121.8
C3—C4—H4 120.2 O2—C10A—C6B 113.57 (14)
C4A—C4—H4 120.2 O2—C10A—C10 123.03 (14)
O1—C4A—C4 116.13 (14) C6B—C10A—C10 123.39 (15)
O1—C4A—C11B 122.15 (14) O2—C11A—C11B 108.81 (14)
C4—C4A—C11B 121.72 (14) O2—C11A—C6A 106.09 (13)
O1—C6—C6A 112.14 (14) C11B—C11A—C6A 112.62 (13)
O1—C6—H6A 109.2 O2—C11A—H11A 109.7
C6A—C6—H6A 109.2 C11B—C11A—H11A 109.7
O1—C6—H6B 109.2 C6A—C11A—H11A 109.7
C6A—C6—H6B 109.2 C1—C11B—C4A 116.87 (15)
H6A—C6—H6B 107.9 C1—C11B—C11A 121.33 (14)
C6B—C6A—C6 115.68 (14) C4A—C11B—C11A 121.74 (14)
C6B—C6A—C11A 101.24 (12) O3—C12—H12A 109.5
C6—C6A—C11A 112.20 (14) O3—C12—H12B 109.5
C6B—C6A—H6A1 109.1 H12A—C12—H12B 109.5
C6—C6A—H6A1 109.1 O3—C12—H12C 109.5
C11A—C6A—H6A1 109.1 H12A—C12—H12C 109.5
C7—C6B—C10A 118.82 (15) H12B—C12—H12C 109.5
C7—C6B—C6A 132.64 (14) C4A—O1—C6 114.15 (13)
C10A—C6B—C6A 108.46 (13) C10A—O2—C11A 106.43 (12)
C8—C7—C6B 119.42 (15) C9—O3—C12 117.65 (15)
C8—C7—H7 120.3 C3—O4—H4A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O3i 0.82 2.07 2.882 (2) 169

Symmetry codes: (i) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2631).

References

  1. Aree, T., Tip-pyang, S., Seesukphronrarak, S. & Chaichit, N. (2003). Acta Cryst. E59, o363–o365.
  2. Bruker (2006). SMART and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Deesamer, S., Kokpola, U., Chavasiria, W., Douillardb, S., Peyrotb, V., Vidalc, N. & Combesc, S. (2007). Tetrahedron, 63, 12986–12993.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Hargreaves, J. A., Mansfield, J. W. & Coxon, D. T. (1976). Nature (London), 262, 318–319.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034485/ng2631sup1.cif

e-65-o2387-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034485/ng2631Isup2.hkl

e-65-o2387-Isup2.hkl (93.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES