Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 26;65(Pt 10):o2524–o2525. doi: 10.1107/S1600536809037544

10-Methoxy­benzo[g]imidazo[1,2-a][1,8]naphthyridine-4-carbonitrile

Andrii V Tarasov a,*, Tatyana A Volovnenko a, Noël Lugan b, Yulian M Volovenko a
PMCID: PMC2970372  PMID: 21577970

Abstract

In the title compound, C16H10N4O, both the meth­oxy and nitrile substituents lie in the plane defined by the benzo[g]imidazo[1,2-a]-1,8-naphthyridine ring system, resulting in a nearly planar geometry for the entire mol­ecule (r.m.s. deviation of the non-H atoms from the mean plane is 0.044 Å). In the solid-state, the mol­ecules form a three-dimensional polymer through inter­molecular C—H⋯N and C—H⋯O hydrogen bonds. In addition, the packing mode results in stabilizing π–π stacking inter­actions between the asymmetric units.

Related literature

For the synthesis of the title compound and a series of similar products, see: Volovnenko et al. (2009). For related compounds and their anti­bacterial or photophysical properties, see: Kondo et al. (1990); Gokhale & Seshadri (1987); Rajagopal & Seshadri (1991); Vijila et al. (2000). For the solid-state structures of other imidazonaphthyridine derivatives, see: Fun et al. (1996); Sivakumar et al. (1996a ,b ); Muthamizhchelvan et al. (2005a ,b ). For general metrical features within organic compounds, see: Allen et al. (1987). graphic file with name e-65-o2524-scheme1.jpg

Experimental

Crystal data

  • C16H10N4O

  • M r = 274.28

  • Monoclinic, Inline graphic

  • a = 7.710 (2) Å

  • b = 11.970 (2) Å

  • c = 13.340 (3) Å

  • β = 93.55 (3)°

  • V = 1228.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 180 K

  • 0.40 × 0.40 × 0.35 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.95, T max = 0.97

  • 45253 measured reflections

  • 3532 independent reflections

  • 2507 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.164

  • S = 1.08

  • 3532 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.34 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker (2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: WinGX (Farrugia, 1999) and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809037544/fj2229sup1.cif

e-65-o2524-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037544/fj2229Isup2.hkl

e-65-o2524-Isup2.hkl (169.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O1i 0.93 2.50 3.366 (3) 156
C3—H3⋯N1ii 0.93 2.62 3.394 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. π–π stacking interactions (Å, °).

Cgi Cgj Centroid distance Interplanar spacing i αii γiii
Cg1 Cg2iv 3.487 (2) 3.322 2.68 15.42
Cg2 Cg1iv 3.487 (2) 3.361 2.68 17.68
Cg3 Cg3iv 3.710 (2) 3.382 0.00 24.27
Cg1 Cg4v 3.689 (2) 3.336 5.01 25.28
Cg4 Cg1v 3.689 (2) 3.397 5.01 22.98

Notes: (i) perpendicular distance between the centroid of the first ring and the plane of the second ring; (ii) dihedral angle between the plane of the first ring and the plane of the second ring; (iii) angle between the centroid of the first ring and the normal to the plane of the second ring; (iv) symmetry code: Inline graphic; (v) symmetry code: Inline graphic. Cg1 is the centroid of atoms N1/C1/N2/C13/C14, Cg2 is the centroid of atoms N3/C12/C4–C6/C11, Cg3 is the centroid of atoms N2/C1–C4/C12 and Cg4 is the centroid of atoms C6–C11.

Acknowledgments

This research was performed within the framework of the GDRI ‘Franco–Ukrainian association of Molecular Chemistry’.

supplementary crystallographic information

Comment

New heterocyclic nitrogen-containing systems are always of great interest to synthetic as well as pharmaceutical organic chemists. We have recently reported an efficient and versatile route to benzo[g]imidazo[1,2-a]-1,8-naphthyridines upon thermal reaction of 2-chloroquinoline-3-carbaldehydes with 1-substitued hetarylacetonitriles (Volovnenko et al., 2009). Here we report the crystal structure of the one of synthesized compound, namely, 10-methoxybenzo[g]imidazo[1,2-a]-1,8-naphthyridine-4-carbonitrile. It has been reported that products with similar structures possess not only antibacterial activity (Kondo et al., 1990) but also interesting photophysical properties (Gokhale & Seshadri, 1987; Rajagopal & Seshadri, 1991; Vijila et al., 2000).

Fig. 1 shows a perspective view of the asymetric unit of the title compound, including the labelling scheme. Selected bond distances and angles are given in Table 1. The benzo[g]imidazo[1,2-a]-1,8-naphthyridine core is almost planar (RMS deviation of C1>C14 and N1>N3 from mean plane is 0.035 Å). In addition, both methoxy and carbonitrile substituents attached to C(2) and C(11), respectively, are oriented in such a way that they both lay in heterocyle plane granting a nearly planar geometry to the entire molecule (RMS deviation of the all non-hydrogen atoms from mean plane is 0.044 Å). Bond distances and angles in the title compound are normal (Allen et al., 1987) and compare well with other imidazonaphtyridines derivatives (Fun et al., 1996; Sivakumar et al..1996a,b; Muthamizhchelvan et al., 2005a,b).

The crystal structure is stabilized by C—H···N and C—H···O intermolecular hydrogen bonds (Table 1) forming a three dimensional polymeric structure (Figure 2). In addition, the asymmetric units are seen to be stacked along the (100) axis with relatively short interplanar distances (Table 3) possibly allowing additional stabilization through π–π stacking interactions (Figure 3).

Experimental

The title compound was synthesized by the reaction of 2-chloro-8-methoxyquinoline-3-carbaldehyde (2 mmol) with (1-benzyl-1H-imidazol-2-yl)acetonitrile (2 mmol) in dimethylformamide (3 ml). After refluxing for 1 h, the reaction mixture was left to stand overnight. The resulting crude solid was filtered, washed twice with acetone (10 ml) and dried. Yield: 96%. Crystals suitable for X-ray analysis were obtained by slow crystallization from hot dimethylformamide.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) with Uiso(H) = 1.2Ueq(Carom) or Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

A perspective view of the title compound, with 50% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

A packing diagram for the title compound, evidencing C—H···N et C—H···O hydrogen bonds (blue dotted lines).

Fig. 3.

Fig. 3.

A packing diagram for the title compound, evidencing π-π stacking interactions (red dotted lines).

Crystal data

C16H10N4O F(000) = 568
Mr = 274.28 Dx = 1.483 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9999 reflections
a = 7.710 (2) Å θ = 2.7–34.9°
b = 11.970 (2) Å µ = 0.10 mm1
c = 13.340 (3) Å T = 180 K
β = 93.55 (3)° Block, brown
V = 1228.8 (5) Å3 0.40 × 0.40 × 0.35 mm
Z = 4

Data collection

Bruker APEXII diffractometer 3532 independent reflections
Radiation source: sealed tube 2507 reflections with I > 2σ(I)
graphite Rint = 0.050
φ scans θmax = 29.8°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.95, Tmax = 0.97 k = −16→16
45253 measured reflections l = −18→18

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0616P)2 + 1.0259P] where P = (Fo2 + 2Fc2)/3
3532 reflections (Δ/σ)max < 0.001
191 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.33 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1160 (2) 0.16186 (14) 0.60289 (12) 0.0239 (3)
C2 0.0449 (2) 0.22693 (14) 0.51977 (13) 0.0257 (3)
C3 0.0661 (2) 0.19331 (15) 0.42439 (13) 0.0264 (4)
H3 0.0201 0.2358 0.3708 0.032*
C4 0.1593 (2) 0.09249 (14) 0.40567 (12) 0.0239 (3)
C5 0.1800 (2) 0.05231 (15) 0.31021 (13) 0.0271 (4)
H5 0.1352 0.0921 0.2546 0.033*
C6 0.2686 (2) −0.04838 (15) 0.29677 (12) 0.0262 (4)
C7 0.2865 (3) −0.09560 (17) 0.20044 (13) 0.0339 (4)
H7 0.2407 −0.0588 0.1433 0.041*
C8 0.3705 (3) −0.19467 (18) 0.19165 (15) 0.0378 (5)
H8 0.3800 −0.2260 0.1284 0.045*
C9 0.4435 (3) −0.25045 (16) 0.27749 (15) 0.0344 (4)
H9 0.5029 −0.3173 0.2698 0.041*
C10 0.4285 (2) −0.20791 (14) 0.37173 (13) 0.0268 (4)
C11 0.3374 (2) −0.10535 (14) 0.38426 (12) 0.0232 (3)
C12 0.2307 (2) 0.02653 (14) 0.48692 (12) 0.0222 (3)
C13 0.2521 (2) 0.01703 (15) 0.67504 (13) 0.0282 (4)
H13 0.3126 −0.0494 0.6869 0.034*
C14 0.1924 (3) 0.08839 (16) 0.74444 (14) 0.0329 (4)
H14 0.2065 0.0773 0.8135 0.039*
C15 −0.0484 (2) 0.32689 (16) 0.54198 (14) 0.0307 (4)
C16 0.5661 (3) −0.36456 (17) 0.45063 (18) 0.0399 (5)
H16A 0.4794 −0.4139 0.4207 0.060*
H16B 0.6029 −0.3913 0.5164 0.060*
H16C 0.6639 −0.3621 0.4095 0.060*
N1 0.1082 (2) 0.17940 (14) 0.69986 (11) 0.0311 (3)
N2 0.31704 (18) −0.06777 (12) 0.47856 (10) 0.0231 (3)
N3 0.20387 (18) 0.06431 (12) 0.58360 (10) 0.0233 (3)
N4 −0.1221 (3) 0.40663 (16) 0.55947 (15) 0.0451 (5)
O1 0.49489 (18) −0.25543 (11) 0.45838 (10) 0.0338 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0238 (8) 0.0251 (8) 0.0228 (8) −0.0042 (6) 0.0013 (6) 0.0000 (6)
C2 0.0248 (8) 0.0261 (8) 0.0263 (8) −0.0034 (6) 0.0010 (6) 0.0034 (6)
C3 0.0277 (8) 0.0265 (8) 0.0248 (8) −0.0023 (6) −0.0009 (6) 0.0060 (6)
C4 0.0253 (8) 0.0247 (8) 0.0215 (7) −0.0043 (6) 0.0006 (6) 0.0037 (6)
C5 0.0313 (9) 0.0297 (8) 0.0201 (7) −0.0062 (7) −0.0001 (6) 0.0037 (6)
C6 0.0294 (8) 0.0281 (8) 0.0211 (8) −0.0089 (7) 0.0025 (6) −0.0002 (6)
C7 0.0440 (11) 0.0377 (10) 0.0205 (8) −0.0124 (8) 0.0049 (7) −0.0007 (7)
C8 0.0487 (12) 0.0401 (11) 0.0257 (9) −0.0111 (9) 0.0107 (8) −0.0086 (8)
C9 0.0401 (10) 0.0298 (9) 0.0344 (10) −0.0070 (8) 0.0113 (8) −0.0078 (7)
C10 0.0292 (8) 0.0236 (8) 0.0282 (8) −0.0061 (6) 0.0051 (7) −0.0006 (6)
C11 0.0249 (8) 0.0237 (8) 0.0213 (7) −0.0074 (6) 0.0031 (6) −0.0008 (6)
C12 0.0224 (7) 0.0242 (7) 0.0200 (7) −0.0060 (6) 0.0011 (6) 0.0013 (6)
C13 0.0329 (9) 0.0296 (8) 0.0218 (8) −0.0015 (7) −0.0018 (6) 0.0046 (6)
C14 0.0385 (10) 0.0368 (10) 0.0234 (8) −0.0033 (8) 0.0014 (7) 0.0012 (7)
C15 0.0314 (9) 0.0321 (9) 0.0285 (9) −0.0003 (7) 0.0019 (7) 0.0026 (7)
C16 0.0434 (11) 0.0258 (9) 0.0509 (13) 0.0023 (8) 0.0056 (9) −0.0012 (8)
N1 0.0360 (8) 0.0337 (8) 0.0239 (7) −0.0032 (6) 0.0048 (6) −0.0023 (6)
N2 0.0261 (7) 0.0234 (7) 0.0199 (6) −0.0041 (5) 0.0016 (5) 0.0002 (5)
N3 0.0260 (7) 0.0237 (7) 0.0199 (6) −0.0025 (5) 0.0000 (5) 0.0009 (5)
N4 0.0515 (11) 0.0399 (10) 0.0444 (10) 0.0086 (9) 0.0066 (8) −0.0008 (8)
O1 0.0423 (8) 0.0264 (6) 0.0330 (7) 0.0034 (6) 0.0050 (6) 0.0004 (5)

Geometric parameters (Å, °)

C1—N1 1.315 (2) C9—C10 1.368 (3)
C1—N3 1.382 (2) C9—H9 0.9300
C1—C2 1.436 (2) C10—O1 1.360 (2)
C2—C3 1.354 (2) C10—C11 1.429 (2)
C2—C15 1.436 (3) C11—N2 1.354 (2)
C3—C4 1.434 (2) C12—N2 1.319 (2)
C3—H3 0.9300 C12—N3 1.394 (2)
C4—C5 1.380 (2) C13—C14 1.361 (3)
C4—C12 1.424 (2) C13—N3 1.375 (2)
C5—C6 1.402 (3) C13—H13 0.9300
C5—H5 0.9300 C14—N1 1.384 (3)
C6—C7 1.418 (2) C14—H14 0.9300
C6—C11 1.425 (2) C15—N4 1.142 (3)
C7—C8 1.360 (3) C16—O1 1.423 (2)
C7—H7 0.9300 C16—H16A 0.9600
C8—C9 1.412 (3) C16—H16B 0.9600
C8—H8 0.9300 C16—H16C 0.9600
N1—C1—N3 111.76 (15) O1—C10—C11 114.95 (15)
N1—C1—C2 129.36 (16) C9—C10—C11 119.84 (17)
N3—C1—C2 118.86 (15) N2—C11—C6 122.89 (16)
C3—C2—C1 120.12 (16) N2—C11—C10 118.69 (15)
C3—C2—C15 122.18 (16) C6—C11—C10 118.41 (15)
C1—C2—C15 117.70 (16) N2—C12—N3 117.42 (14)
C2—C3—C4 120.31 (16) N2—C12—C4 125.71 (15)
C2—C3—H3 119.8 N3—C12—C4 116.86 (15)
C4—C3—H3 119.8 C14—C13—N3 105.12 (16)
C5—C4—C12 116.60 (16) C14—C13—H13 127.4
C5—C4—C3 122.82 (15) N3—C13—H13 127.4
C12—C4—C3 120.55 (15) C13—C14—N1 111.80 (16)
C4—C5—C6 120.19 (16) C13—C14—H14 124.1
C4—C5—H5 119.9 N1—C14—H14 124.1
C6—C5—H5 119.9 N4—C15—C2 179.7 (2)
C5—C6—C7 122.25 (17) O1—C16—H16A 109.5
C5—C6—C11 117.77 (15) O1—C16—H16B 109.5
C7—C6—C11 119.95 (17) H16A—C16—H16B 109.5
C8—C7—C6 119.94 (18) O1—C16—H16C 109.5
C8—C7—H7 120.0 H16A—C16—H16C 109.5
C6—C7—H7 120.0 H16B—C16—H16C 109.5
C7—C8—C9 120.70 (18) C1—N1—C14 104.37 (15)
C7—C8—H8 119.6 C12—N2—C11 116.81 (14)
C9—C8—H8 119.6 C13—N3—C1 106.94 (14)
C10—C9—C8 121.13 (19) C13—N3—C12 129.77 (15)
C10—C9—H9 119.4 C1—N3—C12 123.28 (14)
C8—C9—H9 119.4 C10—O1—C16 116.67 (15)
O1—C10—C9 125.21 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···O1i 0.93 2.50 3.366 (3) 156
C3—H3···N1ii 0.93 2.62 3.394 (2) 141

Symmetry codes: (i) x, −y−1/2, z−1/2; (ii) x, −y+1/2, z−1/2.

Table 2 π–π stacking interactions (Å, °)

Cgi Cgj Centroid distance Interplanar spacing i αii γiii
Cg1 Cg2iv 3.487 (2) 3.322 2.68 15.42
Cg2 Cg1iv 3.487 (2) 3.361 2.68 17.68
Cg3 Cg3iv 3.710 (2) 3.382 0.00 24.27
Cg1 Cg4v 3.689 (2) 3.336 5.01 25.28
Cg4 Cg1v 3.689 (2) 3.397 5.01 22.98

Notes: (i) perpendicular distance between the centroid of the first ring and the plane of the second ring; (ii) dihedral angle between the plane of the first ring and the plane of the second ring; (iii) angle between the centroid of the first ring and the normal to the plane of the second ring; (iv) symmetry code: -x, -y, 1-z; (v) symmetry code: 1 - x, -y,1 - z. Cg1 is the centroid of atoms N1/C1/N2/C13/C14, Cg2 is the centroid of atoms N3/C12/C4–C6/C11, Cg3 is the centroid of atoms N2/C1–C4/C12 and Cg4 is the centroid of atoms C6–C11.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2229).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  3. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Fun, H.-K., Sivakumar, K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996). Acta Cryst. C52, 2231–2236.
  7. Gokhale, U. V. & Seshadri, S. (1987). Dyes Pigm.8, 157–163.
  8. Kondo, H., Taguchi, M., Inoue, Y., Sakamoto, F. & Tsukamoto, G. (1990). J. Med. Chem.33, 2012–2015. [DOI] [PubMed]
  9. Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005a). Acta Cryst. E61, o1377–o1380.
  10. Muthamizhchelvan, C., Saminathan, K., SethuSankar, K., Fraanje, J., Peschar, R. & Sivakumar, K. (2005b). Acta Cryst. E61, o2910–o2912.
  11. Rajagopal, R. & Seshadri, S. (1991). Dyes Pigm.17, 57–69.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Sivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996a). Acta Cryst. C52, 2236–2239.
  14. Sivakumar, K., Fun, H.-K., Chua, S.-O., Ooi, M.-F., Anwair, M. A. S., Gan, E.-K. & Jackson, W. R. (1996b). Acta Cryst. C52, 2239–2243.
  15. Vijila, C., Ramalingam, A., Gowri, V. S., Chua, S. O. & Sivakumar, K. (2000). Spectrochim. Acta, A56, 983–989. [DOI] [PubMed]
  16. Volovnenko, T. A., Tarasov, A. V., Zubatyuk, R. I., Shishkin, O. V., Turov, A. V. & Volovenko, Yu. M. (2009). Chem. Heterocycl. Compd In the press.
  17. Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON Chemical Crystallography Laboratory, University of Oxford, England.
  18. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809037544/fj2229sup1.cif

e-65-o2524-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037544/fj2229Isup2.hkl

e-65-o2524-Isup2.hkl (169.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES