Abstract
In the cation of the title compound, C7H7N2 +·NO3 −, the nitrile group and the benzene ring are almost coplanar (r.m.s. deviation = 0.006 Å). In the crystal, the ions are connected by bifurcated N—H⋯(O,O) hydrogen bonds, forming a two-dimensional network parallel to (001).
Related literature
For the applications of metal-organic coordination compounds, see: Fu et al. (2007 ▶); Chen et al. (2001 ▶); Fu & Xiong (2008 ▶); Xiong et al. (1999 ▶); Xie et al. (2003 ▶); Zhao et al. (2004 ▶). For nitrile derivatives, see: Fu et al. (2008 ▶); Wang et al. 2002 ▶.
Experimental
Crystal data
C7H7N2 +·NO3 −
M r = 181.16
Orthorhombic,
a = 10.210 (2) Å
b = 10.812 (2) Å
c = 15.398 (3) Å
V = 1699.8 (6) Å3
Z = 8
Mo Kα radiation
μ = 0.11 mm−1
T = 298 K
0.40 × 0.25 × 0.20 mm
Data collection
Rigaku Mercury2 diffractometer
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 ▶) T min = 0.94, T max = 1.00
15905 measured reflections
1871 independent reflections
1456 reflections with I > 2σ(I)
R int = 0.062
Refinement
R[F 2 > 2σ(F 2)] = 0.052
wR(F 2) = 0.141
S = 1.14
1871 reflections
120 parameters
H-atom parameters constrained
Δρmax = 0.21 e Å−3
Δρmin = −0.19 e Å−3
Data collection: CrystalClear (Rigaku, 2005 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034886/ci2892sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034886/ci2892Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2A⋯O3i | 0.89 | 2.22 | 3.104 (2) | 173 |
| N2—H2A⋯O1i | 0.89 | 2.44 | 3.107 (2) | 133 |
| N2—H2B⋯O2ii | 0.89 | 2.06 | 2.859 (2) | 150 |
| N2—H2B⋯O3ii | 0.89 | 2.25 | 3.049 (2) | 149 |
| N2—H2C⋯O2 | 0.89 | 1.85 | 2.738 (2) | 172 |
| N2—H2C⋯O1 | 0.89 | 2.56 | 3.090 (2) | 119 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.
supplementary crystallographic information
Comment
The construction of metal-organic coordination compounds has attracted much attention owing to potential functions, such as permittivity, fluorescence, magnetism and optical properties (Fu et al., 2007; Chen et al., 2001; Fu & Xiong, 2008; Xie et al., 2003; Zhao et al., 2004; Xiong et al., 1999). Nitrile derivatives are a class of excellent ligands for the construction of novel metal-organic frameworks (Wang et al. 2002; Fu et al., 2008). We report here the crystal structure of the title compound, 3-cyanoanilinium nitrate.
In the 3-cyanoanilinium cation (Fig.1), the nitrile group and the benzene ring are coplanar. The nitrile group C1≡N1 bond length of 1.102 (3) Å is within the normal range.
In the crystal structure, all the amine group H atoms are involved in N—H···O hydrogen bonds (Table 1) with O atoms of the NO3- anion. These hydrogen bonds link the ionic units into a two-dimensional network (Fig. 2) parallel to the (001) plane.
Experimental
The commercial 3-aminobenzonitrile (3 mmol, 0.55 g) and HNO3 (0.5 ml) were dissolved in ethanol (20 ml). Colourless block-shaped crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation at room temperature.
Refinement
H atoms were positioned geometrically and treated as riding, with C-H = 0.93 Å, N-H = 0.89 Å and Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(N). A rotating-group model was used for the -NH3 group.
Figures
Fig. 1.
A view of the title compound with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
The crystal packing of the title compound, viewed along the c axis, showing N—H···O hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.
Crystal data
| C7H7N2+·NO3− | F(000) = 752 |
| Mr = 181.16 | Dx = 1.416 Mg m−3 |
| Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ac 2ab | Cell parameters from 1456 reflections |
| a = 10.210 (2) Å | θ = 3.1–27.5° |
| b = 10.812 (2) Å | µ = 0.11 mm−1 |
| c = 15.398 (3) Å | T = 298 K |
| V = 1699.8 (6) Å3 | Block, colourless |
| Z = 8 | 0.40 × 0.25 × 0.20 mm |
Data collection
| Rigaku Mercury2 diffractometer | 1871 independent reflections |
| Radiation source: fine-focus sealed tube | 1456 reflections with I > 2σ(I) |
| graphite | Rint = 0.062 |
| Detector resolution: 13.6612 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
| CCD profile fitting scans | h = −13→13 |
| Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −13→13 |
| Tmin = 0.94, Tmax = 1.00 | l = −19→19 |
| 15905 measured reflections |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.052 | H-atom parameters constrained |
| wR(F2) = 0.141 | w = 1/[σ2(Fo2) + (0.059P)2 + 0.3685P] where P = (Fo2 + 2Fc2)/3 |
| S = 1.14 | (Δ/σ)max = 0.001 |
| 1871 reflections | Δρmax = 0.21 e Å−3 |
| 120 parameters | Δρmin = −0.19 e Å−3 |
| 0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
| Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.021 (3) |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.06292 (19) | 0.5067 (2) | 0.39061 (13) | 0.0724 (6) | |
| N2 | 0.39497 (14) | 0.44355 (16) | 0.69503 (9) | 0.0435 (4) | |
| H2A | 0.4110 | 0.5239 | 0.7016 | 0.065* | |
| H2B | 0.4620 | 0.4001 | 0.7158 | 0.065* | |
| H2C | 0.3224 | 0.4236 | 0.7238 | 0.065* | |
| C1 | 0.1482 (2) | 0.4737 (2) | 0.42791 (13) | 0.0526 (5) | |
| C2 | 0.25733 (17) | 0.43017 (19) | 0.47337 (11) | 0.0443 (5) | |
| C3 | 0.27221 (17) | 0.45958 (18) | 0.56150 (11) | 0.0420 (5) | |
| H3 | 0.2108 | 0.5080 | 0.5904 | 0.050* | |
| C4 | 0.37764 (16) | 0.41559 (17) | 0.60241 (11) | 0.0382 (4) | |
| C5 | 0.46585 (19) | 0.34385 (19) | 0.55934 (12) | 0.0488 (5) | |
| H5 | 0.5382 | 0.3131 | 0.5890 | 0.059* | |
| C6 | 0.4502 (2) | 0.3155 (2) | 0.47200 (13) | 0.0568 (6) | |
| H6 | 0.5119 | 0.2669 | 0.4436 | 0.068* | |
| C7 | 0.3461 (2) | 0.3585 (2) | 0.42905 (12) | 0.0538 (5) | |
| H7 | 0.3339 | 0.3403 | 0.3706 | 0.065* | |
| O1 | 0.23542 (15) | 0.20195 (16) | 0.71257 (11) | 0.0701 (5) | |
| O2 | 0.16047 (13) | 0.37804 (14) | 0.76798 (10) | 0.0594 (5) | |
| O3 | 0.04000 (13) | 0.21817 (14) | 0.73494 (10) | 0.0592 (5) | |
| N3 | 0.14567 (15) | 0.26571 (16) | 0.73782 (10) | 0.0449 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0625 (12) | 0.1071 (17) | 0.0476 (11) | 0.0072 (12) | −0.0138 (9) | −0.0010 (11) |
| N2 | 0.0413 (8) | 0.0563 (10) | 0.0328 (8) | 0.0053 (7) | −0.0013 (6) | −0.0047 (7) |
| C1 | 0.0517 (11) | 0.0722 (14) | 0.0339 (10) | −0.0038 (10) | −0.0043 (9) | −0.0017 (9) |
| C2 | 0.0432 (10) | 0.0547 (12) | 0.0351 (9) | −0.0056 (8) | −0.0034 (7) | 0.0006 (8) |
| C3 | 0.0382 (9) | 0.0536 (11) | 0.0341 (9) | 0.0008 (8) | 0.0015 (7) | −0.0030 (8) |
| C4 | 0.0401 (9) | 0.0440 (10) | 0.0306 (9) | −0.0018 (8) | 0.0004 (7) | −0.0021 (7) |
| C5 | 0.0473 (10) | 0.0588 (12) | 0.0403 (10) | 0.0103 (9) | 0.0008 (8) | −0.0038 (9) |
| C6 | 0.0572 (13) | 0.0703 (14) | 0.0429 (11) | 0.0126 (11) | 0.0061 (9) | −0.0134 (10) |
| C7 | 0.0612 (12) | 0.0685 (14) | 0.0318 (9) | −0.0020 (11) | 0.0013 (9) | −0.0094 (9) |
| O1 | 0.0487 (9) | 0.0727 (11) | 0.0889 (12) | 0.0073 (8) | 0.0163 (8) | −0.0161 (9) |
| O2 | 0.0548 (9) | 0.0635 (10) | 0.0598 (9) | −0.0069 (7) | 0.0087 (7) | −0.0173 (8) |
| O3 | 0.0395 (8) | 0.0752 (10) | 0.0628 (10) | −0.0077 (7) | −0.0046 (6) | −0.0065 (7) |
| N3 | 0.0440 (9) | 0.0596 (11) | 0.0310 (8) | −0.0007 (8) | −0.0012 (6) | 0.0000 (7) |
Geometric parameters (Å, °)
| N1—C1 | 1.102 (3) | C4—C5 | 1.361 (3) |
| N2—C4 | 1.469 (2) | C5—C6 | 1.389 (3) |
| N2—H2A | 0.89 | C5—H5 | 0.93 |
| N2—H2B | 0.89 | C6—C7 | 1.335 (3) |
| N2—H2C | 0.89 | C6—H6 | 0.93 |
| C1—C2 | 1.397 (3) | C7—H7 | 0.93 |
| C2—C7 | 1.374 (3) | O1—N3 | 1.211 (2) |
| C2—C3 | 1.402 (3) | O2—N3 | 1.309 (2) |
| C3—C4 | 1.335 (2) | O3—N3 | 1.196 (2) |
| C3—H3 | 0.93 | ||
| C4—N2—H2A | 109.5 | C3—C4—N2 | 118.82 (15) |
| C4—N2—H2B | 109.5 | C5—C4—N2 | 120.72 (16) |
| H2A—N2—H2B | 109.5 | C4—C5—C6 | 121.42 (18) |
| C4—N2—H2C | 109.5 | C4—C5—H5 | 119.3 |
| H2A—N2—H2C | 109.5 | C6—C5—H5 | 119.3 |
| H2B—N2—H2C | 109.5 | C7—C6—C5 | 119.66 (19) |
| N1—C1—C2 | 178.6 (2) | C7—C6—H6 | 120.2 |
| C7—C2—C1 | 117.84 (17) | C5—C6—H6 | 120.2 |
| C7—C2—C3 | 122.50 (17) | C6—C7—C2 | 118.37 (17) |
| C1—C2—C3 | 119.66 (17) | C6—C7—H7 | 120.8 |
| C4—C3—C2 | 117.60 (17) | C2—C7—H7 | 120.8 |
| C4—C3—H3 | 121.2 | O3—N3—O1 | 115.22 (17) |
| C2—C3—H3 | 121.2 | O3—N3—O2 | 121.07 (16) |
| C3—C4—C5 | 120.45 (17) | O1—N3—O2 | 123.69 (16) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···O3i | 0.89 | 2.22 | 3.104 (2) | 173 |
| N2—H2A···O1i | 0.89 | 2.44 | 3.107 (2) | 133 |
| N2—H2B···O2ii | 0.89 | 2.06 | 2.859 (2) | 150 |
| N2—H2B···O3ii | 0.89 | 2.25 | 3.049 (2) | 149 |
| N2—H2C···O2 | 0.89 | 1.85 | 2.738 (2) | 172 |
| N2—H2C···O1 | 0.89 | 2.56 | 3.090 (2) | 119 |
Symmetry codes: (i) −x+1/2, y+1/2, z; (ii) x+1/2, y, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2892).
References
- Chen, Z.-F., Li, B.-Q., Xie, Y.-R., Xiong, R.-G., You, X.-Z. & Feng, X.-L. (2001). Inorg. Chem. Commun.4, 346–349.
- Fu, D.-W., Song, Y.-M., Wang, G.-X., Ye, Q., Xiong, R.-G., Akutagawa, T., Nakamura, T., Chan, P. W. H. & Huang, S.-P. (2007). J. Am. Chem. Soc.129, 5346–5347. [DOI] [PubMed]
- Fu, D.-W. & Xiong, R.-G. (2008). Dalton Trans. pp. 3946–3948. [DOI] [PubMed]
- Fu, D.-W., Zhang, W. & Xiong, R.-G. (2008). Cryst. Growth Des.8, 3461–3464.
- Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Wang, L.-Z., Wang, X.-S., Li, Y.-H., Bai, Z.-P., Xiong, R.-G., Xiong, M. & Li, G.-W. (2002). Chin. J. Inorg. Chem.18, 1191–1194.
- Xie, Y.-R., Zhao, H., Wang, X.-S., Qu, Z.-R., Xiong, R.-G., Xue, X.-A., Xue, Z.-L. & You, X.-Z. (2003). Eur. J. Inorg. Chem.20, 3712–3715.
- Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem.23, 1051–1052.
- Zhao, H., Ye, Q., Wu, Q., Song, Y.-M., Liu, Y.-J. & Xiong, R.-G. (2004). Z. Anorg. Allg. Chem.630, 1367–1370.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809034886/ci2892sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034886/ci2892Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


