Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 9;65(Pt 10):o2386. doi: 10.1107/S1600536809035454

3-Benzyl-1-methyl­imidazolium picrate

Min Pi a, Xiu-Ling Liu a, Ji-Jun Xu a, Chuan-Ming Jin a,*
PMCID: PMC2970314  PMID: 21577850

Abstract

In the title salt, C11H13N2 +·C6H2N3O7 , the dihedral angles between the benzene ring in the cation and the imidazolium ring and the benzene ring of the picrate anion are 113.7 (2) and 116.3 (2)°, respectively. The imidazolium ring is nearly parallel to the benzene ring of the picrate anion, the dihedral angle between the planes being 2.6 (1)°. The nitro groups in the picrate anions are disordered (occupancy ratio 0.54:0.46). The crystal packing is stabilized by weak C—H⋯O inter­actions between the cation–anion pairs.

Related literature

For civilian and military applications of energetic materials, see: Sikder & Sikder (2004). Heterocyclic organic salts with low melting points are a new class of energetic materials, which have attracted considerable inter­est because of their ‘green chemistry’ properties, see: Singh et al. (2006). Picric acid is a polynitro­gen compound with explosive character and imidazolium-based cation picrate salts are good candidates for energetic ionic salts, see: Jin et al. (2005).graphic file with name e-65-o2386-scheme1.jpg

Experimental

Crystal data

  • C11H13N2 +·C6H2N3O7

  • M r = 401.34

  • Triclinic, Inline graphic

  • a = 9.1322 (6) Å

  • b = 10.2060 (7) Å

  • c = 10.8744 (7) Å

  • α = 63.6190 (10)°

  • β = 80.1660 (10)°

  • γ = 86.4820 (10)°

  • V = 894.52 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.986, T max = 0.988

  • 5623 measured reflections

  • 3447 independent reflections

  • 2610 reflections with I > 2σ(I)

  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.144

  • S = 1.04

  • 3447 reflections

  • 320 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035454/jj2007sup1.cif

e-65-o2386-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035454/jj2007Isup2.hkl

e-65-o2386-Isup2.hkl (169KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17C⋯O7i 0.96 2.42 3.346 (10) 162
C14—H14⋯O5ii 0.93 2.39 3.283 (11) 161
C17—H17A⋯O2iii 0.96 2.32 3.205 (11) 153
C16—H16⋯O2iii 0.93 2.39 3.159 (9) 140
C16—H16⋯O1iii 0.93 2.19 3.021 (2) 149
C13—H13A⋯O1iii 0.97 2.58 3.382 (3) 140
C17—H17C⋯O7i 0.96 2.42 3.346 (10) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We gratefully acknowledge the financial support of the National Science Funds for Distinguished Young Scholars of Hubei Province (grant No. 2006ABB038), the Outstanding Mid-young Scholars’ Programs, Hubei Provincial Department of Education (Q20072203) and the project sponsored by SRF for ROCS, SEM (200724).

supplementary crystallographic information

Comment

Energetic materials are used extensively for both civilian and military applications (Sikder & Sikder, 2004). Heterocyclic organic salts with low melting points are a new class of energetic materials that has attracted considerable interest because of their "green chemistry" properties (Singh et al., 2006). Picric acid is a polynitrogen compound with explosive character and imidazolium-based cation picrate salts are good candidates for energetic ionic salts (Jin et al., 2005). Based on our continued interest in these compounds, the title organic salt (scheme 1) was prepared and its structure is reported.

The asymmetric unit of the title compound contains one independent cation (1-methyl-3-benzenylimidazolium)-anion (picrate) pair (Fig. 1). The dihedral angle between the benzene ring in the cation and the imidazolium ring and the benzene ring of the picrate anion is 113.7 (2)° and 116.3 (2) °, respectively. The imidazolium ring is nearly parallel to the benzene ring of the picrate anion with the dihedral angle of separation being 2.6 (1)°. The oxygen atoms in the nitro groups of the picrate anion are disorderd with the o-NO2 major components (O2, O3, O4, O5) being 0.54 occupied and the p-NO2major components (O5, O6) at 0.58 occupancy . Crystal packing is stabilized by the weak C—H···O interactions between the cation-anion pairs (Fig. 2, Table 1).

Experimental

The title salt (C11H13N2)+.(C6H2N3O7)- was synthesized using a slightly modified literature mothod (Jin et al., 2005). It was crystallized by slow evaporation of an acetonitrile and methanol solution of the salt.

Refinement

H atoms were positioned geometrically with C—H bond lengths fixed to 0.93 (aromatic CH),0.97 (methylene CH2) or 0.96Å (methyl CH3). A riding model was used during the refinement process. The Uiso parameters for H atoms were constrained to be 1.2Ueq of the carrier C atom for aromatic and methylene groups, and 1.5Ueq of the carrier C atom for methyl groups. Measured Friedel pairs were merged before refinement.

Figures

Fig. 1.

Fig. 1.

The structure of (I) showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity. Only the predominate nitro oxygen atoms are displayed for the disordered nitro groups [O2,O3,O4,O5 (0.54); O6,O7 (0.58)].

Fig. 2.

Fig. 2.

The molecular packing diagram of the title compound. Dashed lines indicate weak C—H···O hydrogen bonding interactions between the cation-anion pairs (Table 1). Both of the disordered oxygen atoms in the nitro groups of the picrate anions are displayed.

Crystal data

C11H13N2+·C6H2N3O7 Z = 2
Mr = 401.34 F(000) = 416
Triclinic, P1 Dx = 1.490 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1322 (6) Å Cell parameters from 1924 reflections
b = 10.2060 (7) Å θ = 2.2–26.5°
c = 10.8744 (7) Å µ = 0.12 mm1
α = 63.619 (1)° T = 298 K
β = 80.166 (1)° Block, yellow
γ = 86.482 (1)° 0.20 × 0.10 × 0.10 mm
V = 894.52 (10) Å3

Data collection

Bruker SMART APEX CCD area-detector diffractometer 3447 independent reflections
Radiation source: fine-focus sealed tube 2610 reflections with I > 2σ(I)
graphite Rint = 0.046
φ and ω scans θmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→11
Tmin = 0.986, Tmax = 0.988 k = −12→12
5623 measured reflections l = −11→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0707P)2] where P = (Fo2 + 2Fc2)/3
3447 reflections (Δ/σ)max < 0.001
320 parameters Δρmax = 0.35 e Å3
15 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.6669 (2) 0.9523 (2) 0.3757 (2) 0.0412 (5)
C2 0.5960 (2) 0.8381 (2) 0.50638 (19) 0.0391 (5)
C3 0.4985 (2) 0.7359 (2) 0.5166 (2) 0.0417 (5)
H3 0.4582 0.6639 0.6035 0.050*
C4 0.4602 (2) 0.7397 (2) 0.3977 (2) 0.0421 (5)
C5 0.5191 (2) 0.8461 (2) 0.2678 (2) 0.0435 (5)
H5 0.4912 0.8496 0.1881 0.052*
C6 0.6182 (2) 0.9453 (2) 0.25820 (19) 0.0409 (5)
C7 0.9029 (2) 0.4665 (2) 0.16740 (19) 0.0448 (5)
C8 0.7605 (3) 0.4513 (3) 0.1476 (2) 0.0602 (6)
H8 0.7217 0.3584 0.1754 0.072*
C9 0.6758 (3) 0.5720 (4) 0.0873 (3) 0.0767 (8)
H9 0.5803 0.5606 0.0741 0.092*
C10 0.7316 (3) 0.7092 (3) 0.0466 (2) 0.0736 (8)
H10 0.6740 0.7908 0.0058 0.088*
C11 0.8721 (3) 0.7263 (3) 0.0659 (2) 0.0670 (7)
H11 0.9097 0.8194 0.0390 0.080*
C12 0.9572 (3) 0.6063 (2) 0.1247 (2) 0.0525 (6)
H12 1.0532 0.6188 0.1362 0.063*
C13 0.9942 (3) 0.3344 (2) 0.2325 (2) 0.0516 (6)
H13A 0.9526 0.2525 0.2267 0.062*
H13B 1.0944 0.3526 0.1807 0.062*
C14 1.0841 (2) 0.3658 (2) 0.4261 (2) 0.0495 (5)
H14 1.1477 0.4457 0.3713 0.059*
C15 1.0570 (2) 0.2983 (2) 0.5651 (2) 0.0492 (5)
H15 1.0988 0.3221 0.6249 0.059*
C16 0.9239 (2) 0.1884 (2) 0.4886 (2) 0.0428 (5)
H16 0.8581 0.1243 0.4855 0.051*
C17 0.9006 (3) 0.0830 (3) 0.7460 (2) 0.0630 (7)
H17A 0.8231 0.0235 0.7460 0.094*
H17B 0.8617 0.1349 0.7993 0.094*
H17C 0.9802 0.0218 0.7866 0.094*
N1 0.6315 (2) 0.8244 (2) 0.63649 (18) 0.0492 (5)
N2 0.3603 (2) 0.6289 (2) 0.4097 (2) 0.0525 (5)
N3 0.6791 (2) 1.0516 (2) 0.11900 (19) 0.0537 (5)
N4 1.00040 (18) 0.29513 (17) 0.37987 (16) 0.0416 (4)
N5 0.95646 (18) 0.18786 (18) 0.60292 (16) 0.0436 (4)
O1 0.75553 (19) 1.04635 (18) 0.36201 (16) 0.0646 (5)
O2 0.6926 (10) 0.9248 (11) 0.6410 (15) 0.064 (2) 0.54
O3 0.6079 (6) 0.7030 (6) 0.7381 (6) 0.0693 (15) 0.54
O4 0.3127 (14) 0.5302 (14) 0.5267 (10) 0.091 (4) 0.54
O5 0.3362 (16) 0.6282 (15) 0.3029 (9) 0.093 (4) 0.54
O6 0.5945 (15) 1.1147 (16) 0.0366 (15) 0.104 (4) 0.58
O7 0.8115 (7) 1.0704 (12) 0.0890 (11) 0.075 (2) 0.58
O2' 0.5492 (7) 0.7504 (8) 0.7465 (7) 0.0700 (18) 0.46
O3' 0.7363 (11) 0.8962 (12) 0.6320 (17) 0.060 (2) 0.46
O5' 0.3250 (14) 0.6386 (14) 0.3006 (8) 0.061 (3) 0.46
O4' 0.3061 (11) 0.5414 (13) 0.5233 (7) 0.047 (2) 0.46
O6' 0.616 (2) 1.073 (2) 0.027 (2) 0.094 (5) 0.42
O7' 0.7953 (14) 1.1148 (18) 0.0970 (19) 0.114 (6) 0.42

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0384 (10) 0.0434 (11) 0.0450 (11) −0.0048 (9) −0.0101 (9) −0.0205 (9)
C2 0.0363 (10) 0.0451 (11) 0.0391 (11) 0.0023 (9) −0.0108 (8) −0.0197 (9)
C3 0.0372 (11) 0.0410 (11) 0.0427 (11) −0.0032 (9) −0.0058 (9) −0.0143 (9)
C4 0.0377 (10) 0.0424 (11) 0.0492 (12) −0.0051 (9) −0.0082 (9) −0.0218 (10)
C5 0.0415 (11) 0.0514 (12) 0.0448 (11) −0.0017 (9) −0.0117 (9) −0.0257 (10)
C6 0.0392 (11) 0.0431 (11) 0.0383 (10) −0.0037 (9) −0.0064 (8) −0.0155 (9)
C7 0.0523 (12) 0.0520 (12) 0.0282 (10) −0.0094 (10) 0.0025 (9) −0.0177 (9)
C8 0.0590 (15) 0.0666 (16) 0.0465 (13) −0.0155 (13) −0.0010 (11) −0.0180 (12)
C9 0.0572 (16) 0.106 (2) 0.0563 (16) 0.0023 (16) −0.0112 (13) −0.0260 (16)
C10 0.085 (2) 0.0757 (19) 0.0474 (14) 0.0179 (16) −0.0074 (14) −0.0192 (13)
C11 0.097 (2) 0.0537 (15) 0.0442 (13) −0.0012 (14) −0.0074 (13) −0.0168 (11)
C12 0.0646 (14) 0.0521 (14) 0.0380 (11) −0.0117 (11) −0.0067 (10) −0.0164 (10)
C13 0.0612 (14) 0.0543 (13) 0.0407 (11) −0.0084 (11) 0.0008 (10) −0.0242 (10)
C14 0.0472 (12) 0.0419 (12) 0.0629 (14) −0.0066 (10) −0.0119 (10) −0.0242 (11)
C15 0.0530 (13) 0.0469 (12) 0.0599 (14) 0.0027 (10) −0.0239 (11) −0.0293 (11)
C16 0.0446 (11) 0.0424 (11) 0.0447 (11) −0.0041 (9) −0.0116 (9) −0.0199 (9)
C17 0.0752 (16) 0.0644 (15) 0.0433 (13) −0.0063 (13) −0.0174 (11) −0.0147 (11)
N1 0.0475 (11) 0.0565 (12) 0.0424 (10) −0.0041 (9) −0.0111 (8) −0.0188 (9)
N2 0.0482 (11) 0.0498 (12) 0.0635 (13) −0.0084 (9) −0.0101 (11) −0.0272 (11)
N3 0.0581 (13) 0.0584 (12) 0.0426 (11) −0.0144 (10) −0.0124 (10) −0.0170 (9)
N4 0.0448 (9) 0.0405 (9) 0.0417 (9) −0.0045 (8) −0.0063 (7) −0.0196 (8)
N5 0.0471 (10) 0.0443 (10) 0.0427 (10) 0.0013 (8) −0.0156 (8) −0.0191 (8)
O1 0.0735 (11) 0.0697 (11) 0.0521 (9) −0.0361 (9) −0.0076 (8) −0.0242 (8)
O2 0.083 (5) 0.064 (4) 0.055 (3) −0.012 (4) −0.016 (4) −0.032 (3)
O3 0.081 (4) 0.077 (4) 0.039 (2) −0.019 (3) −0.011 (3) −0.013 (2)
O4 0.099 (7) 0.054 (5) 0.108 (7) −0.019 (5) −0.016 (5) −0.023 (5)
O5 0.119 (8) 0.103 (7) 0.089 (8) −0.022 (5) −0.024 (5) −0.066 (6)
O6 0.086 (4) 0.118 (8) 0.062 (5) 0.003 (5) −0.028 (3) 0.005 (4)
O7 0.044 (2) 0.096 (5) 0.056 (3) −0.021 (2) 0.0098 (19) −0.011 (3)
O2' 0.068 (4) 0.094 (5) 0.040 (2) −0.026 (3) 0.000 (3) −0.022 (3)
O3' 0.064 (5) 0.067 (5) 0.058 (4) −0.014 (4) −0.021 (4) −0.031 (3)
O5' 0.063 (5) 0.059 (5) 0.058 (6) −0.037 (4) −0.017 (4) −0.014 (4)
O4' 0.048 (4) 0.053 (5) 0.039 (4) −0.031 (4) 0.005 (3) −0.018 (4)
O6' 0.127 (11) 0.104 (9) 0.047 (4) −0.047 (7) −0.034 (6) −0.017 (5)
O7' 0.126 (9) 0.122 (11) 0.080 (5) −0.060 (8) −0.017 (6) −0.026 (6)

Geometric parameters (Å, °)

C1—O1 1.235 (2) C13—H13B 0.9700
C1—C2 1.451 (3) C14—C15 1.336 (3)
C1—C6 1.454 (3) C14—N4 1.371 (3)
C2—C3 1.368 (3) C14—H14 0.9300
C2—N1 1.450 (2) C15—N5 1.367 (3)
C3—C4 1.379 (3) C15—H15 0.9300
C3—H3 0.9300 C16—N4 1.319 (2)
C4—C5 1.383 (3) C16—N5 1.325 (2)
C4—N2 1.443 (3) C16—H16 0.9300
C5—C6 1.357 (3) C17—N5 1.464 (3)
C5—H5 0.9300 C17—H17A 0.9600
C6—N3 1.451 (3) C17—H17B 0.9600
C7—C8 1.383 (3) C17—H17C 0.9600
C7—C12 1.385 (3) N1—O2 1.220 (9)
C7—C13 1.493 (3) N1—O3' 1.222 (10)
C8—C9 1.373 (4) N1—O2' 1.235 (7)
C8—H8 0.9300 N1—O3 1.240 (6)
C9—C10 1.369 (4) N2—O4' 1.197 (7)
C9—H9 0.9300 N2—O5 1.222 (9)
C10—C11 1.368 (4) N2—O5' 1.243 (9)
C10—H10 0.9300 N2—O4 1.245 (9)
C11—C12 1.367 (3) N3—O6' 1.168 (11)
C11—H11 0.9300 N3—O7 1.201 (7)
C12—H12 0.9300 N3—O7' 1.208 (11)
C13—N4 1.480 (3) N3—O6 1.215 (10)
C13—H13A 0.9700
O1—C1—C2 126.06 (18) N4—C14—H14 126.5
O1—C1—C6 122.83 (18) C14—C15—N5 107.38 (18)
C2—C1—C6 111.10 (16) C14—C15—H15 126.3
C3—C2—N1 116.05 (17) N5—C15—H15 126.3
C3—C2—C1 124.07 (18) N4—C16—N5 108.52 (17)
N1—C2—C1 119.85 (17) N4—C16—H16 125.7
C2—C3—C4 119.81 (18) N5—C16—H16 125.7
C2—C3—H3 120.1 N5—C17—H17A 109.5
C4—C3—H3 120.1 N5—C17—H17B 109.5
C3—C4—C5 120.79 (18) H17A—C17—H17B 109.5
C3—C4—N2 119.28 (18) N5—C17—H17C 109.5
C5—C4—N2 119.92 (19) H17A—C17—H17C 109.5
C6—C5—C4 119.12 (19) H17B—C17—H17C 109.5
C6—C5—H5 120.4 O2—N1—O2' 112.3 (8)
C4—C5—H5 120.4 O3'—N1—O2' 122.1 (8)
C5—C6—N3 116.53 (18) O2—N1—O3 122.5 (7)
C5—C6—C1 125.09 (18) O3'—N1—O3 116.7 (8)
N3—C6—C1 118.38 (17) O2—N1—C2 120.6 (7)
C8—C7—C12 118.2 (2) O3'—N1—C2 118.2 (8)
C8—C7—C13 120.1 (2) O2'—N1—C2 119.5 (4)
C12—C7—C13 121.7 (2) O3—N1—C2 116.6 (3)
C9—C8—C7 120.6 (2) O4'—N2—O5 123.1 (7)
C9—C8—H8 119.7 O4'—N2—O5' 123.6 (5)
C7—C8—H8 119.7 O5—N2—O4 122.0 (7)
C10—C9—C8 120.2 (3) O5'—N2—O4 123.2 (7)
C10—C9—H9 119.9 O4'—N2—C4 118.7 (4)
C8—C9—H9 119.9 O5—N2—C4 118.2 (5)
C11—C10—C9 120.1 (3) O5'—N2—C4 117.4 (4)
C11—C10—H10 120.0 O4—N2—C4 119.5 (6)
C9—C10—H10 120.0 O6'—N3—O7 115.7 (13)
C12—C11—C10 119.9 (2) O6'—N3—O7' 120.1 (12)
C12—C11—H11 120.0 O7—N3—O6 122.8 (9)
C10—C11—H11 120.0 O7'—N3—O6 115.6 (13)
C11—C12—C7 121.1 (2) O6'—N3—C6 119.1 (10)
C11—C12—H12 119.5 O7—N3—C6 118.5 (5)
C7—C12—H12 119.5 O7'—N3—C6 120.8 (9)
N4—C13—C7 112.48 (16) O6—N3—C6 118.6 (8)
N4—C13—H13A 109.1 C16—N4—C14 108.63 (17)
C7—C13—H13A 109.1 C16—N4—C13 125.71 (16)
N4—C13—H13B 109.1 C14—N4—C13 125.65 (17)
C7—C13—H13B 109.1 C16—N5—C15 108.46 (17)
H13A—C13—H13B 107.8 C16—N5—C17 126.17 (18)
C15—C14—N4 107.00 (18) C15—N5—C17 125.31 (18)
C15—C14—H14 126.5
O1—C1—C2—C3 −179.9 (2) C3—C2—N1—O2' −18.1 (4)
C6—C1—C2—C3 1.3 (3) C1—C2—N1—O2' 164.1 (4)
O1—C1—C2—N1 −2.2 (3) C3—C2—N1—O3 20.3 (4)
C6—C1—C2—N1 178.93 (17) C1—C2—N1—O3 −157.5 (3)
N1—C2—C3—C4 −179.13 (17) C3—C4—N2—O4' 4.4 (8)
C1—C2—C3—C4 −1.4 (3) C5—C4—N2—O4' −177.1 (7)
C2—C3—C4—C5 0.0 (3) C3—C4—N2—O5 −174.9 (10)
C2—C3—C4—N2 178.38 (18) C5—C4—N2—O5 3.6 (10)
C3—C4—C5—C6 1.5 (3) C3—C4—N2—O5' 177.9 (9)
N2—C4—C5—C6 −176.96 (18) C5—C4—N2—O5' −3.6 (9)
C4—C5—C6—N3 178.34 (19) C3—C4—N2—O4 −1.4 (8)
C4—C5—C6—C1 −1.5 (3) C5—C4—N2—O4 177.0 (8)
O1—C1—C6—C5 −178.7 (2) C5—C6—N3—O6' 19.6 (10)
C2—C1—C6—C5 0.2 (3) C1—C6—N3—O6' −160.5 (10)
O1—C1—C6—N3 1.4 (3) C5—C6—N3—O7 −130.6 (6)
C2—C1—C6—N3 −179.67 (17) C1—C6—N3—O7 49.3 (7)
C12—C7—C8—C9 −0.1 (3) C5—C6—N3—O7' −158.5 (9)
C13—C7—C8—C9 −179.7 (2) C1—C6—N3—O7' 21.4 (9)
C7—C8—C9—C10 −0.3 (4) C5—C6—N3—O6 47.4 (7)
C8—C9—C10—C11 0.0 (4) C1—C6—N3—O6 −132.7 (7)
C9—C10—C11—C12 0.6 (4) N5—C16—N4—C14 −0.4 (2)
C10—C11—C12—C7 −1.0 (3) N5—C16—N4—C13 −178.99 (17)
C8—C7—C12—C11 0.7 (3) C15—C14—N4—C16 0.5 (2)
C13—C7—C12—C11 −179.68 (19) C15—C14—N4—C13 179.14 (19)
C8—C7—C13—N4 −102.8 (2) C7—C13—N4—C16 102.4 (2)
C12—C7—C13—N4 77.6 (2) C7—C13—N4—C14 −76.0 (2)
N4—C14—C15—N5 −0.4 (2) N4—C16—N5—C15 0.1 (2)
C3—C2—N1—O2 −165.4 (5) N4—C16—N5—C17 −177.20 (19)
C1—C2—N1—O2 16.8 (5) C14—C15—N5—C16 0.2 (2)
C3—C2—N1—O3' 167.5 (6) C14—C15—N5—C17 177.5 (2)
C1—C2—N1—O3' −10.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17C···O7i 0.96 2.42 3.346 (10) 162
C14—H14···O5ii 0.93 2.39 3.283 (11) 161
C17—H17A···O2iii 0.96 2.32 3.205 (11) 153
C16—H16···O2iii 0.93 2.39 3.159 (9) 140
C16—H16···O1iii 0.93 2.19 3.021 (2) 149
C13—H13A···O1iii 0.97 2.58 3.382 (3) 140
C17—H17C···O7i 0.96 2.42 3.346 (10) 162

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, y, z; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2007).

References

  1. Bruker (2001). SAINT-Plus and SMART Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Jin, C. M., Ye, C., Piekarski, C., Twamley, B. & Shreeve, J. M. (2005). Eur. J. Inorg. Chem. pp. 3760–3767.
  3. Sheldrick, G. M. (1996). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Sikder, A. K. & Sikder, N. J. (2004). J. Hazardous Materials A, 112, 1–15. [DOI] [PubMed]
  6. Singh, R. P., Verma, R. D., Meshri, D. T. & Shreeve, J. M. (2006). Angew. Chem. Int. Ed.45, 3584–3601. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035454/jj2007sup1.cif

e-65-o2386-sup1.cif (22.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035454/jj2007Isup2.hkl

e-65-o2386-Isup2.hkl (169KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES