Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 19;65(Pt 10):m1233–m1234. doi: 10.1107/S1600536809036678

Dichlorido{[(diphenyl­phosphino)meth­yl]bis­(2-methyl­phen­yl)phosphine-κ2 P,P′}palladium(II)

Ansonia H Badgett a, Danielle L Gray b, Quinetta D Shelby a,*
PMCID: PMC2970390  PMID: 21577752

Abstract

In the title compound, [PdCl2(C27H26P2)] or PdCl2[(C6H5)2PCH2P(C6H4CH3)2], the palladium center has a distorted square-planar geometry. There are two crystallographically independent mol­ecules in the asymmetric unit. The dihedral angle between the PdP2 and PdCl2 planes is 2.95 (4)° in one independent mol­ecule and 5.15 (4)° in the other. The P—Pd—P and P—C—P bond angles are significantly distorted because of the small bite angle of the chelating (bis­phosphino)methane ligand. The steric demands of the substituted rings in the mixed ligand cause a slight elongation of the Pd—P(C6H4CH3)2 bond relative to the Pd—P(C6H5)2 bond. In one molecule the tolyl ring shows positional disorder in a 0.58 (2):0.42 (2) ratio, in the other molecule the phenyl ring shows positional disorder in a 0.838 (9):0.162 (9) ratio.

Related literature

For the steric effects of (bis­phosphino)methane ligands, see: Filby et al. (2006); Dossett et al. (2001). For dichlorido[bis­(diphenyl­phosphino)methane]palladium(II), see: Shahid et al. (2009); Steffen & Palenik (1976). For dichlorido[bis­(dicyclo­hexyl­phosphino)methane]palladium(II), see: Mague et al. (2007). For related literature regarding the synthesis of the title compound, see: Wass (2001); Gauthron et al. (1998).graphic file with name e-65-m1233-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C27H26P2)]

  • M r = 589.72

  • Monoclinic, Inline graphic

  • a = 17.8761 (10) Å

  • b = 16.7568 (9) Å

  • c = 16.9407 (9) Å

  • β = 90.446 (3)°

  • V = 5074.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.08 mm−1

  • T = 193 K

  • 0.30 × 0.28 × 0.26 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: integration (SHELXTL/XPREP; Bruker, 2005 and SADABS; Bruker, 2007)T min = 0.728, T max = 0.801

  • 83307 measured reflections

  • 9350 independent reflections

  • 8400 reflections with I > 2σ(I)

  • R int = 0.037

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.074

  • S = 1.26

  • 9350 reflections

  • 702 parameters

  • 469 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.47 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and XPREP/SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and CrystalMaker (CrystalMaker, 1994); software used to prepare material for publication: XCIF/SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036678/ez2183sup1.cif

e-65-m1233-sup1.cif (36.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036678/ez2183Isup2.hkl

e-65-m1233-Isup2.hkl (457.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14A⋯Cl1 0.98 2.63 3.612 (4) 179
C34—H34A⋯Cl3 0.98 2.66 3.637 (4) 179

Acknowledgments

We thank the National Science Foundation (grant CHE-0548107) for support of this work. AHB thanks the NSF LSAMP Program (grant HRD-0413000) for research support. The Materials Chemistry Laboratory at the University of Illinois was supported in part by grants from the NSF (CHE 95–03145 and CHE 03–43032).

supplementary crystallographic information

Comment

The steric effects on the bite angles and preferred bonding modes of aromatic (bisphosphino)methane ligands have been studied (Filby et al., 2006), and there is interest in their four-membered palladacyclic complexes because they have been shown to be active catalysts for reactions such as the copolymerization of CO and C2H4 (Dossett et al., 2001).

The title compound, PdCl2[(C6H5)2PCH2P(C6H4CH3)2], crystallizes with two independent molecules in the asymmetric unit with the palladium center in each adopting a distorted square-planar geometry. The C1 to C7 ortho-tolyl ring in molecule 1 and the C43 to C48 phenyl ring in molecule 2 are disordered. The asymmetric unit containing both molecules showing disorder of their respective aromatic rings is shown in Fig. 1. In molecule 1 (Fig. 2) the dihedral angle between the PdP2 and PdCl2 planes is 2.95 (4)°, whereas the dihedral angle is 5.15 (4)° in molecule 2 (Fig. 3). The related symmetrical compounds PdCl2[(C6H5)2PCH2P(C6H5)2] (Shahid et al., 2009; Steffen & Palenik, 1976) and PdCl2[(C6H11)2PCH2P(C6H11)2] (Mague et al., 2007) show similar deviations from planarity about the palladium center due partly to the small bite angle of the chelating (bisphosphino)methane ligand and the spatial demands of the ligand substituents. The P—Pd—P bond angles of 73.75 (3)° in molecule 1 and 73.37 (3)° in molecule 2 are significantly distorted from the normal square-planar value of 90°, and the P—C—P bond angles (93.95 (13) and 92.73 (14)°, respectively) show major deviations from the normal tetrahedral value of 109.5°. Notably, the Pd—P(C6H4CH3)2 bond lengths of 2.2646 (8) in molecule 1 and 2.2604 (8) Å in molecule 2 are slightly longer than the Pd—P(C6H5)2 bond lengths (2.2197 (7) and 2.2146 (8) Å in the respective molecules), which is likely a result of the steric requirements of the substituted rings.

There are two short Cl···H interactions: Cl1···H14A—C14 is 2.631 Å and Cl3···H34A—C34 is 2.658 Å. These are intramolecular Cl···H—C hydrogen bonds and they occur between the same atoms on both symmetrically independent molecules. The Cl···H—C angles are nearly linear (178.9° and 178.7°, respectively).

Experimental

The mixed ligand Ph2PCH2P(C6H4CH3)2 has been reported in the patent literature (Wass, 2001), and our synthetic procedure will be published elsewhere. The title compound, PdCl2[(C6H5)2PCH2P(C6H4CH3)2], was prepared from a procedure adapted from that described previously for the synthesis of PdCl2[(C6H5)2PCH2P(C6H5)2] by Gauthron et al. (1998). A solid mixture of Ph2PCH2P(C6H4CH3)2 (612 mg, 1.48 mmol) and PdCl2 (260 mg, 1.47 mmol) was suspended in 50% EtOH (25 ml) and concentrated HCl (25 ml). The mixture was refluxed overnight, and a yellow solid precipitated from solution. The mixture was filtered, and the yellow solid was washed with H2O (2 × 25 ml) and EtOH (2 × 25 ml). After drying under vacuum, the title compound was obtained as a yellow powder (0.844 g, 98%). Mp: 258.1 °C (dec.). Anal. Calcd for C27H26Cl2P2Pd: C, 54.99; H, 4.44; P, 10.50. Found: C, 54.84; H, 4.33; P, 10.18. 1H NMR (CDCl3): δ 2.27 (s, CH,3), 4.30 (virtual t, 2JHP = 10.6, 9.0 Hz, CH2), 7.23–8.04 (m, C6H5 and C6H4CH3). 31P{1H} NMR (CDCl3): δ -54.1 (d, 2JPP = 88 Hz, P(C6H5)2 or P(C6H4CH3)2), -52.9 (d, 2JPP = 88 Hz, P(C6H5)2 or P(C6H4CH3)2).

Single crystals suitable for X-ray diffraction were grown from slow diffusion of pentane into a concentrated CH2Cl2 solution at room temperature.

Refinement

The proposed structural model consisting of two independent host molecules that each exhibit disorder off of the phosphines was developed. The positional disorder present in molecule 1 (Fig. 1) is located on the ortho-tolyl ring that contains C1 to C7. The disordered ortho-tolyl rings were restrained to have similar P—C bond distances, the same geometries, and to be flat using an effective standard deviation (e.s.d.) for each restraint of 0.01 Å. The final refinement showed that the ortho-tolyl ring is located in the primary position 57.8 (20)% of the time. The disorder present in molecule 2 (Fig. 1) is located on the phenyl ring that contains C43 to C48. The disordered phenyl rings were restrained to have similar P—C bond distances, similar C—C bond distances across the ring, and to be flat using e.s.d.'s of 0.01. The final refinement showed only a slight disorder in the phenyl ring with the primary position being 83.83 (9)% occupied. Anti bumping restraints were also used to prevent close contacts between the H atoms on the P—C—P bridged carbon and the ortho H atoms on the phenyl rings. Rigid-bond restraints (e.s.d. 0.01) were imposed on displacement parameters for all disordered sites and similar displacement amplitudes (e.s.d. 0.01) were imposed on disordered sites overlapping by less than the sum of Van der Waals radii. Methyl H atom positions, R—CH3, were optimized by rotation about R—C bonds with idealized C—H, R—H and H···H distances (C—H = 0.9800 and H···H = 1.6000 Å). Remaining H atoms were included as riding idealized contributors (aromatic C-H = 0.9500 Å, and R2CH2 C-H = 0.9900 Å). Methyl H atom U's were assigned as 1.5 times Ueq of the carrier atom; remaining H atom U's were assigned as 1.2 times carrier Ueq.

Figures

Fig. 1.

Fig. 1.

Two independent molecular structures of the title compound in the asymmetric unit showing disorder of the ortho-tolyl ring C1 to C7 in molecule 1 (left) and the phenyl ring C43 to C48 in molecule 2 (right) with 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms.

Fig. 2.

Fig. 2.

Molecule 1 of the title compound showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Disorder of the ortho-tolyl ring C1 to C7 has been omitted for clarity.

Fig. 3.

Fig. 3.

Molecule 2 of the title compound showing 35% probability ellipsoids for non-H atoms and circles of arbitrary size for H atoms. Disorder of the phenyl ring C43 to C48 has been omitted for clarity.

Crystal data

[PdCl2(C27H26P2)] F(000) = 2384
Mr = 589.72 Dx = 1.544 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9741 reflections
a = 17.8761 (10) Å θ = 2.4–27.1°
b = 16.7568 (9) Å µ = 1.08 mm1
c = 16.9407 (9) Å T = 193 K
β = 90.446 (3)° Prism, yellow
V = 5074.4 (5) Å3 0.30 × 0.28 × 0.26 mm
Z = 8

Data collection

Bruker Kappa APEXII CCD diffractometer 9350 independent reflections
Radiation source: fine-focus sealed tube 8400 reflections with I > 2σ(I)
graphite Rint = 0.037
profile data from φ and ω scans θmax = 25.4°, θmin = 1.7°
Absorption correction: integration (SHELXTL/XPREP; Bruker, 2005) h = −20→21
Tmin = 0.728, Tmax = 0.801 k = −20→20
83307 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074 H-atom parameters constrained
S = 1.26 w = 1/[σ2(Fo2) + (0.0262P)2 + 5.P] where P = (Fo2 + 2Fc2)/3
9350 reflections (Δ/σ)max = 0.006
702 parameters Δρmax = 0.66 e Å3
469 restraints Δρmin = −0.47 e Å3

Special details

Experimental. One distinct cell was identified using APEX2 (Bruker, 2004). Six frame series were integrated and filtered for statistical outliers using SAINT (Bruker, 2005) then corrected for absorption by integration using SHELXTL/XPREP V2005/2 (Bruker, 2005) before using SAINT/SADABS (Bruker, 2007) to sort, merge, and scale the combined data. No decay correction was applied.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Structure was phased by direct methods (Sheldrick, 2008). Systematic conditions suggested the unambiguous space group. The space group choice was confirmed by successful convergence of the full-matrix least-squares refinement on F2. The highest peaks in the final difference Fourier map were in the vicinity of atoms Pd2, Cl4, C48, and C54; the final map had no other significant features. A final analysis of variance between observed and calculated structure factors showed some dependence on amplitude and little dependence on resolution.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Pd1 −0.003487 (12) 0.267501 (13) 0.482122 (12) 0.02435 (6)
P1 0.08444 (4) 0.21236 (4) 0.56213 (4) 0.02565 (16)
P2 −0.04231 (4) 0.28693 (4) 0.60477 (4) 0.02460 (16)
Cl1 0.04979 (5) 0.24648 (5) 0.35578 (4) 0.03729 (18)
Cl2 −0.11120 (4) 0.32869 (5) 0.42864 (5) 0.04003 (19)
C1 0.1820 (3) 0.2426 (6) 0.5586 (6) 0.0332 (16) 0.58 (2)
C2 0.2345 (4) 0.2155 (5) 0.6137 (5) 0.0372 (16) 0.58 (2)
C3 0.3084 (4) 0.2406 (6) 0.6049 (7) 0.048 (2) 0.58 (2)
H3 0.3456 0.2234 0.6416 0.058* 0.58 (2)
C4 0.3277 (5) 0.2894 (8) 0.5444 (7) 0.053 (2) 0.58 (2)
H4 0.3786 0.3046 0.5392 0.063* 0.58 (2)
C5 0.2770 (6) 0.3175 (7) 0.4908 (6) 0.052 (2) 0.58 (2)
H5 0.2918 0.3526 0.4498 0.063* 0.58 (2)
C6 0.2030 (5) 0.2932 (7) 0.4977 (7) 0.0425 (19) 0.58 (2)
H6 0.1666 0.3113 0.4607 0.051* 0.58 (2)
C7 0.2183 (4) 0.1629 (5) 0.6826 (5) 0.0378 (18) 0.58 (2)
H7A 0.1811 0.1886 0.7164 0.057* 0.58 (2)
H7B 0.2644 0.1538 0.7129 0.057* 0.58 (2)
H7C 0.1987 0.1117 0.6637 0.057* 0.58 (2)
C1B 0.1795 (4) 0.2485 (8) 0.5497 (8) 0.033 (2) 0.42 (2)
C2B 0.2402 (6) 0.2222 (7) 0.5947 (8) 0.039 (2) 0.42 (2)
C3B 0.3100 (6) 0.2564 (7) 0.5810 (9) 0.045 (2) 0.42 (2)
H3B 0.3523 0.2395 0.6110 0.054* 0.42 (2)
C4B 0.3181 (7) 0.3139 (9) 0.5247 (9) 0.048 (2) 0.42 (2)
H4B 0.3663 0.3359 0.5158 0.057* 0.42 (2)
C5B 0.2591 (7) 0.3407 (8) 0.4811 (8) 0.042 (2) 0.42 (2)
H5B 0.2658 0.3815 0.4429 0.050* 0.42 (2)
C6B 0.1889 (7) 0.3078 (9) 0.4931 (9) 0.036 (2) 0.42 (2)
H6B 0.1473 0.3258 0.4627 0.043* 0.42 (2)
C7B 0.2347 (6) 0.1602 (8) 0.6572 (9) 0.049 (2) 0.42 (2)
H7D 0.2828 0.1556 0.6850 0.074* 0.42 (2)
H7E 0.2219 0.1088 0.6331 0.074* 0.42 (2)
H7F 0.1958 0.1753 0.6948 0.074* 0.42 (2)
C8 0.07714 (16) 0.10450 (18) 0.57255 (18) 0.0312 (7)
C9 0.10714 (17) 0.05362 (19) 0.51544 (19) 0.0355 (7)
C10 0.0951 (2) −0.0281 (2) 0.5250 (2) 0.0457 (9)
H10 0.1140 −0.0638 0.4864 0.055*
C11 0.0573 (2) −0.0584 (2) 0.5875 (3) 0.0521 (10)
H11 0.0499 −0.1144 0.5916 0.063*
C12 0.0297 (2) −0.0090 (2) 0.6445 (2) 0.0502 (9)
H12 0.0042 −0.0302 0.6887 0.060*
C13 0.03945 (19) 0.07127 (18) 0.6368 (2) 0.0405 (8)
H13 0.0200 0.1057 0.6762 0.049*
C14 0.1503 (2) 0.0829 (2) 0.4460 (2) 0.0465 (9)
H14A 0.1231 0.1269 0.4208 0.070*
H14B 0.1565 0.0393 0.4081 0.070*
H14C 0.1996 0.1016 0.4637 0.070*
C15 0.04670 (16) 0.26069 (16) 0.65182 (16) 0.0273 (6)
H15A 0.0409 0.2231 0.6965 0.033*
H15B 0.0760 0.3080 0.6686 0.033*
C16 −0.11518 (16) 0.22124 (17) 0.63808 (17) 0.0270 (6)
C17 −0.17584 (18) 0.2076 (2) 0.58852 (19) 0.0377 (7)
H17 −0.1784 0.2327 0.5383 0.045*
C18 −0.2327 (2) 0.1573 (2) 0.6124 (2) 0.0505 (10)
H18 −0.2753 0.1496 0.5794 0.061*
C19 −0.2277 (2) 0.1185 (2) 0.6839 (2) 0.0477 (9)
H19 −0.2660 0.0826 0.6992 0.057*
C20 −0.1676 (2) 0.1314 (2) 0.7332 (2) 0.0430 (8)
H20 −0.1646 0.1042 0.7823 0.052*
C21 −0.11141 (18) 0.1838 (2) 0.71164 (18) 0.0356 (7)
H21 −0.0707 0.1942 0.7466 0.043*
C22 −0.06719 (17) 0.38759 (18) 0.63035 (17) 0.0294 (6)
C23 −0.0217 (2) 0.4501 (2) 0.6063 (2) 0.0433 (8)
H23 0.0230 0.4393 0.5783 0.052*
C24 −0.0414 (2) 0.5281 (2) 0.6231 (2) 0.0510 (9)
H24 −0.0095 0.5706 0.6077 0.061*
C25 −0.1066 (2) 0.5444 (2) 0.6616 (2) 0.0505 (9)
H25 −0.1205 0.5982 0.6717 0.061*
C26 −0.1520 (2) 0.4832 (2) 0.6855 (3) 0.0575 (11)
H26 −0.1971 0.4949 0.7125 0.069*
C27 −0.1326 (2) 0.4046 (2) 0.6708 (2) 0.0460 (9)
H27 −0.1639 0.3625 0.6884 0.055*
Pd2 0.488381 (12) 0.480723 (13) 0.266672 (13) 0.02681 (7)
P3 0.55839 (4) 0.58234 (4) 0.21988 (4) 0.02569 (16)
P4 0.42890 (4) 0.59234 (5) 0.29718 (4) 0.02862 (17)
Cl3 0.56527 (5) 0.37017 (5) 0.23698 (5) 0.0431 (2)
Cl4 0.39319 (5) 0.39998 (6) 0.31809 (6) 0.0586 (3)
C28 0.54532 (16) 0.60223 (19) 0.11524 (18) 0.0347 (7)
C29 0.58273 (19) 0.5576 (2) 0.0591 (2) 0.0418 (8)
C30 0.5684 (2) 0.5757 (2) −0.0217 (2) 0.0530 (10)
H30 0.5937 0.5467 −0.0616 0.064*
C31 0.5194 (3) 0.6337 (3) −0.0426 (2) 0.0617 (12)
H31 0.5105 0.6440 −0.0970 0.074*
C32 0.4827 (2) 0.6775 (3) 0.0124 (2) 0.0603 (11)
H32 0.4485 0.7181 −0.0031 0.072*
C33 0.4957 (2) 0.6623 (2) 0.08936 (19) 0.0497 (9)
H33 0.4703 0.6934 0.1277 0.060*
C34 0.6361 (2) 0.4946 (2) 0.0783 (2) 0.0529 (10)
H34A 0.6162 0.4615 0.1209 0.079*
H34B 0.6835 0.5186 0.0955 0.079*
H34C 0.6445 0.4615 0.0316 0.079*
C35 0.65584 (16) 0.58542 (18) 0.25143 (18) 0.0307 (7)
C36 0.70975 (19) 0.6366 (2) 0.2212 (2) 0.0391 (8)
C37 0.78383 (19) 0.6289 (2) 0.2510 (2) 0.0480 (9)
H37 0.8226 0.6612 0.2301 0.058*
C38 0.7998 (2) 0.5756 (2) 0.3093 (2) 0.0524 (10)
H38 0.8499 0.5714 0.3279 0.063*
C39 0.7466 (2) 0.5281 (2) 0.3418 (2) 0.0503 (9)
H39 0.7588 0.4929 0.3840 0.060*
C40 0.67476 (18) 0.5321 (2) 0.3125 (2) 0.0386 (7)
H40 0.6373 0.4983 0.3338 0.046*
C41 0.6961 (2) 0.6991 (3) 0.1625 (3) 0.0609 (11)
H41A 0.6526 0.7309 0.1781 0.091*
H41B 0.6863 0.6745 0.1109 0.091*
H41C 0.7401 0.7337 0.1591 0.091*
C42 0.50777 (17) 0.65964 (18) 0.27665 (17) 0.0318 (7)
H42A 0.5349 0.6768 0.3249 0.038*
H42B 0.4933 0.7065 0.2443 0.038*
C43 0.4046 (2) 0.60883 (11) 0.3993 (2) 0.0342 (9) 0.838 (9)
C44 0.3333 (3) 0.6318 (3) 0.4212 (2) 0.0477 (12) 0.838 (9)
H44 0.2956 0.6395 0.3821 0.057* 0.838 (9)
C45 0.3168 (3) 0.6437 (3) 0.5005 (3) 0.0557 (15) 0.838 (9)
H45 0.2678 0.6588 0.5158 0.067* 0.838 (9)
C46 0.3716 (3) 0.6337 (2) 0.5561 (2) 0.0484 (13) 0.838 (9)
H46 0.3606 0.6430 0.6101 0.058* 0.838 (9)
C47 0.4423 (3) 0.6103 (3) 0.5352 (2) 0.0474 (12) 0.838 (9)
H47 0.4797 0.6032 0.5748 0.057* 0.838 (9)
C48 0.4594 (3) 0.5970 (3) 0.4567 (3) 0.0421 (10) 0.838 (9)
H48 0.5081 0.5801 0.4423 0.050* 0.838 (9)
C43B 0.3923 (12) 0.6025 (5) 0.3961 (7) 0.041 (3) 0.162 (9)
C44B 0.3159 (11) 0.5970 (13) 0.4095 (9) 0.043 (3) 0.162 (9)
H44B 0.2826 0.5878 0.3665 0.052* 0.162 (9)
C45B 0.2882 (11) 0.6049 (15) 0.4854 (10) 0.050 (3) 0.162 (9)
H45B 0.2359 0.6010 0.4944 0.060* 0.162 (9)
C46B 0.3361 (14) 0.6182 (11) 0.5473 (10) 0.050 (3) 0.162 (9)
H46B 0.3169 0.6237 0.5991 0.060* 0.162 (9)
C47B 0.4113 (14) 0.6237 (13) 0.5349 (10) 0.047 (3) 0.162 (9)
H47B 0.4441 0.6330 0.5783 0.057* 0.162 (9)
C48B 0.4406 (12) 0.6158 (12) 0.4593 (11) 0.044 (3) 0.162 (9)
H48B 0.4930 0.6195 0.4512 0.052* 0.162 (9)
C49 0.35162 (16) 0.61621 (19) 0.23292 (17) 0.0313 (7)
C50 0.32022 (19) 0.5565 (2) 0.1869 (2) 0.0418 (8)
H50 0.3380 0.5032 0.1912 0.050*
C51 0.2627 (2) 0.5748 (2) 0.1346 (2) 0.0537 (10)
H51 0.2412 0.5343 0.1024 0.064*
C52 0.2368 (2) 0.6517 (3) 0.1295 (2) 0.0527 (10)
H52 0.1971 0.6638 0.0939 0.063*
C53 0.2674 (2) 0.7115 (2) 0.1749 (2) 0.0465 (9)
H53 0.2489 0.7645 0.1705 0.056*
C54 0.32488 (19) 0.6945 (2) 0.2270 (2) 0.0424 (8)
H54 0.3462 0.7356 0.2585 0.051*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pd1 0.02804 (12) 0.02685 (12) 0.01816 (11) −0.00370 (9) 0.00142 (8) −0.00013 (8)
P1 0.0263 (4) 0.0273 (4) 0.0233 (4) −0.0031 (3) 0.0014 (3) −0.0008 (3)
P2 0.0238 (4) 0.0290 (4) 0.0211 (3) −0.0058 (3) 0.0023 (3) −0.0014 (3)
Cl1 0.0511 (5) 0.0393 (4) 0.0215 (3) 0.0050 (4) 0.0079 (3) 0.0004 (3)
Cl2 0.0319 (4) 0.0551 (5) 0.0330 (4) −0.0009 (4) −0.0036 (3) 0.0092 (4)
C1 0.030 (3) 0.033 (3) 0.037 (3) −0.004 (3) 0.009 (3) −0.009 (3)
C2 0.030 (3) 0.043 (3) 0.039 (4) 0.000 (2) 0.003 (2) −0.013 (3)
C3 0.034 (3) 0.060 (4) 0.049 (5) −0.002 (3) 0.005 (3) −0.011 (3)
C4 0.036 (3) 0.065 (5) 0.058 (5) −0.008 (3) 0.007 (3) −0.009 (4)
C5 0.044 (4) 0.058 (5) 0.055 (4) −0.009 (4) 0.013 (3) −0.001 (4)
C6 0.038 (3) 0.049 (4) 0.041 (3) −0.007 (3) 0.010 (3) −0.007 (3)
C7 0.029 (3) 0.047 (3) 0.037 (4) 0.005 (3) −0.002 (3) −0.003 (3)
C1B 0.028 (3) 0.038 (4) 0.032 (4) −0.005 (3) 0.006 (3) −0.012 (3)
C2B 0.033 (3) 0.046 (4) 0.039 (4) −0.002 (3) 0.007 (3) −0.014 (3)
C3B 0.033 (3) 0.057 (4) 0.045 (5) −0.006 (3) 0.005 (4) −0.010 (4)
C4B 0.034 (4) 0.057 (5) 0.052 (5) −0.011 (4) 0.011 (4) −0.008 (4)
C5B 0.037 (4) 0.042 (5) 0.046 (4) −0.010 (4) 0.016 (4) −0.009 (4)
C6B 0.032 (4) 0.039 (4) 0.037 (4) −0.005 (3) 0.011 (3) −0.010 (3)
C7B 0.040 (4) 0.059 (4) 0.049 (5) 0.003 (4) −0.001 (4) −0.010 (4)
C8 0.0303 (15) 0.0284 (16) 0.0348 (16) −0.0030 (13) −0.0090 (13) 0.0020 (13)
C9 0.0317 (16) 0.0336 (17) 0.0411 (18) 0.0027 (13) −0.0133 (14) −0.0029 (14)
C10 0.045 (2) 0.0321 (18) 0.060 (2) 0.0054 (15) −0.0196 (18) −0.0081 (17)
C11 0.048 (2) 0.0297 (18) 0.079 (3) −0.0077 (16) −0.023 (2) 0.0061 (19)
C12 0.051 (2) 0.042 (2) 0.057 (2) −0.0136 (17) −0.0108 (18) 0.0180 (18)
C13 0.0424 (19) 0.0363 (18) 0.0427 (19) −0.0055 (15) −0.0046 (15) 0.0062 (15)
C14 0.054 (2) 0.040 (2) 0.046 (2) 0.0088 (17) 0.0043 (17) −0.0100 (16)
C15 0.0266 (14) 0.0339 (16) 0.0212 (14) −0.0057 (12) 0.0004 (11) −0.0032 (12)
C16 0.0267 (15) 0.0286 (15) 0.0257 (14) −0.0070 (12) 0.0053 (11) −0.0037 (12)
C17 0.0372 (18) 0.0421 (19) 0.0336 (17) −0.0103 (15) −0.0037 (14) 0.0057 (14)
C18 0.041 (2) 0.062 (2) 0.049 (2) −0.0247 (18) −0.0103 (16) 0.0066 (19)
C19 0.044 (2) 0.053 (2) 0.046 (2) −0.0241 (17) 0.0058 (16) 0.0020 (17)
C20 0.049 (2) 0.048 (2) 0.0314 (17) −0.0174 (17) 0.0065 (15) 0.0052 (15)
C21 0.0348 (17) 0.0429 (19) 0.0293 (16) −0.0090 (14) 0.0029 (13) 0.0005 (14)
C22 0.0319 (16) 0.0300 (16) 0.0265 (15) −0.0049 (13) 0.0015 (12) −0.0014 (12)
C23 0.0406 (19) 0.0427 (19) 0.047 (2) −0.0079 (16) 0.0139 (16) 0.0009 (16)
C24 0.063 (2) 0.0328 (19) 0.058 (2) −0.0119 (17) 0.0082 (19) 0.0061 (17)
C25 0.067 (3) 0.0334 (19) 0.051 (2) 0.0003 (18) 0.0089 (19) −0.0042 (16)
C26 0.058 (2) 0.044 (2) 0.071 (3) 0.0016 (18) 0.028 (2) −0.013 (2)
C27 0.046 (2) 0.0380 (19) 0.054 (2) −0.0086 (16) 0.0223 (17) −0.0094 (16)
Pd2 0.02488 (12) 0.02596 (12) 0.02958 (12) −0.00231 (9) 0.00016 (9) 0.00152 (9)
P3 0.0237 (4) 0.0266 (4) 0.0268 (4) 0.0003 (3) 0.0015 (3) 0.0004 (3)
P4 0.0222 (4) 0.0352 (4) 0.0285 (4) 0.0032 (3) 0.0007 (3) −0.0015 (3)
Cl3 0.0546 (5) 0.0288 (4) 0.0457 (5) 0.0108 (4) −0.0038 (4) −0.0027 (3)
Cl4 0.0459 (5) 0.0628 (6) 0.0670 (6) −0.0236 (5) −0.0002 (4) 0.0214 (5)
C28 0.0338 (17) 0.0390 (18) 0.0313 (16) −0.0104 (14) −0.0007 (13) 0.0032 (14)
C29 0.0385 (18) 0.043 (2) 0.0439 (19) −0.0111 (15) 0.0035 (15) −0.0048 (16)
C30 0.063 (3) 0.059 (2) 0.038 (2) −0.021 (2) 0.0048 (18) −0.0074 (18)
C31 0.073 (3) 0.070 (3) 0.042 (2) −0.020 (2) −0.011 (2) 0.010 (2)
C32 0.061 (3) 0.063 (3) 0.056 (3) −0.004 (2) −0.015 (2) 0.017 (2)
C33 0.048 (2) 0.053 (2) 0.048 (2) 0.0004 (18) −0.0037 (17) 0.0134 (18)
C34 0.060 (2) 0.054 (2) 0.045 (2) −0.0025 (19) 0.0065 (18) −0.0048 (18)
C35 0.0266 (15) 0.0328 (16) 0.0326 (16) 0.0000 (12) 0.0046 (12) −0.0094 (13)
C36 0.0393 (18) 0.0353 (18) 0.0427 (19) −0.0064 (14) 0.0080 (15) −0.0084 (15)
C37 0.0345 (18) 0.049 (2) 0.061 (2) −0.0116 (16) 0.0045 (17) −0.0186 (19)
C38 0.040 (2) 0.049 (2) 0.068 (3) 0.0023 (17) −0.0109 (18) −0.019 (2)
C39 0.050 (2) 0.048 (2) 0.053 (2) 0.0071 (18) −0.0131 (18) −0.0089 (18)
C40 0.0342 (17) 0.0411 (19) 0.0406 (18) 0.0063 (14) −0.0039 (14) −0.0046 (15)
C41 0.056 (2) 0.060 (3) 0.067 (3) −0.016 (2) −0.001 (2) 0.002 (2)
C42 0.0333 (16) 0.0255 (15) 0.0367 (17) 0.0019 (13) 0.0037 (13) −0.0019 (13)
C43 0.031 (2) 0.042 (2) 0.0299 (18) 0.0071 (16) 0.0020 (15) 0.0001 (16)
C44 0.035 (2) 0.072 (3) 0.036 (2) 0.012 (2) −0.0003 (17) 0.002 (2)
C45 0.047 (3) 0.079 (3) 0.042 (2) 0.023 (3) 0.010 (2) 0.002 (2)
C46 0.057 (3) 0.057 (3) 0.032 (2) 0.014 (2) 0.005 (2) 0.0037 (19)
C47 0.051 (3) 0.055 (3) 0.035 (2) 0.011 (2) −0.010 (2) 0.0057 (19)
C48 0.040 (2) 0.049 (2) 0.0375 (19) 0.0142 (19) −0.0023 (17) 0.0002 (19)
C43B 0.036 (5) 0.054 (5) 0.032 (4) 0.015 (5) 0.000 (4) 0.002 (5)
C44B 0.036 (5) 0.060 (6) 0.033 (5) 0.014 (5) 0.007 (4) 0.001 (5)
C45B 0.045 (5) 0.069 (6) 0.036 (5) 0.016 (5) 0.007 (4) 0.005 (5)
C46B 0.050 (5) 0.065 (6) 0.036 (5) 0.020 (5) 0.006 (5) 0.002 (5)
C47B 0.049 (5) 0.057 (5) 0.035 (4) 0.015 (5) −0.001 (5) 0.002 (5)
C48B 0.041 (5) 0.053 (5) 0.036 (4) 0.014 (5) 0.000 (4) 0.000 (5)
C49 0.0237 (14) 0.0420 (18) 0.0282 (15) 0.0010 (13) 0.0032 (12) 0.0024 (13)
C50 0.0366 (18) 0.044 (2) 0.0443 (19) −0.0012 (15) −0.0049 (15) 0.0058 (16)
C51 0.051 (2) 0.057 (2) 0.053 (2) −0.0087 (19) −0.0182 (18) −0.0015 (19)
C52 0.038 (2) 0.066 (3) 0.054 (2) 0.0007 (18) −0.0110 (17) 0.022 (2)
C53 0.0390 (19) 0.048 (2) 0.053 (2) 0.0085 (16) 0.0016 (16) 0.0133 (18)
C54 0.0365 (18) 0.043 (2) 0.048 (2) 0.0033 (15) −0.0014 (15) 0.0033 (16)

Geometric parameters (Å, °)

Pd1—P2 2.2197 (7) C27—H27 0.9500
Pd1—P1 2.2646 (8) Pd2—P4 2.2146 (8)
Pd1—Cl2 2.3564 (8) Pd2—P3 2.2604 (8)
Pd1—Cl1 2.3758 (7) Pd2—Cl4 2.3469 (9)
P1—C1B 1.817 (6) Pd2—Cl3 2.3632 (8)
P1—C1 1.818 (5) P3—C28 1.817 (3)
P1—C8 1.821 (3) P3—C35 1.819 (3)
P1—C15 1.853 (3) P3—C42 1.853 (3)
P1—P2 2.6912 (11) P3—P4 2.6738 (10)
P2—C22 1.798 (3) P4—C49 1.797 (3)
P2—C16 1.800 (3) P4—C43 1.808 (4)
P2—C15 1.828 (3) P4—C43B 1.812 (9)
C1—C6 1.389 (7) P4—C42 1.841 (3)
C1—C2 1.394 (7) C28—C29 1.386 (5)
C2—C3 1.395 (7) C28—C33 1.410 (5)
C2—C7 1.493 (7) C29—C30 1.423 (5)
C3—C4 1.359 (9) C29—C34 1.457 (5)
C3—H3 0.9500 C30—C31 1.353 (6)
C4—C5 1.360 (9) C30—H30 0.9500
C4—H4 0.9500 C31—C32 1.360 (6)
C5—C6 1.390 (7) C31—H31 0.9500
C5—H5 0.9500 C32—C33 1.346 (5)
C6—H6 0.9500 C32—H32 0.9500
C7—H7A 0.9800 C33—H33 0.9500
C7—H7B 0.9800 C34—H34A 0.9800
C7—H7C 0.9800 C34—H34B 0.9800
C1B—C6B 1.392 (8) C34—H34C 0.9800
C1B—C2B 1.394 (8) C35—C36 1.391 (4)
C2B—C3B 1.395 (8) C35—C40 1.406 (5)
C2B—C7B 1.488 (9) C36—C37 1.420 (5)
C3B—C4B 1.364 (10) C36—C41 1.463 (5)
C3B—H3B 0.9500 C37—C38 1.359 (6)
C4B—C5B 1.360 (10) C37—H37 0.9500
C4B—H4B 0.9500 C38—C39 1.360 (6)
C5B—C6B 1.386 (8) C38—H38 0.9500
C5B—H5B 0.9500 C39—C40 1.375 (5)
C6B—H6B 0.9500 C39—H39 0.9500
C7B—H7D 0.9800 C40—H40 0.9500
C7B—H7E 0.9800 C41—H41A 0.9800
C7B—H7F 0.9800 C41—H41B 0.9800
C8—C13 1.399 (4) C41—H41C 0.9800
C8—C9 1.400 (4) C42—H42A 0.9900
C9—C10 1.396 (5) C42—H42B 0.9900
C9—C14 1.494 (5) C43—C44 1.385 (5)
C10—C11 1.359 (6) C43—C48 1.390 (5)
C10—H10 0.9500 C44—C45 1.392 (5)
C11—C12 1.366 (6) C44—H44 0.9500
C11—H11 0.9500 C45—C46 1.364 (5)
C12—C13 1.362 (5) C45—H45 0.9500
C12—H12 0.9500 C46—C47 1.373 (5)
C13—H13 0.9500 C46—H46 0.9500
C14—H14A 0.9800 C47—C48 1.385 (5)
C14—H14B 0.9800 C47—H47 0.9500
C14—H14C 0.9800 C48—H48 0.9500
C15—H15A 0.9900 C43B—C44B 1.388 (8)
C15—H15B 0.9900 C43B—C48B 1.388 (8)
C16—C17 1.385 (4) C44B—C45B 1.389 (9)
C16—C21 1.396 (4) C44B—H44B 0.9500
C17—C18 1.383 (5) C45B—C46B 1.366 (9)
C17—H17 0.9500 C45B—H45B 0.9500
C18—C19 1.378 (5) C46B—C47B 1.366 (9)
C18—H18 0.9500 C46B—H46B 0.9500
C19—C20 1.371 (5) C47B—C48B 1.392 (9)
C19—H19 0.9500 C47B—H47B 0.9500
C20—C21 1.386 (4) C48B—H48B 0.9500
C20—H20 0.9500 C49—C50 1.384 (5)
C21—H21 0.9500 C49—C54 1.400 (5)
C22—C23 1.389 (4) C50—C51 1.387 (5)
C22—C27 1.390 (4) C50—H50 0.9500
C23—C24 1.383 (5) C51—C52 1.370 (6)
C23—H23 0.9500 C51—H51 0.9500
C24—C25 1.367 (5) C52—C53 1.375 (5)
C24—H24 0.9500 C52—H52 0.9500
C25—C26 1.371 (5) C53—C54 1.379 (5)
C25—H25 0.9500 C53—H53 0.9500
C26—C27 1.385 (5) C54—H54 0.9500
C26—H26 0.9500
P2—Pd1—P1 73.75 (3) P4—Pd2—P3 73.37 (3)
P2—Pd1—Cl2 92.04 (3) P4—Pd2—Cl4 92.83 (4)
P1—Pd1—Cl2 165.68 (3) P3—Pd2—Cl4 165.80 (4)
P2—Pd1—Cl1 174.57 (3) P4—Pd2—Cl3 173.13 (3)
P1—Pd1—Cl1 101.39 (3) P3—Pd2—Cl3 101.03 (3)
Cl2—Pd1—Cl1 92.88 (3) Cl4—Pd2—Cl3 92.96 (4)
C1B—P1—C8 114.2 (5) C28—P3—C35 113.40 (14)
C1—P1—C8 110.4 (4) C28—P3—C42 108.57 (15)
C1B—P1—C15 107.2 (5) C35—P3—C42 107.34 (13)
C1—P1—C15 105.1 (4) C28—P3—Pd2 114.39 (10)
C8—P1—C15 109.11 (14) C35—P3—Pd2 116.74 (11)
C1B—P1—Pd1 116.1 (4) C42—P3—Pd2 94.05 (10)
C1—P1—Pd1 121.9 (3) C28—P3—P4 111.16 (10)
C8—P1—Pd1 114.40 (9) C35—P3—P4 133.25 (10)
C15—P1—Pd1 93.27 (9) Pd2—P3—P4 52.53 (2)
C1B—P1—P2 131.8 (5) C49—P4—C43 110.86 (16)
C1—P1—P2 133.6 (3) C49—P4—C43B 104.9 (7)
C8—P1—P2 111.94 (10) C49—P4—C42 109.60 (14)
Pd1—P1—P2 52.36 (2) C43—P4—C42 106.10 (13)
C22—P2—C16 108.49 (14) C43B—P4—C42 113.6 (6)
C22—P2—C15 109.67 (13) C49—P4—Pd2 114.51 (11)
C16—P2—C15 110.24 (14) C43—P4—Pd2 118.15 (10)
C22—P2—Pd1 116.29 (10) C43B—P4—Pd2 118.2 (3)
C16—P2—Pd1 115.86 (9) C42—P4—Pd2 95.94 (10)
C15—P2—Pd1 95.48 (9) C49—P4—P3 112.43 (10)
C22—P2—P1 135.28 (10) C43—P4—P3 133.92 (13)
C16—P2—P1 114.41 (10) C43B—P4—P3 141.2 (7)
Pd1—P2—P1 53.89 (2) Pd2—P4—P3 54.10 (2)
C6—C1—C2 120.8 (5) C29—C28—C33 118.6 (3)
C6—C1—P1 117.3 (6) C29—C28—P3 120.7 (3)
C2—C1—P1 121.9 (6) C33—C28—P3 120.7 (3)
C1—C2—C3 117.6 (6) C28—C29—C30 117.4 (3)
C1—C2—C7 125.6 (6) C28—C29—C34 123.7 (3)
C3—C2—C7 116.8 (6) C30—C29—C34 118.8 (3)
C4—C3—C2 120.5 (7) C31—C30—C29 121.1 (4)
C4—C3—H3 119.8 C31—C30—H30 119.4
C2—C3—H3 119.8 C29—C30—H30 119.4
C3—C4—C5 122.7 (6) C30—C31—C32 121.5 (4)
C3—C4—H4 118.6 C30—C31—H31 119.2
C5—C4—H4 118.6 C32—C31—H31 119.2
C4—C5—C6 118.2 (7) C33—C32—C31 118.8 (4)
C4—C5—H5 120.9 C33—C32—H32 120.6
C6—C5—H5 120.9 C31—C32—H32 120.6
C1—C6—C5 120.2 (7) C32—C33—C28 122.6 (4)
C1—C6—H6 119.9 C32—C33—H33 118.7
C5—C6—H6 119.9 C28—C33—H33 118.7
C6B—C1B—C2B 120.3 (7) C29—C34—H34A 109.5
C6B—C1B—P1 115.9 (8) C29—C34—H34B 109.5
C2B—C1B—P1 123.8 (7) H34A—C34—H34B 109.5
C1B—C2B—C3B 118.3 (8) C29—C34—H34C 109.5
C1B—C2B—C7B 123.7 (8) H34A—C34—H34C 109.5
C3B—C2B—C7B 118.0 (8) H34B—C34—H34C 109.5
C4B—C3B—C2B 120.4 (8) C36—C35—C40 120.0 (3)
C4B—C3B—H3B 119.8 C36—C35—P3 125.0 (3)
C2B—C3B—H3B 119.8 C40—C35—P3 115.0 (2)
C5B—C4B—C3B 121.8 (8) C35—C36—C37 117.3 (3)
C5B—C4B—H4B 119.1 C35—C36—C41 125.4 (3)
C3B—C4B—H4B 119.1 C37—C36—C41 117.2 (3)
C4B—C5B—C6B 119.2 (8) C38—C37—C36 120.5 (3)
C4B—C5B—H5B 120.4 C38—C37—H37 119.7
C6B—C5B—H5B 120.4 C36—C37—H37 119.7
C5B—C6B—C1B 120.0 (8) C37—C38—C39 122.4 (4)
C5B—C6B—H6B 120.0 C37—C38—H38 118.8
C1B—C6B—H6B 120.0 C39—C38—H38 118.8
C2B—C7B—H7D 109.5 C38—C39—C40 118.6 (4)
C2B—C7B—H7E 109.5 C38—C39—H39 120.7
H7D—C7B—H7E 109.5 C40—C39—H39 120.7
C2B—C7B—H7F 109.5 C39—C40—C35 121.0 (3)
H7D—C7B—H7F 109.5 C39—C40—H40 119.5
H7E—C7B—H7F 109.5 C35—C40—H40 119.5
C13—C8—C9 119.0 (3) C36—C41—H41A 109.5
C13—C8—P1 120.4 (2) C36—C41—H41B 109.5
C9—C8—P1 120.6 (2) H41A—C41—H41B 109.5
C10—C9—C8 117.2 (3) C36—C41—H41C 109.5
C10—C9—C14 119.6 (3) H41A—C41—H41C 109.5
C8—C9—C14 123.2 (3) H41B—C41—H41C 109.5
C11—C10—C9 122.3 (4) P4—C42—P3 92.73 (14)
C11—C10—H10 118.8 P4—C42—H42A 113.2
C9—C10—H10 118.8 P3—C42—H42A 113.2
C10—C11—C12 120.5 (3) P4—C42—H42B 113.2
C10—C11—H11 119.7 P3—C42—H42B 113.2
C12—C11—H11 119.7 H42A—C42—H42B 110.5
C13—C12—C11 118.9 (4) C44—C43—C48 119.8 (3)
C13—C12—H12 120.5 C44—C43—P4 121.9 (3)
C11—C12—H12 120.5 C48—C43—P4 118.3 (3)
C12—C13—C8 122.0 (3) C43—C44—C45 120.1 (4)
C12—C13—H13 119.0 C43—C44—H44 120.0
C8—C13—H13 119.0 C45—C44—H44 120.0
C9—C14—H14A 109.5 C46—C45—C44 119.5 (4)
C9—C14—H14B 109.5 C46—C45—H45 120.2
H14A—C14—H14B 109.5 C44—C45—H45 120.2
C9—C14—H14C 109.5 C45—C46—C47 121.0 (4)
H14A—C14—H14C 109.5 C45—C46—H46 119.5
H14B—C14—H14C 109.5 C47—C46—H46 119.5
P2—C15—P1 93.95 (13) C46—C47—C48 120.3 (4)
P2—C15—H15A 112.9 C46—C47—H47 119.9
P1—C15—H15A 112.9 C48—C47—H47 119.9
P2—C15—H15B 112.9 C47—C48—C43 119.3 (4)
P1—C15—H15B 112.9 C47—C48—H48 120.3
H15A—C15—H15B 110.4 C43—C48—H48 120.3
C17—C16—C21 119.9 (3) C44B—C43B—C48B 119.4 (10)
C17—C16—P2 118.4 (2) C44B—C43B—P4 120.5 (12)
C21—C16—P2 121.6 (2) C48B—C43B—P4 120.1 (13)
C18—C17—C16 119.8 (3) C43B—C44B—C45B 120.3 (11)
C18—C17—H17 120.1 C43B—C44B—H44B 119.9
C16—C17—H17 120.1 C45B—C44B—H44B 119.9
C19—C18—C17 120.1 (3) C46B—C45B—C44B 120.0 (11)
C19—C18—H18 120.0 C46B—C45B—H45B 120.0
C17—C18—H18 120.0 C44B—C45B—H45B 120.0
C20—C19—C18 120.5 (3) C45B—C46B—C47B 120.4 (12)
C20—C19—H19 119.8 C45B—C46B—H46B 119.8
C18—C19—H19 119.8 C47B—C46B—H46B 119.8
C19—C20—C21 120.3 (3) C46B—C47B—C48B 120.8 (12)
C19—C20—H20 119.8 C46B—C47B—H47B 119.6
C21—C20—H20 119.8 C48B—C47B—H47B 119.6
C20—C21—C16 119.3 (3) C43B—C48B—C47B 119.3 (11)
C20—C21—H21 120.3 C43B—C48B—H48B 120.4
C16—C21—H21 120.3 C47B—C48B—H48B 120.4
C23—C22—C27 119.1 (3) C50—C49—C54 120.0 (3)
C23—C22—P2 119.4 (2) C50—C49—P4 119.1 (3)
C27—C22—P2 121.5 (2) C54—C49—P4 120.8 (3)
C24—C23—C22 120.1 (3) C49—C50—C51 119.6 (3)
C24—C23—H23 119.9 C49—C50—H50 120.2
C22—C23—H23 119.9 C51—C50—H50 120.2
C25—C24—C23 120.4 (3) C52—C51—C50 119.8 (4)
C25—C24—H24 119.8 C52—C51—H51 120.1
C23—C24—H24 119.8 C50—C51—H51 120.1
C24—C25—C26 120.0 (3) C51—C52—C53 121.2 (3)
C24—C25—H25 120.0 C51—C52—H52 119.4
C26—C25—H25 120.0 C53—C52—H52 119.4
C25—C26—C27 120.6 (4) C52—C53—C54 119.9 (3)
C25—C26—H26 119.7 C52—C53—H53 120.1
C27—C26—H26 119.7 C54—C53—H53 120.1
C26—C27—C22 119.7 (3) C53—C54—C49 119.5 (3)
C26—C27—H27 120.1 C53—C54—H54 120.3
C22—C27—H27 120.1 C49—C54—H54 120.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14A···Cl1 0.98 2.63 3.612 (4) 179
C34—H34A···Cl3 0.98 2.66 3.637 (4) 179

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2183).

References

  1. Bruker (2004). APEX2 Bruker AXS, Inc., Madison, Wisconsin, USA.
  2. Bruker (2005). SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). SADABS Bruker AXS, Inc., Madison, Wisconsin, USA.
  4. CrystalMaker (1994). CrystalMaker CrystalMaker Software Ltd, Oxford, England (www.CrystalMakercom).
  5. Dossett, S. J., Gillon, A., Orpen, A. G., Fleming, J. S., Pringle, P. G., Wass, D. F. & Jones, M. D. (2001). Chem. Commun. pp. 699–700.
  6. Filby, M., Deeming, A. J., Hogarth, G. & Lee, M.-Y. (2006). Can. J. Chem.84 319–329.
  7. Gauthron, I., Mugnier, Y., Hierso, K. & Harvey, P. D. (1998). New J. Chem. pp, 237–246.
  8. Mague, J. T., Pool, D. H. & Fink, M. J. (2007). Acta Cryst. E63, m3083.
  9. Shahid, M., Imtiaz-ud-Din, Mazhar, M., Zeller, M. & Hunter, A. D. (2009). Acta Cryst. E65, m158–m159. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Steffen, W. L. & Palenik, G. J. (1976). Inorg. Chem.15, 2432–2439.
  12. Wass, D. F. (2001). PCT Int. Appl. WO 2001010876 A1 20010215.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036678/ez2183sup1.cif

e-65-m1233-sup1.cif (36.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036678/ez2183Isup2.hkl

e-65-m1233-Isup2.hkl (457.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES