Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 30;65(Pt 10):o2585. doi: 10.1107/S1600536809038495

A second monoclinic polymorph of 2-(diformyl­methyl­idene)-3,3-dimethyl-2,3-dihydro-1H-indole

Hamid Khaledi a, Siti Munirah Saharin a, Hapipah Mohd Ali a,*, Ward T Robinson a, Mahmood A Abdulla b
PMCID: PMC2970324  PMID: 21578021

Abstract

The crystal structure of the title compound, C13H13NO2, is a polymorph of the structure first reported by Helliwell et al. [Acta Cryst. (2006), E62, o737-o738]. It is also monoclinic (space group P21/c), but with completely different cell constants. The mol­ecular conformations of these polymorphs differ by a 180° rotation of one formyl group. The present mol­ecule is planar [maximum deviation 0.089 (2) Å] with the exception of the two methyl groups which lie on either side of the plane. There are strong intra- and inter­molecular N—H⋯O hydrogen bonds. The latter link pairs of mol­ecules across crystallographic centers of symmetry. Two aldehyde O atoms are brought close together [2.896 (4) Å in this arrangement but are not hydrogen bonded. In the earlier polymorph, one formyl group is rotated by 180° to yield inter­molecular hydrogen bonding and an infinite polymeric chain. The other formyl group is involved in the same intra­molecular hydrogen bonding as has been found here.

Related literature

For the crystal structure of the other polymorph, see: Helliwell et al. (2006). For a discussion of crystal growth conditions that can affect the occurrence of polymorphs, see: Hulliger et al. (1994). For chemistry involving 2-(diformyl­methyl­idene)-3,3-dimethyl-2,3-dihydro-1H-indole, see: Baradarani et al. (2006).graphic file with name e-65-o2585-scheme1.jpg

Experimental

Crystal data

  • C13H13NO2

  • M r = 215.24

  • Monoclinic, Inline graphic

  • a = 6.9877 (10) Å

  • b = 18.688 (3) Å

  • c = 8.2154 (12) Å

  • β = 90.291 (3)°

  • V = 1072.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 103 K

  • 0.57 × 0.37 × 0.03 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.950, T max = 0.997

  • 4763 measured reflections

  • 1865 independent reflections

  • 1123 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.103

  • S = 0.92

  • 1865 reflections

  • 151 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038495/om2278sup1.cif

e-65-o2585-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038495/om2278Isup2.hkl

e-65-o2585-Isup2.hkl (91.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.93 (3) 1.93 (3) 2.642 (3) 132 (2)
N1—H1⋯O1i 0.93 (3) 2.19 (3) 2.946 (2) 138 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank the University of Malaya for funding this study (UMRG grant No. RG136/09HTM).

supplementary crystallographic information

Experimental

A solution of trimethylindolenine, (5.57 g, 35 mmol), in anhydrous dimethylformamide (15 ml) was cooled in an ice bath. A solution of phosphoryl chloride (10 ml) in dimethylformamide (15 ml) was added dropwise with stirring over a period of 1 h at below 283 K. The cooling bath was removed and the reaction mixture was stirred at 363 K for 2 h. The resulting solution was poured onto ice water (400 ml), the pH was adjusted to 9.0 by the addition of aqueous NaOH (35%) whereupon the solid product was precipitated. It was filtered, washed with hot water, dried and recrystallized from n-hexane/ethyl acetate to give a yellow solid in 4.35 g, 58% yield. Further recrystallization, from ethanol/water (3:1 v/v), led to a mixture of lath and prismatic habits. The prism cell dimensions confirmed the form reported earlier but the laths appeared new.

Refinement

C-bound hydrogen atoms were placed at calculated positions (C–H = 0.95–0.98 Å) and refined as riding with U(H) = 1.2–1.5 times Ueq(C). The N-bound hydrogen atom was located from a difference map, and freely refined to give a bond length of 0.93 (3) Å.

Figures

Fig. 1.

Fig. 1.

A perspective drawing of two molecules of the title compound showing dimerization through intermolecular H-bonds. Displacement ellipsoids are drawn at the 30% probability level. Symmetry code: A = 1-x, 1-y, -z

Crystal data

C13H13NO2 F(000) = 456
Mr = 215.24 Dx = 1.333 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 864 reflections
a = 6.9877 (10) Å θ = 2.2–24.7°
b = 18.688 (3) Å µ = 0.09 mm1
c = 8.2154 (12) Å T = 103 K
β = 90.291 (3)° Lath, yellow
V = 1072.8 (3) Å3 0.57 × 0.37 × 0.03 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1865 independent reflections
Radiation source: fine-focus sealed tube 1123 reflections with I > 2σ(I)
graphite Rint = 0.072
ω scans θmax = 25.1°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −5→8
Tmin = 0.950, Tmax = 0.997 k = −21→22
4763 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H atoms treated by a mixture of independent and constrained refinement
S = 0.92 w = 1/[σ2(Fo2) + (0.0424P)2] where P = (Fo2 + 2Fc2)/3
1865 reflections (Δ/σ)max < 0.001
151 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.4035 (3) 0.49657 (9) 0.1554 (2) 0.0308 (5)
O2 0.4628 (3) 0.65460 (9) 0.6032 (2) 0.0346 (5)
N1 0.7133 (3) 0.57750 (10) 0.1457 (2) 0.0192 (5)
H1 0.637 (4) 0.5445 (14) 0.092 (3) 0.054 (9)*
C1 0.6569 (3) 0.60337 (11) 0.2893 (3) 0.0195 (5)
C2 0.8061 (3) 0.65754 (12) 0.3488 (3) 0.0199 (6)
C3 0.9518 (3) 0.65385 (12) 0.2146 (3) 0.0197 (6)
C4 1.1227 (3) 0.68961 (12) 0.1934 (3) 0.0225 (6)
H4 1.1673 0.7228 0.2725 0.027*
C5 1.2281 (4) 0.67584 (12) 0.0535 (3) 0.0253 (6)
H5 1.3459 0.7002 0.0373 0.030*
C6 1.1650 (4) 0.62761 (12) −0.0621 (3) 0.0259 (6)
H6 1.2405 0.6190 −0.1560 0.031*
C7 0.9931 (3) 0.59154 (12) −0.0434 (3) 0.0221 (6)
H7 0.9479 0.5585 −0.1226 0.027*
C8 0.8906 (3) 0.60609 (11) 0.0965 (3) 0.0196 (5)
C9 0.4879 (3) 0.57998 (12) 0.3639 (3) 0.0192 (6)
C10 0.3723 (4) 0.52662 (12) 0.2862 (3) 0.0258 (6)
H10 0.2591 0.5128 0.3415 0.031*
C11 0.4105 (4) 0.60552 (13) 0.5160 (3) 0.0257 (6)
H11 0.3018 0.5801 0.5539 0.031*
C12 0.7221 (4) 0.73372 (12) 0.3575 (3) 0.0262 (6)
H12A 0.8248 0.7679 0.3812 0.039*
H12B 0.6261 0.7359 0.4438 0.039*
H12C 0.6621 0.7458 0.2530 0.039*
C13 0.8926 (3) 0.63454 (12) 0.5131 (3) 0.0241 (6)
H13A 0.9436 0.5859 0.5039 0.036*
H13B 0.7932 0.6357 0.5968 0.036*
H13C 0.9961 0.6674 0.5433 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0343 (11) 0.0320 (10) 0.0261 (10) −0.0086 (9) −0.0002 (8) −0.0040 (8)
O2 0.0367 (12) 0.0377 (11) 0.0295 (10) −0.0023 (9) 0.0058 (9) −0.0071 (9)
N1 0.0143 (12) 0.0217 (11) 0.0215 (11) −0.0051 (9) 0.0010 (9) −0.0019 (9)
C1 0.0213 (15) 0.0178 (12) 0.0192 (12) 0.0006 (11) −0.0039 (11) 0.0024 (10)
C2 0.0234 (15) 0.0187 (12) 0.0176 (12) −0.0011 (11) 0.0010 (11) −0.0001 (10)
C3 0.0223 (15) 0.0183 (12) 0.0185 (12) 0.0021 (11) 0.0003 (11) 0.0028 (10)
C4 0.0205 (15) 0.0230 (13) 0.0239 (13) −0.0023 (11) −0.0024 (11) 0.0018 (10)
C5 0.0198 (15) 0.0262 (14) 0.0299 (14) −0.0006 (11) 0.0033 (12) 0.0067 (11)
C6 0.0292 (17) 0.0253 (13) 0.0233 (13) 0.0041 (12) 0.0055 (12) 0.0039 (11)
C7 0.0227 (15) 0.0237 (13) 0.0201 (12) −0.0017 (11) 0.0009 (11) 0.0000 (10)
C8 0.0208 (14) 0.0157 (12) 0.0223 (12) 0.0028 (11) 0.0000 (11) 0.0031 (10)
C9 0.0154 (14) 0.0216 (13) 0.0204 (12) −0.0019 (11) −0.0005 (11) 0.0033 (10)
C10 0.0235 (16) 0.0267 (14) 0.0271 (14) −0.0004 (12) 0.0010 (12) 0.0077 (11)
C11 0.0207 (15) 0.0278 (14) 0.0286 (14) 0.0045 (12) −0.0003 (12) 0.0040 (12)
C12 0.0313 (16) 0.0215 (13) 0.0259 (13) 0.0023 (12) 0.0020 (12) −0.0006 (10)
C13 0.0214 (15) 0.0301 (14) 0.0207 (13) −0.0033 (11) −0.0011 (11) 0.0016 (10)

Geometric parameters (Å, °)

O1—C10 1.233 (3) C5—H5 0.9500
O2—C11 1.219 (3) C6—C7 1.387 (3)
N1—C1 1.336 (3) C6—H6 0.9500
N1—C8 1.410 (3) C7—C8 1.384 (3)
N1—H1 0.93 (3) C7—H7 0.9500
C1—C9 1.403 (3) C9—C10 1.431 (3)
C1—C2 1.531 (3) C9—C11 1.445 (3)
C2—C3 1.506 (3) C10—H10 0.9500
C2—C13 1.538 (3) C11—H11 0.9500
C2—C12 1.542 (3) C12—H12A 0.9800
C3—C4 1.380 (3) C12—H12B 0.9800
C3—C8 1.384 (3) C12—H12C 0.9800
C4—C5 1.392 (3) C13—H13A 0.9800
C4—H4 0.9500 C13—H13B 0.9800
C5—C6 1.380 (3) C13—H13C 0.9800
C1—N1—C8 112.3 (2) C6—C7—H7 121.7
C1—N1—H1 119.3 (17) C3—C8—C7 123.3 (2)
C8—N1—H1 128.4 (17) C3—C8—N1 108.2 (2)
N1—C1—C9 121.7 (2) C7—C8—N1 128.5 (2)
N1—C1—C2 108.5 (2) C1—C9—C10 119.8 (2)
C9—C1—C2 129.8 (2) C1—C9—C11 126.5 (2)
C3—C2—C1 101.40 (18) C10—C9—C11 113.8 (2)
C3—C2—C13 111.46 (19) O1—C10—C9 127.1 (2)
C1—C2—C13 111.06 (18) O1—C10—H10 116.4
C3—C2—C12 109.57 (18) C9—C10—H10 116.4
C1—C2—C12 111.51 (19) O2—C11—C9 130.1 (2)
C13—C2—C12 111.43 (18) O2—C11—H11 114.9
C4—C3—C8 119.2 (2) C9—C11—H11 114.9
C4—C3—C2 131.2 (2) C2—C12—H12A 109.5
C8—C3—C2 109.6 (2) C2—C12—H12B 109.5
C3—C4—C5 118.4 (2) H12A—C12—H12B 109.5
C3—C4—H4 120.8 C2—C12—H12C 109.5
C5—C4—H4 120.8 H12A—C12—H12C 109.5
C6—C5—C4 121.4 (2) H12B—C12—H12C 109.5
C6—C5—H5 119.3 C2—C13—H13A 109.5
C4—C5—H5 119.3 C2—C13—H13B 109.5
C5—C6—C7 121.0 (2) H13A—C13—H13B 109.5
C5—C6—H6 119.5 C2—C13—H13C 109.5
C7—C6—H6 119.5 H13A—C13—H13C 109.5
C8—C7—C6 116.7 (2) H13B—C13—H13C 109.5
C8—C7—H7 121.7

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.93 (3) 1.93 (3) 2.642 (3) 132 (2)
N1—H1···O1i 0.93 (3) 2.19 (3) 2.946 (2) 138 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2278).

References

  1. Baradarani, M. M., Afgan, A., Zebarjadi, F., Hasanzadeh, K. & Joule, J. A. (2006). J. Heterocycl. Chem.43, 1591–1595.
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin,USA.
  3. Helliwell, M., Afgan, A., Baradarani, M. M. & Joule, J. A. (2006). Acta Cryst. E62, o737–o738.
  4. Hulliger, J. (1994). Angew. Chem. Int. Ed. Engl 33, 143–162.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038495/om2278sup1.cif

e-65-o2585-sup1.cif (15.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038495/om2278Isup2.hkl

e-65-o2585-Isup2.hkl (91.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES