Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 9;65(Pt 10):o2395. doi: 10.1107/S1600536809034886

3-Cyano­anilinium nitrate

Bo Wang a,*
PMCID: PMC2970298  PMID: 21577858

Abstract

In the cation of the title compound, C7H7N2 +·NO3 , the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.006 Å). In the crystal, the ions are connected by bifurcated N—H⋯(O,O) hydrogen bonds, forming a two-dimensional network parallel to (001).

Related literature

For the applications of metal-organic coordination compounds, see: Fu et al. (2007); Chen et al. (2001); Fu & Xiong (2008); Xiong et al. (1999); Xie et al. (2003); Zhao et al. (2004). For nitrile derivatives, see: Fu et al. (2008); Wang et al. 2002.graphic file with name e-65-o2395-scheme1.jpg

Experimental

Crystal data

  • C7H7N2 +·NO3

  • M r = 181.16

  • Orthorhombic, Inline graphic

  • a = 10.210 (2) Å

  • b = 10.812 (2) Å

  • c = 15.398 (3) Å

  • V = 1699.8 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.25 × 0.20 mm

Data collection

  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.94, T max = 1.00

  • 15905 measured reflections

  • 1871 independent reflections

  • 1456 reflections with I > 2σ(I)

  • R int = 0.062

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.141

  • S = 1.14

  • 1871 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034886/ci2892sup1.cif

e-65-o2395-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034886/ci2892Isup2.hkl

e-65-o2395-Isup2.hkl (92.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.89 2.22 3.104 (2) 173
N2—H2A⋯O1i 0.89 2.44 3.107 (2) 133
N2—H2B⋯O2ii 0.89 2.06 2.859 (2) 150
N2—H2B⋯O3ii 0.89 2.25 3.049 (2) 149
N2—H2C⋯O2 0.89 1.85 2.738 (2) 172
N2—H2C⋯O1 0.89 2.56 3.090 (2) 119

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

supplementary crystallographic information

Comment

The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2001; Fu & Xiong, 2008; Xie et al., 2003; Zhao et al., 2004; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Wang et al. 2002; Fu et al., 2008). We report here the crystal structure of the title compound, 3-cyanoanilinium nitrate.

In the 3-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are coplanar. The nitrile group C1≡N1 bond length of 1.102 (3) Å is within the normal range.

In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonds (Table 1) with O atoms of the NO3- anion. These hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (001) plane.

Experimental

The commercial 3-aminobenzonitrile (3 mmol, 0.55 g) and HNO3 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.

Refinement

H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.

Figures

Fig. 1.

Fig. 1.

A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed along the c axis, showing N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C7H7N2+·NO3 F(000) = 752
Mr = 181.16 Dx = 1.416 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1456 reflections
a = 10.210 (2) Å θ = 3.1–27.5°
b = 10.812 (2) Å µ = 0.11 mm1
c = 15.398 (3) Å T = 298 K
V = 1699.8 (6) Å3 Block, colourless
Z = 8 0.40 × 0.25 × 0.20 mm

Data collection

Rigaku Mercury2 diffractometer 1871 independent reflections
Radiation source: fine-focus sealed tube 1456 reflections with I > 2σ(I)
graphite Rint = 0.062
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.1°
CCD profile fitting scans h = −13→13
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −13→13
Tmin = 0.94, Tmax = 1.00 l = −19→19
15905 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052 H-atom parameters constrained
wR(F2) = 0.141 w = 1/[σ2(Fo2) + (0.059P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3
S = 1.14 (Δ/σ)max = 0.001
1871 reflections Δρmax = 0.21 e Å3
120 parameters Δρmin = −0.19 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.021 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.06292 (19) 0.5067 (2) 0.39061 (13) 0.0724 (6)
N2 0.39497 (14) 0.44355 (16) 0.69503 (9) 0.0435 (4)
H2A 0.4110 0.5239 0.7016 0.065*
H2B 0.4620 0.4001 0.7158 0.065*
H2C 0.3224 0.4236 0.7238 0.065*
C1 0.1482 (2) 0.4737 (2) 0.42791 (13) 0.0526 (5)
C2 0.25733 (17) 0.43017 (19) 0.47337 (11) 0.0443 (5)
C3 0.27221 (17) 0.45958 (18) 0.56150 (11) 0.0420 (5)
H3 0.2108 0.5080 0.5904 0.050*
C4 0.37764 (16) 0.41559 (17) 0.60241 (11) 0.0382 (4)
C5 0.46585 (19) 0.34385 (19) 0.55934 (12) 0.0488 (5)
H5 0.5382 0.3131 0.5890 0.059*
C6 0.4502 (2) 0.3155 (2) 0.47200 (13) 0.0568 (6)
H6 0.5119 0.2669 0.4436 0.068*
C7 0.3461 (2) 0.3585 (2) 0.42905 (12) 0.0538 (5)
H7 0.3339 0.3403 0.3706 0.065*
O1 0.23542 (15) 0.20195 (16) 0.71257 (11) 0.0701 (5)
O2 0.16047 (13) 0.37804 (14) 0.76798 (10) 0.0594 (5)
O3 0.04000 (13) 0.21817 (14) 0.73494 (10) 0.0592 (5)
N3 0.14567 (15) 0.26571 (16) 0.73782 (10) 0.0449 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0625 (12) 0.1071 (17) 0.0476 (11) 0.0072 (12) −0.0138 (9) −0.0010 (11)
N2 0.0413 (8) 0.0563 (10) 0.0328 (8) 0.0053 (7) −0.0013 (6) −0.0047 (7)
C1 0.0517 (11) 0.0722 (14) 0.0339 (10) −0.0038 (10) −0.0043 (9) −0.0017 (9)
C2 0.0432 (10) 0.0547 (12) 0.0351 (9) −0.0056 (8) −0.0034 (7) 0.0006 (8)
C3 0.0382 (9) 0.0536 (11) 0.0341 (9) 0.0008 (8) 0.0015 (7) −0.0030 (8)
C4 0.0401 (9) 0.0440 (10) 0.0306 (9) −0.0018 (8) 0.0004 (7) −0.0021 (7)
C5 0.0473 (10) 0.0588 (12) 0.0403 (10) 0.0103 (9) 0.0008 (8) −0.0038 (9)
C6 0.0572 (13) 0.0703 (14) 0.0429 (11) 0.0126 (11) 0.0061 (9) −0.0134 (10)
C7 0.0612 (12) 0.0685 (14) 0.0318 (9) −0.0020 (11) 0.0013 (9) −0.0094 (9)
O1 0.0487 (9) 0.0727 (11) 0.0889 (12) 0.0073 (8) 0.0163 (8) −0.0161 (9)
O2 0.0548 (9) 0.0635 (10) 0.0598 (9) −0.0069 (7) 0.0087 (7) −0.0173 (8)
O3 0.0395 (8) 0.0752 (10) 0.0628 (10) −0.0077 (7) −0.0046 (6) −0.0065 (7)
N3 0.0440 (9) 0.0596 (11) 0.0310 (8) −0.0007 (8) −0.0012 (6) 0.0000 (7)

Geometric parameters (Å, °)

N1—C1 1.102 (3) C4—C5 1.361 (3)
N2—C4 1.469 (2) C5—C6 1.389 (3)
N2—H2A 0.89 C5—H5 0.93
N2—H2B 0.89 C6—C7 1.335 (3)
N2—H2C 0.89 C6—H6 0.93
C1—C2 1.397 (3) C7—H7 0.93
C2—C7 1.374 (3) O1—N3 1.211 (2)
C2—C3 1.402 (3) O2—N3 1.309 (2)
C3—C4 1.335 (2) O3—N3 1.196 (2)
C3—H3 0.93
C4—N2—H2A 109.5 C3—C4—N2 118.82 (15)
C4—N2—H2B 109.5 C5—C4—N2 120.72 (16)
H2A—N2—H2B 109.5 C4—C5—C6 121.42 (18)
C4—N2—H2C 109.5 C4—C5—H5 119.3
H2A—N2—H2C 109.5 C6—C5—H5 119.3
H2B—N2—H2C 109.5 C7—C6—C5 119.66 (19)
N1—C1—C2 178.6 (2) C7—C6—H6 120.2
C7—C2—C1 117.84 (17) C5—C6—H6 120.2
C7—C2—C3 122.50 (17) C6—C7—C2 118.37 (17)
C1—C2—C3 119.66 (17) C6—C7—H7 120.8
C4—C3—C2 117.60 (17) C2—C7—H7 120.8
C4—C3—H3 121.2 O3—N3—O1 115.22 (17)
C2—C3—H3 121.2 O3—N3—O2 121.07 (16)
C3—C4—C5 120.45 (17) O1—N3—O2 123.69 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3i 0.89 2.22 3.104 (2) 173
N2—H2A···O1i 0.89 2.44 3.107 (2) 133
N2—H2B···O2ii 0.89 2.06 2.859 (2) 150
N2—H2B···O3ii 0.89 2.25 3.049 (2) 149
N2—H2C···O2 0.89 1.85 2.738 (2) 172
N2—H2C···O1 0.89 2.56 3.090 (2) 119

Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2892).

References

  1. Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun.4, 346–349.
  2. Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc.129, 5346–5347. [DOI] [PubMed]
  3. Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. [DOI] [PubMed]
  4. Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
  5. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem.18, 1191–1194.
  8. Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem.20, 3712–3715.
  9. Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem.23, 1051–1052.
  10. Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem.630, 1367–1370.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034886/ci2892sup1.cif

e-65-o2395-sup1.cif (13.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034886/ci2892Isup2.hkl

e-65-o2395-Isup2.hkl (92.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES