Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 19;65(Pt 10):o2490. doi: 10.1107/S1600536809036836

4,4′-Bipyridinium 1,4-phenyl­ene­diacetate

Maomao Jia a, Xianlin Liu a, Jing Miao a, Wei Xiong a, Zilu Chen a,*
PMCID: PMC2970383  PMID: 21577940

Abstract

The title compound, C10H10N2 2+·C10H8O4 2−, has inversion centres located at the geometric centres of the 1,4-phenyl­enediacetate anion and 4,4′-bipyridinium cation. The anions and cations are connected by N—H⋯O hydrogen bonds, forming one-dimensional supra­molecular chains, which inter­act with each other via π–π inter­actions [centroid–centroid distance = 3.938 (2) Å], building a two-dimensional supra­molecular sheet.

Related literature

For related complexes of 1,4-phenyl­enediacetic acid, see: Braverman & LaDuca (2007); Soares-Santos et al. (2008); Liu et al. (2009); Chen et al. (2006a ,b ).graphic file with name e-65-o2490-scheme1.jpg

Experimental

Crystal data

  • C10H10N2 2+·C10H8O4 2−

  • M r = 350.36

  • Triclinic, Inline graphic

  • a = 4.579 (3) Å

  • b = 6.950 (5) Å

  • c = 13.859 (10) Å

  • α = 99.618 (9)°

  • β = 93.672 (9)°

  • γ = 97.373 (8)°

  • V = 429.6 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD area detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.977, T max = 0.983

  • 2241 measured reflections

  • 1499 independent reflections

  • 1052 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.193

  • S = 1.07

  • 1499 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036836/jh2103sup1.cif

e-65-o2490-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036836/jh2103Isup2.hkl

e-65-o2490-Isup2.hkl (73.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2 0.86 1.75 2.613 (3) 176

Acknowledgments

The authors are grateful for financial support from the Guangxi Natural Science Foundation (grant No. 0991008) and the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, China (grant No. [2006]331).

supplementary crystallographic information

Comment

The flexible ligand of 1,4-phenylenediacetate is drawing much interest in constructing metal–organic framework or supramolecular molecules due to its flexibility and its multifunctional groups of carboxylato group and phenyl ring (Braverman & LaDuca 2007; Soares-Santos et al., 2008; Liu et al., 2009; Chen et al., 2006a,b). We thus report here a supramolecular structrure formed by 4,4'-bipyridine and 1,4-phenylenediacetic acid. The title compound 4,4'-bipyridinium 1,4-phenylenediacetate (Fig. 1), [C10H10N2][C10H8O4], has inversion centres located on the geometric centres of the 1,4-phenylenediacetate anion and 4,4'-bipyridinium cation. Each 4,4'-bipyridinium cation connects two 1,4-phenylenediacetate anions via N—H···O hydrogen bonds (Table 1), and vice versa. This leads to the formation of one dimensional supramolecular chains as shown in Fig. 2. The neighboring pyridyl rings from the adjacent one chains parallel to each other with perpendicular distance of 3.5654 (4) Å, a centre-to-centre distance of 3.938 (2) Å and an off-set angle of 25.135 (7)°. These information suggest the existence of significant π···π stacking interaction between the two pyridyl rings, which results in the construction of two dimensional supramolecular sheets (Fig. 2) from the one dimensional chains.

Experimental

A mixture of 1,4-phenylenediacetic acid (0.0584 g, 0.3 mmol), 4,4'-bipyridine (0.0312 g, 0.2 mmol), Mn(CH3COO)2.4H2O (0.0735 g, 0.3 mmol) and ethanol (2 ml) was sealed in a 23 ml Teflon-lined autoclave, heated at 140 °C for 4 d and cooled over a period of 48 h. Colorless crystals of the title compound were collected in a yield of 60% (0.0802 g). Found: C, 68.26; H, 5.40; N, 7.28. C20H18N2O4 requires C, 68.56; H, 5.18; N, 7.52%.

Refinement

H atoms on the carbon and nitrogen atoms were placed at calculated positions (C–H = 0.93 Å and N–H = 0.86 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom-numbering scheme and 30% displacement ellipsoids.

Fig. 2.

Fig. 2.

A view of the two-dimensional supramolecular sheet assembled by hydrogen bonds and π···π stacking interactions.

Crystal data

C10H10N22+·C10H8O42 Z = 1
Mr = 350.36 F(000) = 184
Triclinic, P1 Dx = 1.354 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 4.579 (3) Å Cell parameters from 736 reflections
b = 6.950 (5) Å θ = 3.0–23.8°
c = 13.859 (10) Å µ = 0.10 mm1
α = 99.618 (9)° T = 296 K
β = 93.672 (9)° Block, colourless
γ = 97.373 (8)° 0.25 × 0.20 × 0.18 mm
V = 429.6 (5) Å3

Data collection

Bruker SMART CCD area detector diffractometer 1499 independent reflections
Radiation source: fine-focus sealed tube 1052 reflections with I > 2σ(I)
graphite Rint = 0.014
φ and ω scans θmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −5→5
Tmin = 0.977, Tmax = 0.983 k = −8→7
2241 measured reflections l = −10→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.1429P] where P = (Fo2 + 2Fc2)/3
1499 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O2 0.6746 (5) 0.5442 (3) 0.19005 (15) 0.0691 (7)
O1 0.7402 (6) 0.3340 (3) 0.28869 (16) 0.0812 (8)
N1 0.3813 (5) 0.7303 (4) 0.32281 (18) 0.0628 (7)
H1 0.4734 0.6645 0.2794 0.075*
C8 0.0807 (6) 0.9428 (4) 0.46281 (19) 0.0511 (7)
C4 0.6539 (6) −0.0571 (4) 0.0761 (2) 0.0568 (8)
H4 0.7572 −0.0977 0.1273 0.068*
C5 0.4446 (7) −0.1901 (4) 0.0152 (2) 0.0583 (8)
H5 0.4078 −0.3191 0.0262 0.070*
C3 0.7125 (6) 0.1349 (4) 0.06220 (19) 0.0522 (7)
C7 0.1869 (7) 0.7720 (4) 0.4784 (2) 0.0644 (8)
H7 0.1595 0.7255 0.5367 0.077*
C9 0.1311 (8) 1.0030 (5) 0.3742 (2) 0.0709 (9)
H9 0.0632 1.1163 0.3597 0.085*
C6 0.3343 (7) 0.6709 (4) 0.4066 (2) 0.0689 (9)
H6 0.4032 0.5558 0.4179 0.083*
C2 0.9333 (7) 0.2827 (5) 0.1320 (2) 0.0642 (8)
H2A 1.0804 0.2150 0.1606 0.077*
H2B 1.0338 0.3765 0.0963 0.077*
C1 0.7762 (6) 0.3900 (4) 0.2123 (2) 0.0524 (7)
C10 0.2832 (7) 0.8930 (5) 0.3077 (2) 0.0739 (10)
H10 0.3182 0.9365 0.2490 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O2 0.0924 (16) 0.0590 (13) 0.0641 (14) 0.0268 (11) 0.0119 (11) 0.0198 (10)
O1 0.119 (2) 0.0764 (15) 0.0619 (14) 0.0402 (14) 0.0238 (13) 0.0264 (12)
N1 0.0687 (16) 0.0644 (16) 0.0565 (15) 0.0193 (12) 0.0133 (12) 0.0033 (12)
C8 0.0531 (16) 0.0494 (15) 0.0509 (16) 0.0097 (12) 0.0035 (12) 0.0074 (12)
C4 0.0694 (18) 0.0581 (17) 0.0498 (16) 0.0235 (14) 0.0140 (14) 0.0151 (13)
C5 0.0774 (19) 0.0476 (16) 0.0568 (17) 0.0191 (14) 0.0214 (15) 0.0157 (13)
C3 0.0563 (16) 0.0547 (16) 0.0487 (15) 0.0168 (13) 0.0214 (12) 0.0049 (12)
C7 0.085 (2) 0.0583 (18) 0.0566 (18) 0.0252 (15) 0.0140 (15) 0.0156 (14)
C9 0.094 (2) 0.066 (2) 0.066 (2) 0.0364 (17) 0.0240 (17) 0.0240 (15)
C6 0.092 (2) 0.0569 (18) 0.065 (2) 0.0303 (17) 0.0141 (17) 0.0125 (15)
C2 0.0603 (17) 0.0675 (19) 0.0650 (19) 0.0138 (15) 0.0152 (14) 0.0048 (15)
C1 0.0589 (16) 0.0480 (15) 0.0503 (16) 0.0081 (13) 0.0052 (13) 0.0081 (12)
C10 0.095 (2) 0.076 (2) 0.063 (2) 0.0354 (19) 0.0246 (18) 0.0229 (16)

Geometric parameters (Å, °)

O2—C1 1.296 (3) C5—H5 0.9300
O1—C1 1.202 (3) C3—C5ii 1.388 (4)
N1—C10 1.312 (4) C3—C2 1.513 (4)
N1—C6 1.317 (4) C7—C6 1.383 (4)
N1—H1 0.8600 C7—H7 0.9300
C8—C7 1.383 (4) C9—C10 1.379 (4)
C8—C9 1.386 (4) C9—H9 0.9300
C8—C8i 1.488 (5) C6—H6 0.9300
C4—C3 1.375 (4) C2—C1 1.508 (4)
C4—C5 1.375 (4) C2—H2A 0.9700
C4—H4 0.9300 C2—H2B 0.9700
C5—C3ii 1.388 (4) C10—H10 0.9300
C10—N1—C6 117.9 (3) C10—C9—C8 119.3 (3)
C10—N1—H1 121.0 C10—C9—H9 120.4
C6—N1—H1 121.0 C8—C9—H9 120.4
C7—C8—C9 116.8 (3) N1—C6—C7 122.9 (3)
C7—C8—C8i 122.0 (3) N1—C6—H6 118.5
C9—C8—C8i 121.3 (3) C7—C6—H6 118.5
C3—C4—C5 120.9 (3) C1—C2—C3 109.8 (2)
C3—C4—H4 119.5 C1—C2—H2A 109.7
C5—C4—H4 119.5 C3—C2—H2A 109.7
C4—C5—C3ii 121.1 (3) C1—C2—H2B 109.7
C4—C5—H5 119.5 C3—C2—H2B 109.7
C3ii—C5—H5 119.5 H2A—C2—H2B 108.2
C4—C3—C5ii 118.0 (3) O1—C1—O2 123.0 (3)
C4—C3—C2 120.7 (3) O1—C1—C2 123.0 (3)
C5ii—C3—C2 121.3 (3) O2—C1—C2 113.9 (3)
C8—C7—C6 119.6 (3) N1—C10—C9 123.5 (3)
C8—C7—H7 120.2 N1—C10—H10 118.3
C6—C7—H7 120.2 C9—C10—H10 118.3
C3—C4—C5—C3ii 0.3 (4) C8—C7—C6—N1 0.4 (5)
C5—C4—C3—C5ii −0.3 (4) C4—C3—C2—C1 −92.6 (3)
C5—C4—C3—C2 177.3 (2) C5ii—C3—C2—C1 85.0 (3)
C9—C8—C7—C6 −0.2 (5) C3—C2—C1—O1 90.7 (4)
C8i—C8—C7—C6 179.7 (3) C3—C2—C1—O2 −87.0 (3)
C7—C8—C9—C10 −0.5 (5) C6—N1—C10—C9 −0.8 (5)
C8i—C8—C9—C10 179.6 (3) C8—C9—C10—N1 1.0 (6)
C10—N1—C6—C7 0.1 (5)

Symmetry codes: (i) −x, −y+2, −z+1; (ii) −x+1, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O2 0.86 1.75 2.613 (3) 176

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2103).

References

  1. Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des.7, 2343–2351.
  2. Bruker (1998). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chen, Z.-L., Zhang, Y.-Z. & Liang, F.-P. (2006a). Acta Cryst.C62, m48–m50. [DOI] [PubMed]
  5. Chen, Z.-L., Zhang, Y.-Z., Liang, F.-P. & Wu, Q. (2006b). Acta Cryst. E62, m2409–m2411.
  6. Liu, T., Lü, J., Shi, L., Guo, Z. & Cao, R. (2009). CrystEngComm, 11, 583–588.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Soares-Santos, P. C. R., Cunha-Silva, L., Almeida Paz, F. A., Sá Ferreira, R. A., Rocha, J., Trindade, T., Carlos, L. D. & Nogueira, H. I. S. (2008). Cryst. Growth Des.8, 2505–2516.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809036836/jh2103sup1.cif

e-65-o2490-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036836/jh2103Isup2.hkl

e-65-o2490-Isup2.hkl (73.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES