Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 26;65(Pt 10):o2548. doi: 10.1107/S1600536809036976

Triethyl­ammonium 2,4-dinitro­phenyl­barbiturate

Doraisamyraja Kalaivani a,*, Rangasamy Malarvizhi a
PMCID: PMC2970263  PMID: 21577990

Abstract

In the title mol­ecular salt [systematic name: triethylammonium 5-(2,4-dinitrophenyl)-2,6-dioxo-1,2,3,6-tetrahydropyrim­idin-4-olate], C6H16N+·C10H5N4O7 , the cation and anion are linked by an N—H⋯O hydrogen bond. In the crystal, inversion-related barbiturate rings are centrosymmetrically connected through pairs of N—H⋯O hydrogen bonds, forming R 2 2(8)R 2 2(8) ring motifs.

Related literature

For further information on the anti­convulsant properties of the title compound and general background, see: Kalaivani et al. (2008). For a related structure, see: Craven (1964). For data on hydrogen-bond motifs in organic crystals, see: Allen et al. (1998).graphic file with name e-65-o2548-scheme1.jpg

Experimental

Crystal data

  • C6H16N+·C10H5N4O7

  • M r = 395.38

  • Monoclinic, Inline graphic

  • a = 29.7900 (8) Å

  • b = 10.4533 (3) Å

  • c = 11.9606 (3) Å

  • β = 97.903 (1)°

  • V = 3689.20 (17) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.942, T max = 0.971

  • 32882 measured reflections

  • 3217 independent reflections

  • 2493 reflections with I > 2σ(I)

  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.109

  • S = 1.04

  • 3217 reflections

  • 268 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altornare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036976/hb5061sup1.cif

e-65-o2548-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036976/hb5061Isup2.hkl

e-65-o2548-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.84 (2) 2.02 (2) 2.861 (2) 177 (2)
N2—H2⋯O3ii 0.82 (2) 2.10 (2) 2.918 (2) 172 (2)
N5—H5⋯O2 0.85 (2) 1.88 (2) 2.730 (2) 172 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are thankful to SAIF, IIT Madras, for the crystal data.

supplementary crystallographic information

Comment

We have recently prepared the title compound, (I), which has anticonvulsant activity (Kalaivani et al., 2008). We now report its crystal structure.

ORTEP view of the title compound is shown in Fig. 1. The presence of the leaving group (chlorine atom) para with respect to the nitrogroup of the starting molecule (1 – chloro – 2,4 – dinitrobenzene) facilitates the formation of the title compound in the presence of barbituric acid and triethylamine. Absence of chlorine atom, as indicated by the qualitative test on the synthesized barbirutrate has been supported by the crystallographic data. The title molecule is coloured red and it has been attributed to the delocalization of negative charge (Kalaivani et al., 2008) which has also been substantiated by the bond angles and bond lengths of single-crystal X-ray data of 2,4-dinitrophenyl and barbiturate rings. The bond angles and bond lengths of barbiturate residue of the title molecule are compatible with that of barbiturate ion (Craven, 1964), evidencing the delocalization of negative charge in the barbiturate ring.

Presence of double bond (delocalized) between C3 and C5 atoms fixes the configuration of the molecule as depicted in Fig. 1. The N5—H5···O2 hydrogen bond between the asymmetric units is the main driving force for the orientation of the triethylammonium cation (Fig. 2). Two inversion related barbiturate anions interact through a pair of N—H···O=C hydrogen bonds involving N1—H1 atoms and the carbonyl oxygen atom (O1) forming a R22(8) ring motif. The same ring motif is also due to a pair of N—H···O hydrogen bonds involving N2—H2 atoms and the carbonyl oxygen atom (O3). This motif is one of the 24 most frequently observed bimolecular cyclic hydrogen-bonded motifs in organic crystal structures (Allen et al., 1998). The hydrogen bonds observed in the title molecule are mainly responsible for its stability. The high solubility of the title drug molecule in water (4 g cc-1 at 298 K) is due to the positively charged triethylammonium cation and negatively charged 2,4-dinitrophenylbarbiturate anion of the asymmetric unit.

Experimental

The title compound was prepared as described previously (Kalaivani et al., 2008) and recrystallized from absolute ethanol to yield maroon blocks of (I).

Refinement

Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing 50% displacement ellipsoids.

Fig. 2.

Fig. 2.

Packing view of (I).

Crystal data

C6H16N+·C10H5N4O7 F(000) = 1664
Mr = 395.38 Dx = 1.424 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 8875 reflections
a = 29.7900 (8) Å θ = 2.5–24.5°
b = 10.4533 (3) Å µ = 0.11 mm1
c = 11.9606 (3) Å T = 293 K
β = 97.903 (1)° Block, maroon
V = 3689.20 (17) Å3 0.30 × 0.20 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 3217 independent reflections
Radiation source: fine-focus sealed tube 2493 reflections with I > 2σ(I)
graphite Rint = 0.036
ω and φ scan θmax = 24.9°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −35→35
Tmin = 0.942, Tmax = 0.971 k = −12→12
32882 measured reflections l = −13→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 3.5895P] where P = (Fo2 + 2Fc2)/3
3217 reflections (Δ/σ)max < 0.001
268 parameters Δρmax = 0.46 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.49607 (6) 0.30537 (17) 0.47768 (17) 0.0402 (5)
C2 0.43235 (6) 0.33505 (16) 0.32947 (15) 0.0336 (4)
C3 0.42904 (6) 0.20117 (16) 0.31524 (15) 0.0339 (4)
C4 0.45876 (6) 0.11860 (16) 0.38266 (15) 0.0348 (4)
C5 0.39223 (6) 0.15178 (15) 0.23248 (14) 0.0321 (4)
C6 0.34717 (6) 0.18925 (16) 0.22995 (14) 0.0317 (4)
C7 0.31314 (6) 0.15443 (17) 0.14568 (15) 0.0372 (4)
H7 0.2835 0.1820 0.1463 0.045*
C8 0.32439 (6) 0.07760 (17) 0.06070 (15) 0.0371 (4)
C9 0.36810 (7) 0.03485 (18) 0.05876 (16) 0.0408 (5)
H9 0.3751 −0.0173 0.0006 0.049*
C10 0.40118 (7) 0.07127 (17) 0.14501 (16) 0.0387 (5)
H10 0.4305 0.0411 0.1449 0.046*
C11 0.39539 (7) 0.7557 (2) 0.27509 (19) 0.0498 (5)
H11A 0.4126 0.7659 0.3495 0.060*
H11B 0.3779 0.8331 0.2577 0.060*
C12 0.42740 (9) 0.7390 (3) 0.1905 (2) 0.0700 (7)
H12A 0.4425 0.6580 0.2022 0.105*
H12B 0.4495 0.8065 0.1991 0.105*
H12C 0.4109 0.7419 0.1158 0.105*
C13 0.33902 (8) 0.6466 (2) 0.37901 (18) 0.0570 (6)
H13A 0.3268 0.7316 0.3877 0.068*
H13B 0.3137 0.5877 0.3659 0.068*
C14 0.36764 (10) 0.6107 (2) 0.48412 (19) 0.0702 (7)
H14A 0.3803 0.5274 0.4757 0.105*
H14B 0.3497 0.6092 0.5448 0.105*
H14C 0.3916 0.6720 0.5006 0.105*
C15 0.33107 (7) 0.6313 (2) 0.17207 (18) 0.0494 (5)
H15A 0.3145 0.5521 0.1768 0.059*
H15B 0.3478 0.6243 0.1083 0.059*
C16 0.29765 (8) 0.7386 (3) 0.1498 (2) 0.0690 (7)
H16A 0.2792 0.7424 0.2096 0.104*
H16B 0.2787 0.7240 0.0793 0.104*
H16C 0.3136 0.8179 0.1464 0.104*
N1 0.46707 (5) 0.37959 (15) 0.40826 (14) 0.0416 (4)
N2 0.49133 (5) 0.17742 (14) 0.46111 (14) 0.0387 (4)
N3 0.33250 (6) 0.26868 (15) 0.31972 (14) 0.0414 (4)
N4 0.28841 (7) 0.04383 (17) −0.03058 (15) 0.0515 (5)
N5 0.36397 (6) 0.64590 (15) 0.27695 (13) 0.0387 (4)
O1 0.52439 (5) 0.35119 (13) 0.55104 (13) 0.0575 (4)
O2 0.40649 (4) 0.41466 (11) 0.27608 (11) 0.0425 (4)
O3 0.45764 (5) −0.00016 (12) 0.38115 (12) 0.0496 (4)
O4 0.35005 (6) 0.25162 (15) 0.41664 (12) 0.0582 (4)
O5 0.30234 (5) 0.34649 (15) 0.29215 (14) 0.0582 (4)
O6 0.24947 (6) 0.0672 (2) −0.01885 (17) 0.0964 (7)
O7 0.29920 (6) −0.00325 (19) −0.11540 (15) 0.0808 (6)
H1 0.4688 (7) 0.459 (2) 0.4188 (17) 0.046 (6)*
H2 0.5078 (7) 0.133 (2) 0.5064 (19) 0.050 (6)*
H5 0.3796 (7) 0.577 (2) 0.2791 (17) 0.044 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0371 (10) 0.0255 (9) 0.0527 (12) −0.0008 (8) −0.0122 (9) −0.0017 (8)
C2 0.0337 (10) 0.0252 (9) 0.0386 (10) 0.0012 (7) −0.0070 (8) 0.0001 (7)
C3 0.0353 (10) 0.0231 (9) 0.0395 (10) 0.0002 (7) −0.0087 (8) −0.0012 (7)
C4 0.0373 (10) 0.0231 (9) 0.0408 (10) 0.0002 (7) −0.0061 (8) −0.0025 (7)
C5 0.0393 (10) 0.0194 (8) 0.0344 (10) −0.0015 (7) −0.0058 (8) 0.0035 (7)
C6 0.0388 (10) 0.0247 (9) 0.0300 (9) −0.0034 (7) −0.0005 (8) 0.0003 (7)
C7 0.0349 (10) 0.0353 (10) 0.0394 (11) −0.0039 (8) −0.0016 (8) 0.0028 (8)
C8 0.0443 (11) 0.0295 (9) 0.0335 (10) −0.0057 (8) −0.0092 (8) −0.0003 (8)
C9 0.0537 (12) 0.0284 (9) 0.0382 (10) 0.0004 (9) −0.0019 (9) −0.0062 (8)
C10 0.0410 (11) 0.0283 (9) 0.0441 (11) 0.0031 (8) −0.0044 (9) −0.0032 (8)
C11 0.0497 (13) 0.0374 (11) 0.0579 (13) −0.0010 (9) −0.0077 (10) 0.0042 (10)
C12 0.0664 (16) 0.0652 (16) 0.0797 (18) −0.0033 (13) 0.0145 (14) 0.0200 (14)
C13 0.0710 (15) 0.0484 (13) 0.0549 (14) 0.0046 (11) 0.0203 (12) −0.0038 (11)
C14 0.107 (2) 0.0575 (15) 0.0484 (14) 0.0062 (14) 0.0207 (14) 0.0066 (11)
C15 0.0528 (13) 0.0432 (12) 0.0495 (12) −0.0039 (10) −0.0029 (10) −0.0025 (10)
C16 0.0522 (14) 0.0725 (17) 0.0766 (17) 0.0098 (12) −0.0119 (12) 0.0106 (14)
N1 0.0444 (10) 0.0180 (8) 0.0554 (10) −0.0014 (7) −0.0185 (8) −0.0011 (7)
N2 0.0391 (9) 0.0227 (8) 0.0480 (10) 0.0024 (7) −0.0161 (8) 0.0015 (7)
N3 0.0436 (10) 0.0370 (9) 0.0435 (10) −0.0082 (8) 0.0053 (8) −0.0049 (7)
N4 0.0576 (12) 0.0441 (10) 0.0466 (11) −0.0041 (9) −0.0151 (9) −0.0070 (8)
N5 0.0508 (10) 0.0255 (8) 0.0392 (9) 0.0094 (8) 0.0041 (7) 0.0014 (7)
O1 0.0558 (9) 0.0284 (7) 0.0756 (10) −0.0022 (6) −0.0366 (8) −0.0024 (7)
O2 0.0464 (8) 0.0225 (6) 0.0522 (8) 0.0041 (6) −0.0162 (6) 0.0014 (6)
O3 0.0594 (9) 0.0205 (7) 0.0600 (9) 0.0023 (6) −0.0234 (7) −0.0011 (6)
O4 0.0764 (11) 0.0639 (10) 0.0330 (8) −0.0074 (8) 0.0031 (7) −0.0084 (7)
O5 0.0499 (9) 0.0512 (9) 0.0730 (11) 0.0085 (8) 0.0067 (8) −0.0125 (8)
O6 0.0495 (11) 0.150 (2) 0.0822 (14) −0.0072 (12) −0.0177 (10) −0.0414 (13)
O7 0.0883 (13) 0.0883 (14) 0.0564 (11) 0.0148 (11) −0.0234 (9) −0.0350 (10)

Geometric parameters (Å, °)

C1—O1 1.228 (2) C12—H12A 0.9600
C1—N2 1.357 (2) C12—H12B 0.9600
C1—N1 1.357 (2) C12—H12C 0.9600
C2—O2 1.248 (2) C13—C14 1.467 (3)
C2—N1 1.381 (2) C13—N5 1.514 (3)
C2—C3 1.412 (2) C13—H13A 0.9700
C3—C4 1.408 (2) C13—H13B 0.9700
C3—C5 1.466 (2) C14—H14A 0.9600
C4—O3 1.242 (2) C14—H14B 0.9600
C4—N2 1.396 (2) C14—H14C 0.9600
C5—C6 1.395 (2) C15—N5 1.490 (2)
C5—C10 1.397 (3) C15—C16 1.498 (3)
C6—C7 1.377 (2) C15—H15A 0.9700
C6—N3 1.471 (2) C15—H15B 0.9700
C7—C8 1.373 (3) C16—H16A 0.9600
C7—H7 0.9300 C16—H16B 0.9600
C8—C9 1.380 (3) C16—H16C 0.9600
C8—N4 1.464 (2) N1—H1 0.84 (2)
C9—C10 1.379 (3) N2—H2 0.82 (2)
C9—H9 0.9300 N3—O4 1.217 (2)
C10—H10 0.9300 N3—O5 1.223 (2)
C11—N5 1.483 (3) N4—O7 1.210 (2)
C11—C12 1.492 (3) N4—O6 1.212 (2)
C11—H11A 0.9700 N5—H5 0.85 (2)
C11—H11B 0.9700
O1—C1—N2 122.44 (17) C14—C13—N5 113.4 (2)
O1—C1—N1 122.11 (17) C14—C13—H13A 108.9
N2—C1—N1 115.45 (16) N5—C13—H13A 108.9
O2—C2—N1 118.42 (15) C14—C13—H13B 108.9
O2—C2—C3 124.84 (16) N5—C13—H13B 108.9
N1—C2—C3 116.74 (15) H13A—C13—H13B 107.7
C4—C3—C2 120.71 (16) C13—C14—H14A 109.5
C4—C3—C5 121.58 (15) C13—C14—H14B 109.5
C2—C3—C5 117.63 (15) H14A—C14—H14B 109.5
O3—C4—N2 117.69 (16) C13—C14—H14C 109.5
O3—C4—C3 126.22 (16) H14A—C14—H14C 109.5
N2—C4—C3 116.04 (15) H14B—C14—H14C 109.5
C6—C5—C10 115.80 (16) N5—C15—C16 114.65 (18)
C6—C5—C3 122.95 (16) N5—C15—H15A 108.6
C10—C5—C3 121.05 (17) C16—C15—H15A 108.6
C7—C6—C5 123.46 (16) N5—C15—H15B 108.6
C7—C6—N3 114.89 (16) C16—C15—H15B 108.6
C5—C6—N3 121.64 (15) H15A—C15—H15B 107.6
C8—C7—C6 117.81 (17) C15—C16—H16A 109.5
C8—C7—H7 121.1 C15—C16—H16B 109.5
C6—C7—H7 121.1 H16A—C16—H16B 109.5
C7—C8—C9 121.94 (16) C15—C16—H16C 109.5
C7—C8—N4 117.70 (18) H16A—C16—H16C 109.5
C9—C8—N4 120.34 (17) H16B—C16—H16C 109.5
C10—C9—C8 118.50 (17) C1—N1—C2 125.39 (16)
C10—C9—H9 120.8 C1—N1—H1 116.9 (14)
C8—C9—H9 120.8 C2—N1—H1 117.4 (14)
C9—C10—C5 122.44 (18) C1—N2—C4 125.53 (16)
C9—C10—H10 118.8 C1—N2—H2 114.8 (16)
C5—C10—H10 118.8 C4—N2—H2 119.4 (16)
N5—C11—C12 112.55 (18) O4—N3—O5 123.88 (17)
N5—C11—H11A 109.1 O4—N3—C6 118.73 (16)
C12—C11—H11A 109.1 O5—N3—C6 117.36 (16)
N5—C11—H11B 109.1 O7—N4—O6 123.20 (18)
C12—C11—H11B 109.1 O7—N4—C8 118.14 (19)
H11A—C11—H11B 107.8 O6—N4—C8 118.64 (19)
C11—C12—H12A 109.5 C11—N5—C15 114.20 (16)
C11—C12—H12B 109.5 C11—N5—C13 112.90 (17)
H12A—C12—H12B 109.5 C15—N5—C13 109.90 (17)
C11—C12—H12C 109.5 C11—N5—H5 107.9 (14)
H12A—C12—H12C 109.5 C15—N5—H5 103.4 (14)
H12B—C12—H12C 109.5 C13—N5—H5 107.9 (14)
O2—C2—C3—C4 −177.48 (19) C3—C5—C10—C9 −172.52 (17)
N1—C2—C3—C4 2.8 (3) O1—C1—N1—C2 −175.1 (2)
O2—C2—C3—C5 −0.7 (3) N2—C1—N1—C2 4.3 (3)
N1—C2—C3—C5 179.64 (17) O2—C2—N1—C1 175.63 (19)
C2—C3—C4—O3 176.4 (2) C3—C2—N1—C1 −4.7 (3)
C5—C3—C4—O3 −0.2 (3) O1—C1—N2—C4 177.2 (2)
C2—C3—C4—N2 −1.0 (3) N1—C1—N2—C4 −2.2 (3)
C5—C3—C4—N2 −177.72 (17) O3—C4—N2—C1 −177.0 (2)
C4—C3—C5—C6 126.7 (2) C3—C4—N2—C1 0.7 (3)
C2—C3—C5—C6 −50.1 (3) C7—C6—N3—O4 142.69 (17)
C4—C3—C5—C10 −58.6 (3) C5—C6—N3—O4 −36.5 (2)
C2—C3—C5—C10 124.63 (19) C7—C6—N3—O5 −35.6 (2)
C10—C5—C6—C7 −2.2 (3) C5—C6—N3—O5 145.17 (17)
C3—C5—C6—C7 172.76 (17) C7—C8—N4—O7 166.62 (19)
C10—C5—C6—N3 176.93 (15) C9—C8—N4—O7 −12.1 (3)
C3—C5—C6—N3 −8.1 (3) C7—C8—N4—O6 −11.6 (3)
C5—C6—C7—C8 0.7 (3) C9—C8—N4—O6 169.7 (2)
N3—C6—C7—C8 −178.44 (16) C12—C11—N5—C15 −66.8 (2)
C6—C7—C8—C9 0.5 (3) C12—C11—N5—C13 166.72 (18)
C6—C7—C8—N4 −178.22 (16) C16—C15—N5—C11 −65.2 (3)
C7—C8—C9—C10 −0.2 (3) C16—C15—N5—C13 62.8 (2)
N4—C8—C9—C10 178.53 (17) C14—C13—N5—C11 −73.7 (2)
C8—C9—C10—C5 −1.4 (3) C14—C13—N5—C15 157.55 (19)
C6—C5—C10—C9 2.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.84 (2) 2.02 (2) 2.861 (2) 177 (2)
N2—H2···O3ii 0.82 (2) 2.10 (2) 2.918 (2) 172 (2)
N5—H5···O2 0.85 (2) 1.88 (2) 2.730 (2) 172 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5061).

References

  1. Allen, F. H., Raithby, P. R., Shields, G. P. & Taylor, R. (1998). Chem. Commun. pp. 1043–1044.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  3. Bruker (1999). SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2004). APEX2, XPREP and SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Craven, B. M. (1964). Acta Cryst.17, 282–289.
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Kalaivani, D., Malarvizhi, R. & Subbalakshmi, R. (2008). Med. Chem. Res.17, 369–373.
  8. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036976/hb5061sup1.cif

e-65-o2548-sup1.cif (21KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036976/hb5061Isup2.hkl

e-65-o2548-Isup2.hkl (154.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES