Abstract
The crystal structure of the title compound, C6H11NO5, establishes the relative configuration at the four stereogenic centres; the absolute configuration is determined by the use of d-glucuronolactone as the starting material for the synthesis. Molecules are linked by intermolecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network, with each molecule acting as a donor and acceptor for five hydrogen bonds.
Related literature
For related literature on iminosugars, see: Asano et al. (2000 ▶); Watson et al. (2001 ▶). For related literature on pipecolic acids, see: Fleet et al. (1987 ▶); Booth et al. (2007 ▶); Bashyal, Chow, Fellows & Fleet (1987 ▶); Manning et al. (1985 ▶); di Bello et al. (1984 ▶); Yoshimura et al. (2008 ▶). For related literature on bulgecinine, see: Toumi et al. (2008 ▶); Bashyal et al. (1986 ▶); Bashyal, Chow & Fleet (1987 ▶); Shinagawa et al. (1984 ▶, 1985 ▶). For related literature on alexines, see: Pereira et al. (1991 ▶); Donohoe et al. (2008 ▶); Kato et al. (2003 ▶); Wormald et al. (1998 ▶). For absolute configuration, see: Flack (1983 ▶); Flack & Bernardinelli (2000 ▶); Flack & Shmueli (2007 ▶); Hooft et al. (2008 ▶); Thompson et al. (2008 ▶); Watkin (1994 ▶). For the weighting scheme, see: Prince (1982 ▶); Thompson & Watkin (2009 ▶).
Experimental
Crystal data
C6H11NO5
M r = 177.16
Triclinic,
a = 5.4160 (2) Å
b = 5.8236 (3) Å
c = 6.6006 (3) Å
α = 102.836 (2)°
β = 104.776 (2)°
γ = 102.8244 (19)°
V = 187.50 (2) Å3
Z = 1
Mo Kα radiation
μ = 0.14 mm−1
T = 150 K
0.25 × 0.17 × 0.06 mm
Data collection
Area diffractometer
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997 ▶) T min = 0.94, T max = 0.99
2314 measured reflections
834 independent reflections
814 reflections with I > 2σ(I)
R int = 0.025
Refinement
R[F 2 > 2σ(F 2)] = 0.027
wR(F 2) = 0.066
S = 1.00
834 reflections
109 parameters
3 restraints
H-atom parameters constrained
Δρmax = 0.24 e Å−3
Δρmin = −0.17 e Å−3
Data collection: COLLECT (Nonius, 2001 ▶); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997 ▶); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994 ▶); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003 ▶); molecular graphics: CAMERON (Watkin et al., 1996 ▶); software used to prepare material for publication: CRYSTALS.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035636/lh2896sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035636/lh2896Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O8—H81⋯O1i | 0.83 | 1.85 | 2.679 (3) | 175 |
| N5—H51⋯O11ii | 0.88 | 2.03 | 2.873 (3) | 160 |
| N5—H52⋯O3iii | 0.89 | 1.93 | 2.814 (3) | 173 |
| O11—H111⋯O1iii | 0.82 | 1.89 | 2.696 (3) | 170 |
| O12—H121⋯O8iv | 0.82 | 1.91 | 2.668 (3) | 154 |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
supplementary crystallographic information
Comment
This paper firmly establishes the structure of the trihydroxyproline 1 (Fig. 1), the amino acid corresponding to DMDP 2. There are over 100 iminosugars that have been isolated as natural products [such as DMDP 2 and DNJ 4] that are the equivalent of carbohydrates with the ring oxygen replaced by nitrogen (Asano et al., 2000; Watson et al., 2001). In contrast, the pipecolic acid BR1 3 [related to DNJ 4 in the same way as 1 to 2] (Fleet et al.,1987; Booth et al., 2007; Bashyal, Chow, Fellows & Fleet, 1987) is among the rare examples of naturally occurring amino acid sugar analogues. BR1 3 was isolated from the seeds of Baphia racemosa (Manning et al., 1985) and is an inhibitor of glucuronidase and iduronidase (di Bello et al., 1984; Yoshimura et al., 2008). Bulgecinine 5 (Toumi et al., 2008; Bashyal et al., 1986; Bashyal, Chow & Fleet, 1987), a deoxy analogue of 1, is a constituent of the bulgecin glycopeptide antibiotics (Shinagawa et al., 1984; Shinagawa et al., 1985). 7a-Epialexaflorine 6, isolated from the leaves of Alexa grandiflora (Pereira et al., 1991), is the only example of an amino acid analogue of the alexines (Donohoe et al., 2008; Kato et al., 2003; Wormald et al., 1998).
The title compound (Fig. 2) was seen to adopt an envelope conformation with C4 out of the plane. The absolute configuration was determined by the use of D-glucuronolactone as the starting material for the synthesis. The molecule exists as an extensively hydrogen bonded nextwork with each molecule acting as a donor and acceptor for 5 hydrogen bonds (Fig. 3, Fig. 4). Only classical hydrogen bonding has been considered.
Experimental
The title compound was recrystallized from a mixture of hot ethanol and water: m.p. 449 K - decomposed; [α]D25 +14.7 (c, 1.13 in H2O).
Refinement
Initial refinement of the Flack x parameter gave a value of -0.5 (10), suggesting that the absolute configuration could not be determined (Flack, 1983; Flack & Bernardinelli, 2000). Analysis of the Bijvoet differences using CRYSTALS gave the Hooft y parameter as -0.2 (7), and the probability the configuration is correct assuming the material is enantiopure was determioned to be 78.7% (Hooft et al., 2008; Thompson et al. 2008; Thompson & Watkin 2009). In the absence of significant anomalous scattering (FRIEDIF = 6.71; Flack & Shmueli, 2007), Friedel pairs were merged for the final refinement.
The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.
Figures
Fig. 1.
Synthetic scheme.
Fig. 2.
The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.
Fig. 3.
Packing diagram for the title compound projected along the b-axis.
Fig. 4.
Packing diagram for the title compound. The compound exists as an extensively hydrogen bonded nextwork.
Crystal data
| C6H11NO5 | Z = 1 |
| Mr = 177.16 | F(000) = 94 |
| Triclinic, P1 | Dx = 1.569 Mg m−3 |
| Hall symbol: P 1 | Melting point: not measured K |
| a = 5.4160 (2) Å | Mo Kα radiation, λ = 0.71073 Å |
| b = 5.8236 (3) Å | Cell parameters from 696 reflections |
| c = 6.6006 (3) Å | θ = 5–27° |
| α = 102.836 (2)° | µ = 0.14 mm−1 |
| β = 104.776 (2)° | T = 150 K |
| γ = 102.8244 (19)° | Plate, clear_pale_colourless |
| V = 187.50 (2) Å3 | 0.25 × 0.17 × 0.06 mm |
Data collection
| Area diffractometer | 814 reflections with I > 2σ(I) |
| graphite | Rint = 0.025 |
| ω scans | θmax = 27.5°, θmin = 5.6° |
| Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) | h = −7→7 |
| Tmin = 0.94, Tmax = 0.99 | k = −6→7 |
| 2314 measured reflections | l = −8→7 |
| 834 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
| R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
| wR(F2) = 0.066 | Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 22.5 35.8 21.7 10.1 2.91 |
| S = 1.00 | (Δ/σ)max = 0.0001 |
| 834 reflections | Δρmax = 0.24 e Å−3 |
| 109 parameters | Δρmin = −0.17 e Å−3 |
| 3 restraints |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| O1 | 0.1323 (3) | 0.4021 (3) | 0.0397 (3) | 0.0170 | |
| C2 | 0.3330 (4) | 0.5769 (4) | 0.1694 (3) | 0.0124 | |
| O3 | 0.3285 (3) | 0.7782 (3) | 0.2816 (3) | 0.0161 | |
| C4 | 0.6067 (4) | 0.5299 (3) | 0.1892 (3) | 0.0118 | |
| N5 | 0.8297 (3) | 0.7483 (3) | 0.3462 (3) | 0.0120 | |
| C6 | 0.8425 (4) | 0.7309 (4) | 0.5744 (3) | 0.0130 | |
| C7 | 1.1277 (4) | 0.8313 (4) | 0.7284 (3) | 0.0167 | |
| O8 | 1.2417 (3) | 1.0809 (3) | 0.7415 (3) | 0.0209 | |
| C9 | 0.7092 (4) | 0.4584 (4) | 0.5443 (3) | 0.0150 | |
| C10 | 0.6269 (4) | 0.3243 (4) | 0.2968 (3) | 0.0135 | |
| O11 | 0.8192 (3) | 0.2063 (3) | 0.2544 (3) | 0.0229 | |
| O12 | 0.4844 (4) | 0.4511 (3) | 0.6175 (3) | 0.0252 | |
| H41 | 0.6365 | 0.4960 | 0.0477 | 0.0144* | |
| H61 | 0.7333 | 0.8262 | 0.6278 | 0.0169* | |
| H72 | 1.1284 | 0.8203 | 0.8747 | 0.0191* | |
| H71 | 1.2343 | 0.7354 | 0.6770 | 0.0194* | |
| H91 | 0.8360 | 0.3904 | 0.6257 | 0.0183* | |
| H101 | 0.4566 | 0.2013 | 0.2549 | 0.0154* | |
| H81 | 1.2048 | 1.1744 | 0.8368 | 0.0313* | |
| H51 | 0.7954 | 0.8869 | 0.3332 | 0.0177* | |
| H52 | 0.9817 | 0.7443 | 0.3204 | 0.0178* | |
| H111 | 0.8993 | 0.2734 | 0.1839 | 0.0347* | |
| H121 | 0.4206 | 0.3112 | 0.6224 | 0.0383* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| O1 | 0.0115 (7) | 0.0187 (7) | 0.0178 (7) | 0.0024 (5) | 0.0034 (5) | 0.0030 (6) |
| C2 | 0.0128 (9) | 0.0137 (9) | 0.0134 (9) | 0.0052 (7) | 0.0051 (7) | 0.0074 (7) |
| O3 | 0.0153 (7) | 0.0148 (7) | 0.0210 (7) | 0.0075 (6) | 0.0074 (5) | 0.0057 (6) |
| C4 | 0.0113 (9) | 0.0115 (8) | 0.0130 (9) | 0.0032 (7) | 0.0050 (7) | 0.0032 (7) |
| N5 | 0.0123 (8) | 0.0098 (7) | 0.0150 (8) | 0.0039 (6) | 0.0052 (6) | 0.0042 (6) |
| C6 | 0.0142 (9) | 0.0115 (8) | 0.0136 (9) | 0.0030 (7) | 0.0053 (7) | 0.0041 (7) |
| C7 | 0.0154 (9) | 0.0161 (9) | 0.0152 (9) | 0.0013 (8) | 0.0023 (7) | 0.0042 (8) |
| O8 | 0.0246 (8) | 0.0151 (8) | 0.0190 (7) | −0.0019 (6) | 0.0100 (6) | 0.0020 (6) |
| C9 | 0.0173 (10) | 0.0130 (9) | 0.0165 (10) | 0.0042 (7) | 0.0066 (8) | 0.0067 (7) |
| C10 | 0.0121 (9) | 0.0124 (9) | 0.0176 (9) | 0.0049 (7) | 0.0058 (7) | 0.0050 (7) |
| O11 | 0.0280 (8) | 0.0223 (8) | 0.0356 (9) | 0.0180 (7) | 0.0218 (7) | 0.0179 (7) |
| O12 | 0.0325 (9) | 0.0164 (7) | 0.0304 (9) | 0.0018 (7) | 0.0222 (8) | 0.0056 (7) |
Geometric parameters (Å, °)
| O1—C2 | 1.264 (3) | C7—O8 | 1.421 (2) |
| C2—O3 | 1.249 (2) | C7—H72 | 0.981 |
| C2—C4 | 1.545 (2) | C7—H71 | 0.959 |
| C4—N5 | 1.498 (2) | O8—H81 | 0.832 |
| C4—C10 | 1.532 (3) | C9—C10 | 1.545 (3) |
| C4—H41 | 0.972 | C9—O12 | 1.415 (2) |
| N5—C6 | 1.517 (2) | C9—H91 | 0.972 |
| N5—H51 | 0.885 | C10—O11 | 1.420 (2) |
| N5—H52 | 0.886 | C10—H101 | 0.963 |
| C6—C7 | 1.515 (3) | O11—H111 | 0.816 |
| C6—C9 | 1.535 (3) | O12—H121 | 0.823 |
| C6—H61 | 0.973 | ||
| O1—C2—O3 | 126.24 (18) | C6—C7—O8 | 111.22 (16) |
| O1—C2—C4 | 115.43 (17) | C6—C7—H72 | 108.8 |
| O3—C2—C4 | 118.32 (17) | O8—C7—H72 | 109.4 |
| C2—C4—N5 | 110.92 (15) | C6—C7—H71 | 109.8 |
| C2—C4—C10 | 109.46 (14) | O8—C7—H71 | 108.5 |
| N5—C4—C10 | 103.55 (15) | H72—C7—H71 | 109.1 |
| C2—C4—H41 | 111.2 | C7—O8—H81 | 110.0 |
| N5—C4—H41 | 108.5 | C6—C9—C10 | 106.41 (15) |
| C10—C4—H41 | 113.0 | C6—C9—O12 | 106.33 (16) |
| C4—N5—C6 | 106.33 (14) | C10—C9—O12 | 111.81 (16) |
| C4—N5—H51 | 110.5 | C6—C9—H91 | 110.0 |
| C6—N5—H51 | 109.1 | C10—C9—H91 | 109.3 |
| C4—N5—H52 | 109.8 | O12—C9—H91 | 112.7 |
| C6—N5—H52 | 111.2 | C9—C10—C4 | 103.65 (15) |
| H51—N5—H52 | 109.8 | C9—C10—O11 | 109.89 (16) |
| N5—C6—C7 | 110.92 (15) | C4—C10—O11 | 113.98 (15) |
| N5—C6—C9 | 105.61 (15) | C9—C10—H101 | 108.3 |
| C7—C6—C9 | 114.30 (16) | C4—C10—H101 | 111.8 |
| N5—C6—H61 | 108.0 | O11—C10—H101 | 109.0 |
| C7—C6—H61 | 109.9 | C10—O11—H111 | 110.0 |
| C9—C6—H61 | 107.9 | C9—O12—H121 | 109.5 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C7—H71···O12i | 0.96 | 2.39 | 3.328 (3) | 166 |
| C10—H101···O3ii | 0.96 | 2.47 | 3.199 (3) | 133 |
| O8—H81···O1iii | 0.83 | 1.85 | 2.679 (3) | 175 |
| N5—H51···O11iv | 0.88 | 2.03 | 2.873 (3) | 160 |
| N5—H52···O3i | 0.89 | 1.93 | 2.814 (3) | 173 |
| O11—H111···O1i | 0.82 | 1.89 | 2.696 (3) | 170 |
| O12—H121···O8v | 0.82 | 1.91 | 2.668 (3) | 154 |
Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x−1, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2896).
References
- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
- Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
- Bashyal, B. P., Chow, H.-F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415–422.
- Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1986). Tetrahedron Lett.27, 3205–3208.
- Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). Tetrahedron, 43, 423–430.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
- Booth, K. V., Jenkinson, S. F., Watkin, D. J., Sharp, H., Jones, P. W., Nash, R. J. & Fleet, G. W. J. (2007). Acta Cryst. E63, o3783–o3784.
- di Bello, I. C., Dorling, P., Fellows, L. & Winchester, B. (1984). FEBS Lett.176, 61–64. [DOI] [PubMed]
- Donohoe, T. J., Cheeseman, M. D., O’Riordan, T. J. C. & Kershaw, J. A. (2008). Org. Biomol. Chem. pp. 3896–3898. [DOI] [PubMed]
- Flack, H. D. (1983). Acta Cryst. A39, 876–881.
- Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
- Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265. [DOI] [PubMed]
- Fleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979–990.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [DOI] [PMC free article] [PubMed]
- Kato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K. & Asano, N. (2003). Tetrahedron Asymmetry, 14, 325–331.
- Manning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L. E., Singh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127–129.
- Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Pereira, A. C. D., Kaplan, M. A. C., Maia, J. G. S., Gottlieb, O. R., Nash, R. J., Fleet, G., Pearce, L., Watkin, D. J. & Scofield, A. M. (1991). Tetrahedron, 47, 5637–5640.
- Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
- Shinagawa, S., Kasahara, F., Harada, S. & Asai, M. (1984). Tetrahedron, 40, 3465–3470.
- Shinagawa, S., Maki, M., Kintaka, K., Imada, A. & Asai, M. (1985). J. Antibiot.38, 17–23. [DOI] [PubMed]
- Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717.
- Thompson, A. L., Watkin, D. J., Gal, Z. A., Jones, L., Hollinshead, J., Jenkinson, S. F., Fleet, G. W. J. & Nash, R. J. (2008). Acta Cryst. C64, o649–o652. [DOI] [PubMed]
- Toumi, M., Couty, F. & Evano, G. (2008). Tetrahedron Lett.49, 1175–1179.
- Watkin, D. (1994). Acta Cryst. A50, 411–437.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
- Wormald, M. R., Nash, R. J., Hrnciar, P., White, J. D., Molyneux, R. J. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 9, 2549–2558.
- Yoshimura, Y., Ohara, C., Imahori, T., Saito, Y., Kato, A., Miyauchi, S., Adachi, I. & Takahata, H. (2008). Bioorg. Med. Chem.16, 8273–8286. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035636/lh2896sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035636/lh2896Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report




