Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 5;65(Pt 10):o2305–o2306. doi: 10.1107/S1600536809034096

3-(6-Benz­yloxy-2,2-dimethyl­perhydro­furo[2,3-d][1,3]dioxolan-5-yl)-5-(4-chloro­phen­yl)-4-nitro-2-phenyl-2,3,4,5-tetra­hydro­isoxazole

M NizamMohideen a, M Damodiran b, A SubbiahPandi c,*, P T Perumal b
PMCID: PMC2970260  PMID: 21577778

Abstract

In the title compound, C29H29ClN2O7, the isoxazole and dioxolane rings adopt envelope conformations, and the furan ring adopts a twisted conformation. The crystal structure is stabilized by inter­molecular C—H⋯π inter­actions between a benz­yloxy methyl­ene H atom and the 4-chloro­phenyl ring of an adjacent mol­ecule, and by weak non-classical inter­molecular C—H⋯O hydrogen bonds. In addition, the crystal structure exhibits a Cl⋯O halogen bond of 3.111 (3) Å, with a nearly linear C—Cl⋯O angle of 160.7 (1)°.

Related literature

For general background to 1,3-dipolar cyclo­addition reactions, see: Gothelf & Jorgensen (1998); Bernotas et al. (1996); Breuer (1982); Colombi et al. (1978); Hossain et al. (1993). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983). For halogen bonds, see: Politzer et al. (2007).graphic file with name e-65-o2305-scheme1.jpg

Experimental

Crystal data

  • C29H29ClN2O7

  • M r = 552.99

  • Orthorhombic, Inline graphic

  • a = 12.7862 (5) Å

  • b = 13.0160 (5) Å

  • c = 16.8232 (6) Å

  • V = 2799.80 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 293 K

  • 0.3 × 0.2 × 0.2 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2004) T min = 0.926, T max = 0.964

  • 17056 measured reflections

  • 4764 independent reflections

  • 3446 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.088

  • S = 1.02

  • 4764 reflections

  • 355 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983), 1975 Friedel pairs

  • Flack parameter: −0.05 (8)

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034096/lx2103sup1.cif

e-65-o2305-sup1.cif (26.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034096/lx2103Isup2.hkl

e-65-o2305-Isup2.hkl (233.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.98 2.54 3.298 (3) 134
C17—H17B⋯O1ii 0.97 2.46 3.218 (3) 135
C21—H21⋯Cg1i 0.93 2.75 3.598 (1) 152

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C1–C6 ring.

Acknowledgments

MNM and ASP thank Dr J. Jothi Kumar, Principal of Presidency College (Autonomous), Chennai, India, for providing the computer and internet facilities. The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the X-ray data collection.

supplementary crystallographic information

Comment

The 1,3-dipolar cycloaddition of nitrones with olefinic dipolarophiles proceeds through a concerted mechanism yielding highly substituted isoxazolidines (Gothelf & Jorgensen, 1998). The cornerstone for cycloaddition reactions, nitrones, are excellent spin traping (Bernotas et al., 1996) and highly versatile synthetic intermediates (Breuer, 1982). Highly substituted spiro-isoxazolidines result from the 1,3-dipolar cycloaddition of exocylic olefins with nitrones and these spiro-isoxazolidines have also been transformed into complex heterocycles (Colombi et al., 1978, Hossain et al., 1993). Here we report the crystal structure of the title compound (Fig. 1).

The dihedral angle between the phenyl rings C1-C6 and C18-C23, C18-C23 and C24-C29, and, C1-C6 and C24-C29 are 8.4 (2), 83.9 (1) and 75.7 (1)°, respectively. The five membered tetrahydrofuran ring (C10-C13/O4) adopts a twisted conformation and the other five membered rings, isoxazole ring (C7-C9/O1/N1) and the dioxolan ring (C12-C14/O5/O6), adopt envelope conformations on C11 and C10, O1 and O5 with a pseudo-twofold axis passing through C12–C11, C9–C8 and C13–O6 bonds. The puckering parameters (Cremer & Pople, 1975) and the lowest displacement asymmetry parameters (Nardelli, 1983)as follows: for the tetrahydrofuran ring q2 = 0.365 (1) Å, φ = 304.9 (1)°, ΔS (C10) is 12.8 (1)° and Δ2 (C13) is 1.8 (1)°, for the isoxazolidine ring q2 = 0.377 (1) Å, φ = 359.7 (1)°, ΔS (O1) is 1.0 (1)° and Δ2(C8) is 19.6 (1)° and for the dioxolone ring q2 = 0.248 (1) Å, φ = 181.2 (1)°, ΔS (O5) is 0.3 (1)° and Δ2 (C13) is 13.3 (1)°.

The molecular packing is stabilized by weak non-classical intermolecular C–H···O hydrogen bonds (Table 1 and Fig. 2; symmetry code as in Fig. 2). Additionally, the crystal structure exhibits a Cl···O halogen bond (Politzer et al., 2007) between the chlorine atom and the oxygen of a neighbouring NO2 group, with a Cl1···O2iv distance of 3.111 (3) Å (symmetry code as in Fig. 2). The molecular packing (Fig. 3) is further stabilized by an intermolecular C–H···π interactions between the methylene H atom of benzyloxy substituent and the 4-chlorophenyl ring of an adjacent molecule, with a C21–H21···Cg1iii separation of 2.75 Å (Table 1, Cg1 is the centroid of C1-C6 benzene ring).

Experimental

A mixture of D-glucose derived nitrone (0.5 mmol) and β-nitrostyrene (0.5 mmol) was refluxed in dry toluene (10 ml) until completion of the reaction as evidenced by TLC analysis. The solvent was evaporated under reduced pressure. The crude was purified by column chromatography on silica gel (Merck, 100-200 mesh, ethylacetate-petroleum ether (10 : 90) to afford pure isoxazolidine. Single crystals of the title compound suitable for X-ray diffraction was recrystallized from ethanol.

Refinement

All H atoms were positioned geometrically, with C–H = 0.93-0.98 Å and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N), where x = 1.5 for methyl H and x = 1.2 for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

The C–H···O interactions, and Cl1···O halogen bond (dashed lines) in the title compound. [Symmetry codes: (i) x - 1/2, -y + 1/2, -z + 1; (ii) - x + 1, y - 1/2, -z + 3/2; (iv) x - 1/2, - y + 3/2, -z + 1.]

Fig. 3.

Fig. 3.

C–H···π interactions (dashed lines) in the title compound. Cg denotes the ring centroid. [Symmetry codes: (iii) x + 1/2, - y + 1/2, - z + 1; (v) x - 1/2, - y + 1/2, - z + 1.]

Crystal data

C29H29ClN2O7 F(000) = 1160
Mr = 552.99 Dx = 1.312 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 3652 reflections
a = 12.7862 (5) Å θ = 2.5–25°
b = 13.0160 (5) Å µ = 0.19 mm1
c = 16.8232 (6) Å T = 293 K
V = 2799.80 (18) Å3 Needle, colourless
Z = 4 0.3 × 0.2 × 0.2 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 4764 independent reflections
Radiation source: fine-focus sealed tube 3446 reflections with I > 2σ(I)
graphite Rint = 0.034
ω and φ scans θmax = 25.0°, θmin = 2.9°
Absorption correction: multi-scan (SADABS; Bruker 2004) h = −15→15
Tmin = 0.926, Tmax = 0.964 k = −13→14
17056 measured reflections l = −16→20

Refinement

Refinement on F2 Hydrogen site location: difference Fourier map
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0403P)2 + 0.2549P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.088 (Δ/σ)max < 0.001
S = 1.02 Δρmax = 0.15 e Å3
4764 reflections Δρmin = −0.13 e Å3
355 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.0045 (6)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983), 1975 Friedel pairs
Secondary atom site location: difference Fourier map Flack parameter: −0.05 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.33984 (19) 0.6866 (2) 0.65294 (16) 0.0602 (7)
H1 0.3415 0.6459 0.6983 0.072*
C2 0.2814 (2) 0.7761 (2) 0.65257 (18) 0.0692 (7)
H2 0.2457 0.7964 0.6981 0.083*
C3 0.2765 (2) 0.8340 (2) 0.5857 (2) 0.0673 (7)
C4 0.3326 (2) 0.8082 (2) 0.5200 (2) 0.0760 (9)
H4 0.3301 0.8493 0.4749 0.091*
C5 0.3933 (2) 0.7205 (2) 0.52082 (18) 0.0691 (8)
H5 0.4332 0.7039 0.4764 0.083*
C6 0.39575 (17) 0.65738 (18) 0.58632 (15) 0.0471 (6)
C7 0.45334 (17) 0.55719 (17) 0.58177 (14) 0.0455 (6)
H7 0.5181 0.5658 0.5513 0.055*
C8 0.38927 (17) 0.46762 (17) 0.54776 (13) 0.0427 (6)
H8 0.3143 0.4808 0.5544 0.051*
C9 0.42248 (17) 0.37460 (18) 0.59803 (14) 0.0434 (6)
H9 0.4536 0.3214 0.5643 0.052*
C10 0.33056 (15) 0.33112 (18) 0.64465 (14) 0.0434 (6)
H10 0.3092 0.3802 0.6857 0.052*
C11 0.34793 (16) 0.22621 (18) 0.68184 (14) 0.0448 (6)
H11 0.3831 0.2310 0.7335 0.054*
C12 0.23650 (18) 0.18767 (19) 0.68975 (14) 0.0474 (6)
H12 0.2314 0.1126 0.6886 0.057*
C13 0.17952 (16) 0.23875 (19) 0.62140 (14) 0.0460 (6)
H13 0.1606 0.1884 0.5805 0.055*
C14 0.08681 (19) 0.2635 (2) 0.73843 (15) 0.0582 (7)
C15 0.0626 (3) 0.3618 (3) 0.7812 (2) 0.1063 (12)
H15A 0.1132 0.4131 0.7668 0.159*
H15B 0.0653 0.3503 0.8375 0.159*
H15C −0.0060 0.3849 0.7666 0.159*
C16 0.0104 (2) 0.1788 (3) 0.7552 (2) 0.0866 (10)
H16A −0.0575 0.1981 0.7359 0.130*
H16B 0.0069 0.1669 0.8114 0.130*
H16C 0.0328 0.1171 0.7289 0.130*
C17 0.4468 (2) 0.0741 (2) 0.66159 (16) 0.0585 (7)
H17A 0.3903 0.0319 0.6819 0.070*
H17B 0.4917 0.0925 0.7058 0.070*
C18 0.50869 (17) 0.01390 (19) 0.60141 (15) 0.0493 (6)
C19 0.5602 (2) −0.0733 (2) 0.62669 (19) 0.0713 (8)
H19 0.5570 −0.0928 0.6798 0.086*
C20 0.6160 (2) −0.1312 (3) 0.5736 (2) 0.0875 (10)
H20 0.6507 −0.1899 0.5910 0.105*
C21 0.6215 (2) −0.1038 (3) 0.4954 (2) 0.0811 (9)
H21 0.6591 −0.1439 0.4597 0.097*
C22 0.5717 (2) −0.0176 (2) 0.46998 (17) 0.0713 (8)
H22 0.5757 0.0018 0.4169 0.086*
C23 0.5151 (2) 0.0412 (2) 0.52292 (16) 0.0608 (7)
H23 0.4809 0.1000 0.5052 0.073*
C24 0.60915 (17) 0.3964 (2) 0.63870 (14) 0.0489 (6)
C25 0.63995 (19) 0.2974 (2) 0.62056 (17) 0.0639 (8)
H25 0.5905 0.2457 0.6140 0.077*
C26 0.7453 (2) 0.2761 (3) 0.61224 (17) 0.0790 (9)
H26 0.7663 0.2100 0.5988 0.095*
C27 0.8194 (2) 0.3512 (3) 0.62345 (18) 0.0847 (11)
H27 0.8901 0.3359 0.6187 0.102*
C28 0.7876 (2) 0.4485 (3) 0.64162 (19) 0.0805 (10)
H28 0.8373 0.4999 0.6485 0.097*
C29 0.68311 (17) 0.4720 (2) 0.64995 (16) 0.0618 (7)
H29 0.6626 0.5384 0.6631 0.074*
N1 0.50029 (14) 0.41439 (15) 0.65469 (12) 0.0476 (5)
N2 0.4148 (2) 0.45251 (17) 0.46170 (13) 0.0574 (6)
O1 0.47679 (12) 0.52172 (12) 0.66073 (9) 0.0517 (4)
O2 0.4993 (2) 0.4215 (2) 0.44423 (13) 0.0993 (8)
O3 0.3483 (2) 0.4733 (2) 0.41370 (13) 0.1086 (8)
O4 0.24623 (11) 0.31531 (12) 0.59000 (9) 0.0503 (4)
O5 0.19043 (12) 0.23172 (14) 0.75864 (9) 0.0588 (5)
O6 0.08979 (12) 0.28308 (14) 0.65527 (10) 0.0613 (5)
O7 0.40491 (11) 0.16447 (12) 0.62710 (9) 0.0478 (4)
Cl1 0.19572 (8) 0.94167 (6) 0.58228 (7) 0.1059 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0647 (16) 0.0588 (18) 0.0572 (16) 0.0114 (14) −0.0014 (14) −0.0080 (14)
C2 0.0688 (17) 0.070 (2) 0.0692 (16) 0.0167 (16) −0.0049 (15) −0.0232 (13)
C3 0.0706 (18) 0.0432 (17) 0.0883 (19) 0.0018 (14) −0.0139 (17) −0.0167 (13)
C4 0.099 (2) 0.0429 (18) 0.086 (2) −0.0020 (17) −0.0028 (19) 0.0106 (16)
C5 0.088 (2) 0.0506 (18) 0.0687 (19) −0.0036 (16) 0.0181 (16) −0.0007 (15)
C6 0.0449 (13) 0.0404 (15) 0.0559 (15) −0.0077 (11) 0.0023 (12) −0.0126 (13)
C7 0.0447 (13) 0.0421 (15) 0.0497 (15) −0.0055 (11) 0.0041 (11) −0.0071 (12)
C8 0.0416 (12) 0.0425 (14) 0.0439 (14) −0.0004 (11) 0.0024 (10) −0.0035 (11)
C9 0.0385 (12) 0.0433 (15) 0.0485 (14) 0.0025 (10) −0.0014 (11) −0.0027 (12)
C10 0.0388 (12) 0.0432 (15) 0.0482 (14) 0.0006 (11) −0.0034 (10) −0.0004 (11)
C11 0.0452 (13) 0.0443 (15) 0.0450 (13) 0.0031 (11) −0.0028 (11) 0.0019 (12)
C12 0.0530 (14) 0.0414 (15) 0.0479 (14) 0.0007 (12) 0.0052 (11) 0.0001 (12)
C13 0.0439 (12) 0.0471 (15) 0.0471 (13) −0.0059 (12) 0.0000 (10) −0.0003 (12)
C14 0.0540 (15) 0.0662 (19) 0.0544 (16) 0.0074 (14) 0.0049 (13) −0.0018 (14)
C15 0.120 (3) 0.101 (3) 0.099 (3) 0.031 (2) 0.007 (2) −0.033 (2)
C16 0.0640 (18) 0.104 (3) 0.091 (2) −0.0119 (19) 0.0126 (16) 0.026 (2)
C17 0.0702 (17) 0.0496 (17) 0.0556 (16) 0.0215 (14) −0.0020 (13) 0.0105 (13)
C18 0.0447 (13) 0.0441 (16) 0.0592 (17) 0.0053 (12) 0.0004 (11) 0.0064 (13)
C19 0.0730 (18) 0.065 (2) 0.076 (2) 0.0201 (17) 0.0068 (15) 0.0156 (16)
C20 0.078 (2) 0.069 (2) 0.115 (3) 0.0330 (17) 0.018 (2) 0.013 (2)
C21 0.0659 (19) 0.065 (2) 0.112 (3) 0.0099 (17) 0.0286 (18) −0.014 (2)
C22 0.0799 (19) 0.069 (2) 0.0653 (19) −0.0030 (18) 0.0187 (16) −0.0046 (16)
C23 0.0703 (17) 0.0506 (17) 0.0615 (18) 0.0124 (14) 0.0001 (14) 0.0040 (14)
C24 0.0386 (13) 0.0631 (19) 0.0451 (15) 0.0009 (13) −0.0026 (11) 0.0005 (12)
C25 0.0474 (14) 0.070 (2) 0.0742 (18) 0.0103 (14) −0.0031 (13) −0.0081 (15)
C26 0.0579 (17) 0.100 (3) 0.080 (2) 0.0289 (19) 0.0031 (15) −0.0037 (19)
C27 0.0411 (16) 0.138 (3) 0.075 (2) 0.015 (2) 0.0063 (14) 0.023 (2)
C28 0.0423 (15) 0.117 (3) 0.082 (2) −0.0142 (18) −0.0024 (14) 0.024 (2)
C29 0.0479 (14) 0.0722 (19) 0.0652 (17) −0.0065 (14) −0.0031 (12) 0.0012 (15)
N1 0.0396 (11) 0.0478 (13) 0.0553 (12) 0.0014 (9) −0.0010 (9) −0.0058 (10)
N2 0.0776 (15) 0.0449 (13) 0.0497 (14) −0.0107 (12) −0.0008 (13) −0.0059 (11)
O1 0.0526 (9) 0.0512 (11) 0.0513 (11) 0.0034 (8) −0.0048 (7) −0.0116 (9)
O2 0.1055 (18) 0.123 (2) 0.0690 (14) 0.0167 (16) 0.0285 (13) −0.0203 (13)
O3 0.136 (2) 0.125 (2) 0.0645 (14) 0.0038 (17) −0.0251 (14) 0.0137 (14)
O4 0.0404 (8) 0.0540 (11) 0.0565 (10) −0.0071 (8) −0.0082 (7) 0.0133 (8)
O5 0.0541 (10) 0.0757 (13) 0.0465 (10) 0.0024 (9) 0.0008 (8) 0.0010 (9)
O6 0.0485 (10) 0.0762 (13) 0.0591 (11) 0.0070 (9) 0.0053 (8) 0.0097 (10)
O7 0.0547 (9) 0.0422 (10) 0.0467 (9) 0.0116 (8) −0.0005 (7) 0.0056 (8)
Cl1 0.1104 (7) 0.0618 (5) 0.1454 (9) 0.0290 (5) −0.0323 (6) −0.0224 (6)

Geometric parameters (Å, °)

C1—C6 1.383 (3) C15—H15A 0.9600
C1—C2 1.383 (4) C15—H15B 0.9600
C1—H1 0.9300 C15—H15C 0.9600
C2—C3 1.355 (4) C16—H16A 0.9600
C2—H2 0.9300 C16—H16B 0.9600
C3—C4 1.360 (4) C16—H16C 0.9600
C3—Cl1 1.742 (3) C17—O7 1.417 (3)
C4—C5 1.380 (4) C17—C18 1.505 (3)
C4—H4 0.9300 C17—H17A 0.9700
C5—C6 1.375 (4) C17—H17B 0.9700
C5—H5 0.9300 C18—C23 1.370 (3)
C6—C7 1.500 (3) C18—C19 1.380 (3)
C7—O1 1.438 (3) C19—C20 1.369 (4)
C7—C8 1.535 (3) C19—H19 0.9300
C7—H7 0.9800 C20—C21 1.364 (5)
C8—N2 1.497 (3) C20—H20 0.9300
C8—C9 1.537 (3) C21—C22 1.360 (4)
C8—H8 0.9800 C21—H21 0.9300
C9—N1 1.472 (3) C22—C23 1.380 (4)
C9—C10 1.522 (3) C22—H22 0.9300
C9—H9 0.9800 C23—H23 0.9300
C10—O4 1.432 (3) C24—C29 1.378 (3)
C10—C11 1.518 (3) C24—C25 1.382 (4)
C10—H10 0.9800 C24—N1 1.437 (3)
C11—O7 1.423 (3) C25—C26 1.382 (4)
C11—C12 1.516 (3) C25—H25 0.9300
C11—H11 0.9800 C26—C27 1.374 (4)
C12—O5 1.421 (3) C26—H26 0.9300
C12—C13 1.515 (3) C27—C28 1.366 (5)
C12—H12 0.9800 C27—H27 0.9300
C13—O6 1.405 (3) C28—C29 1.377 (4)
C13—O4 1.414 (3) C28—H28 0.9300
C13—H13 0.9800 C29—H29 0.9300
C14—O6 1.423 (3) N1—O1 1.433 (2)
C14—O5 1.429 (3) N2—O2 1.191 (3)
C14—C15 1.500 (4) N2—O3 1.203 (3)
C14—C16 1.500 (4) Cl1—O2i 3.111 (3)
C6—C1—C2 120.5 (3) C14—C15—H15A 109.5
C6—C1—H1 119.8 C14—C15—H15B 109.5
C2—C1—H1 119.8 H15A—C15—H15B 109.5
C3—C2—C1 119.8 (3) C14—C15—H15C 109.5
C3—C2—H2 120.1 H15A—C15—H15C 109.5
C1—C2—H2 120.1 H15B—C15—H15C 109.5
C2—C3—C4 120.8 (3) C14—C16—H16A 109.5
C2—C3—Cl1 120.2 (2) C14—C16—H16B 109.5
C4—C3—Cl1 119.0 (3) H16A—C16—H16B 109.5
C3—C4—C5 119.6 (3) C14—C16—H16C 109.5
C3—C4—H4 120.2 H16A—C16—H16C 109.5
C5—C4—H4 120.2 H16B—C16—H16C 109.5
C6—C5—C4 121.0 (3) O7—C17—C18 110.8 (2)
C6—C5—H5 119.5 O7—C17—H17A 109.5
C4—C5—H5 119.5 C18—C17—H17A 109.5
C5—C6—C1 118.3 (2) O7—C17—H17B 109.5
C5—C6—C7 119.3 (2) C18—C17—H17B 109.5
C1—C6—C7 122.3 (2) H17A—C17—H17B 108.1
O1—C7—C6 109.53 (18) C23—C18—C19 118.9 (2)
O1—C7—C8 102.22 (18) C23—C18—C17 123.0 (2)
C6—C7—C8 114.67 (18) C19—C18—C17 118.2 (2)
O1—C7—H7 110.0 C20—C19—C18 120.0 (3)
C6—C7—H7 110.0 C20—C19—H19 120.0
C8—C7—H7 110.0 C18—C19—H19 120.0
N2—C8—C7 110.11 (18) C21—C20—C19 120.8 (3)
N2—C8—C9 111.63 (19) C21—C20—H20 119.6
C7—C8—C9 104.23 (17) C19—C20—H20 119.6
N2—C8—H8 110.2 C22—C21—C20 119.7 (3)
C7—C8—H8 110.2 C22—C21—H21 120.2
C9—C8—H8 110.2 C20—C21—H21 120.2
N1—C9—C10 108.61 (18) C21—C22—C23 120.0 (3)
N1—C9—C8 105.42 (17) C21—C22—H22 120.0
C10—C9—C8 111.29 (18) C23—C22—H22 120.0
N1—C9—H9 110.5 C18—C23—C22 120.6 (3)
C10—C9—H9 110.5 C18—C23—H23 119.7
C8—C9—H9 110.5 C22—C23—H23 119.7
O4—C10—C11 104.21 (17) C29—C24—C25 120.1 (2)
O4—C10—C9 107.70 (18) C29—C24—N1 121.5 (2)
C11—C10—C9 115.70 (18) C25—C24—N1 118.0 (2)
O4—C10—H10 109.7 C24—C25—C26 119.1 (3)
C11—C10—H10 109.7 C24—C25—H25 120.4
C9—C10—H10 109.7 C26—C25—H25 120.4
O7—C11—C12 110.55 (18) C27—C26—C25 121.1 (3)
O7—C11—C10 108.43 (18) C27—C26—H26 119.5
C12—C11—C10 101.32 (17) C25—C26—H26 119.5
O7—C11—H11 112.0 C28—C27—C26 119.0 (3)
C12—C11—H11 112.0 C28—C27—H27 120.5
C10—C11—H11 112.0 C26—C27—H27 120.5
O5—C12—C13 104.04 (18) C27—C28—C29 121.2 (3)
O5—C12—C11 109.12 (19) C27—C28—H28 119.4
C13—C12—C11 103.89 (18) C29—C28—H28 119.4
O5—C12—H12 113.0 C28—C29—C24 119.5 (3)
C13—C12—H12 113.0 C28—C29—H29 120.2
C11—C12—H12 113.0 C24—C29—H29 120.2
O6—C13—O4 110.77 (19) O1—N1—C24 112.06 (18)
O6—C13—C12 105.37 (18) O1—N1—C9 104.32 (16)
O4—C13—C12 107.62 (17) C24—N1—C9 118.42 (18)
O6—C13—H13 111.0 O2—N2—O3 123.5 (3)
O4—C13—H13 111.0 O2—N2—C8 118.8 (2)
C12—C13—H13 111.0 O3—N2—C8 117.8 (2)
O6—C14—O5 105.13 (18) N1—O1—C7 106.94 (16)
O6—C14—C15 108.9 (2) C13—O4—C10 108.40 (16)
O5—C14—C15 108.9 (2) C12—O5—C14 107.88 (17)
O6—C14—C16 109.5 (2) C13—O6—C14 110.31 (18)
O5—C14—C16 110.3 (2) C17—O7—C11 113.41 (18)
C15—C14—C16 113.8 (3) C3—Cl1—O2i 160.74 (11)
C6—C1—C2—C3 1.9 (4) C17—C18—C23—C22 −179.1 (3)
C1—C2—C3—C4 −3.4 (4) C21—C22—C23—C18 0.3 (4)
C1—C2—C3—Cl1 175.3 (2) C29—C24—C25—C26 −1.4 (4)
C2—C3—C4—C5 1.6 (4) N1—C24—C25—C26 −174.0 (2)
Cl1—C3—C4—C5 −177.2 (2) C24—C25—C26—C27 1.5 (4)
C3—C4—C5—C6 1.8 (4) C25—C26—C27—C28 −1.2 (5)
C4—C5—C6—C1 −3.2 (4) C26—C27—C28—C29 1.0 (5)
C4—C5—C6—C7 173.4 (2) C27—C28—C29—C24 −0.9 (4)
C2—C1—C6—C5 1.4 (4) C25—C24—C29—C28 1.1 (4)
C2—C1—C6—C7 −175.1 (2) N1—C24—C29—C28 173.5 (2)
C5—C6—C7—O1 160.2 (2) C29—C24—N1—O1 16.3 (3)
C1—C6—C7—O1 −23.3 (3) C25—C24—N1—O1 −171.2 (2)
C5—C6—C7—C8 −85.6 (3) C29—C24—N1—C9 137.8 (2)
C1—C6—C7—C8 90.9 (3) C25—C24—N1—C9 −49.7 (3)
O1—C7—C8—N2 −143.01 (19) C10—C9—N1—O1 −95.32 (19)
C6—C7—C8—N2 98.6 (2) C8—C9—N1—O1 24.0 (2)
O1—C7—C8—C9 −23.2 (2) C10—C9—N1—C24 139.3 (2)
C6—C7—C8—C9 −141.6 (2) C8—C9—N1—C24 −101.3 (2)
N2—C8—C9—N1 118.5 (2) C7—C8—N2—O2 68.6 (3)
C7—C8—C9—N1 −0.3 (2) C9—C8—N2—O2 −46.6 (3)
N2—C8—C9—C10 −124.0 (2) C7—C8—N2—O3 −110.8 (2)
C7—C8—C9—C10 117.22 (19) C9—C8—N2—O3 133.9 (2)
N1—C9—C10—O4 166.62 (17) C24—N1—O1—C7 88.2 (2)
C8—C9—C10—O4 51.0 (2) C9—N1—O1—C7 −41.12 (19)
N1—C9—C10—C11 −77.3 (2) C6—C7—O1—N1 161.96 (16)
C8—C9—C10—C11 167.08 (18) C8—C7—O1—N1 39.96 (19)
O4—C10—C11—O7 78.2 (2) O6—C13—O4—C10 101.9 (2)
C9—C10—C11—O7 −39.9 (2) C12—C13—O4—C10 −12.8 (2)
O4—C10—C11—C12 −38.2 (2) C11—C10—O4—C13 32.4 (2)
C9—C10—C11—C12 −156.24 (19) C9—C10—O4—C13 155.77 (18)
O7—C11—C12—O5 164.63 (18) C13—C12—O5—C14 26.3 (2)
C10—C11—C12—O5 −80.6 (2) C11—C12—O5—C14 136.67 (19)
O7—C11—C12—C13 −84.9 (2) O6—C14—O5—C12 −26.7 (3)
C10—C11—C12—C13 29.9 (2) C15—C14—O5—C12 −143.2 (2)
O5—C12—C13—O6 −15.9 (2) C16—C14—O5—C12 91.3 (2)
C11—C12—C13—O6 −130.13 (19) O4—C13—O6—C14 −116.2 (2)
O5—C12—C13—O4 102.3 (2) C12—C13—O6—C14 −0.1 (3)
C11—C12—C13—O4 −11.9 (2) O5—C14—O6—C13 16.1 (3)
O7—C17—C18—C23 −4.6 (3) C15—C14—O6—C13 132.6 (2)
O7—C17—C18—C19 176.1 (2) C16—C14—O6—C13 −102.4 (2)
C23—C18—C19—C20 −0.3 (4) C18—C17—O7—C11 −178.33 (18)
C17—C18—C19—C20 179.0 (3) C12—C11—O7—C17 −83.7 (2)
C18—C19—C20—C21 −0.1 (5) C10—C11—O7—C17 166.09 (18)
C19—C20—C21—C22 0.6 (5) C2—C3—Cl1—O2i −90.1 (5)
C20—C21—C22—C23 −0.7 (5) C4—C3—Cl1—O2i 88.7 (5)
C19—C18—C23—C22 0.2 (4)

Symmetry codes: (i) x−1/2, −y+3/2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C13—H13···O2ii 0.98 2.54 3.298 (3) 134
C17—H17B···O1iii 0.97 2.46 3.218 (3) 135
C21—H21···Cg1ii 0.93 2.75 3.598 (1) 152

Symmetry codes: (ii) x−1/2, −y+1/2, −z+1; (iii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2103).

References

  1. Bernotas, R. C., Adams, G. & Albert, C. A. (1996). Tetrahedron, 52, 6519–6526.
  2. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Breuer, E. (1982). The Chemistry of Amino, Nitroso and Nitro Compounds and their Derivatives, Part I, edited by S. Patai, ch. 13. New York: Wiley Interscience.
  4. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Colombi, S., Vecchio, G., Gottarelli, G., Samori, B., Lanfredi, A. M. M. & Tiripicchio, A. (1978). Tetrahedron, 34, 2967–2976.
  6. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  9. Gothelf, K. V. & Jorgensen, K. A. (1998). Chem. Rev.98, 863–909. [DOI] [PubMed]
  10. Hossain, N., Papchikhin, A., Plavec, J. & Chattopadhyaya, J. (1993). Tetrahedron, 49, 10133–10156.
  11. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  12. Politzer, P., Lane, P., Concha, M. C., Ma, Y. & Murray, J. S. (2007). J. Mol. Model.13, 305–311. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034096/lx2103sup1.cif

e-65-o2305-sup1.cif (26.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034096/lx2103Isup2.hkl

e-65-o2305-Isup2.hkl (233.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES