Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1967 Jan;46(1):95–102. doi: 10.1172/JCI105515

A Microperfusion Study of Bicarbonate Accumulation in the Proximal Tubule of the Rat Kidney*

Norman Bank 1,, Hagop S Aynedjian 1
PMCID: PMC297024  PMID: 4959907

Abstract

In order to determine whether HCO3- gains access to the proximal tubular lumen from a source other than the glomerular filtrate, we carried out microperfusion experiments on isolated segments of rat proximal tubules in vivo. The perfusion fluid was essentially free of HCO3- and of a composition that prevented net absorption of sodium and water.

It was found that when plasma HCO3- concentration and CO2 tension (PCO2) were normal, the HCO3- concentration in the collected perfusate rose to about 3 mEq per L. Inhibition of renal carbonic anhydrase did not produce an appreciable change in this value in normal rats, but when the enzyme was inhibited in acutely alkalotic rats, a mean concentration of 15 mEq per L was recovered in the perfusate. Addition of HCO3- to the tubular lumen might occur by either intraluminal generation of HCO3- from CO2 and OH- or by influx of ionic bicarbonate from the plasma or tubular cells. Because of the marked increase in HCO3- found when intraluminal carbonic anhydrase was inhibited, generation of new HCO3- from CO2 and OH- seems unlikely. We conclude, therefore, that influx of ionic bicarbonate occurred, either across the luminal membrane or through extracellular aqueous channels. These observations suggest that the proximal epithelium has a finite degree of permeability to HCO3- and that influx of this ion may be a component of the over-all handling of HCO3- by the kidney.

Full text

PDF
95

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BANK N. Relationship between electrical and hydrogen ion gradients across rat proximal tubule. Am J Physiol. 1962 Sep;203:577–582. doi: 10.1152/ajplegacy.1962.203.3.577. [DOI] [PubMed] [Google Scholar]
  2. GIEBISCH G., KLOSE R. M., MALNIC G., SULLIVAN W. J., WINDHAGER E. E. SODIUM MOVEMENT ACROSS SINGLE PERFUSED PROXIMAL TUBULES OF RAT KIDNEYS. J Gen Physiol. 1964 Jul;47:1175–1194. doi: 10.1085/jgp.47.6.1175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GIEBISCH G., WINDHAGER E. E. RENAL TUBULAR TRANSFER OF SODIUM, CHLORIDE AND POTASSIUM. Am J Med. 1964 May;36:643–669. doi: 10.1016/0002-9343(64)90178-0. [DOI] [PubMed] [Google Scholar]
  4. GLABMAN S., KOSE R. M., GIEBISCH G. Micropuncture study of ammonia excretion in the rat. Am J Physiol. 1963 Jul;205:127–132. doi: 10.1152/ajplegacy.1963.205.1.127. [DOI] [PubMed] [Google Scholar]
  5. HAYES C. P., Jr, MAYSON J. S., OWEN E. E., ROBINSON R. R. A MICROPUNCTURE EVALUATION OF RENAL AMMONIA EXCRETION IN THE RAT. Am J Physiol. 1964 Jul;207:77–83. doi: 10.1152/ajplegacy.1964.207.1.77. [DOI] [PubMed] [Google Scholar]
  6. Hayes C. P., Jr, Owen E. E., Robinson R. R. Renal ammonia excretion during acetazolamide or sodium bicarbonate administration. Am J Physiol. 1966 Apr;210(4):744–750. doi: 10.1152/ajplegacy.1966.210.4.744. [DOI] [PubMed] [Google Scholar]
  7. KASHGARIAN M., STOCKLE H., GOTTSCHALK C. W., ULLRICH K. J. Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:89–106. doi: 10.1007/BF00362394. [DOI] [PubMed] [Google Scholar]
  8. MARSH D., FRASIER C. RELIABILITY OF INULIN FOR DETERMINING VOLUME FLOW IN RAT RENAL CORTICAL TUBULES. Am J Physiol. 1965 Aug;209:283–286. doi: 10.1152/ajplegacy.1965.209.2.283. [DOI] [PubMed] [Google Scholar]
  9. MILNE M. D., SCRIBNER B. H., CRAWFORD M. A. Non-ionic diffusion and the excretion of weak acids and bases. Am J Med. 1958 May;24(5):709–729. doi: 10.1016/0002-9343(58)90376-0. [DOI] [PubMed] [Google Scholar]
  10. ORLOFF J., BERLINER R. W. The mechanism of the excretion of ammonia in the dog. J Clin Invest. 1956 Feb;35(2):223–235. doi: 10.1172/JCI103267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. RECTOR F. C., Jr, CARTER N. W., SELDIN D. W. THE MECHANISM OF BICARBONATE REABSORPTION IN THE PROXIMAL AND DISTAL TUBULES OF THE KIDNEY. J Clin Invest. 1965 Feb;44:278–290. doi: 10.1172/JCI105142. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. SONNENBERG H., DEETJEN P. METHODE ZUR DURCHSTROEMUNG EINZELNER NEPHRONABSCHNITTE. Pflugers Arch Gesamte Physiol Menschen Tiere. 1964 Jan 30;278:669–674. [PubMed] [Google Scholar]
  13. TRAVIS D. M., WILEY C., NECHAY B. R., MAREN T. H. SELECTIVE RENAL CARBONIC ANHYDRASE INHIBITION WITHOUT RESPIRATORY EFFECT: PHARMACOLOGY OF 2-BENZENESULFONAMIDO-1,3, 4-THIADIAZOLE-5-SULFONAMIDE (CL 11,366). J Pharmacol Exp Ther. 1964 Mar;143:383–394. [PubMed] [Google Scholar]
  14. WINDHAGER E. E., GIEBISCH G. ELECTROPHYSIOLOGY OF THE NEPHRON. Physiol Rev. 1965 Apr;45:214–244. doi: 10.1152/physrev.1965.45.2.214. [DOI] [PubMed] [Google Scholar]
  15. WINDHAGER E. E., GIEBISCH G. Micropuncture study of renal tubular transfer of sodium chloride in the rat. Am J Physiol. 1961 Mar;200:581–590. doi: 10.1152/ajplegacy.1961.200.3.581. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES