Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 9;65(Pt 10):o2418–o2419. doi: 10.1107/S1600536809035636

(2S,3R,4R,5R)-3,4-Dihydr­oxy-5-(hydroxy­meth­yl)pyrrolidine-2-carboxylic acid [(2S,3R,4R,5R)-3,4-dihydr­oxy-5-(hydroxy­meth­yl)proline]

Daniel Best a, Sarah F Jenkinson a,*, Amber L Thompson b, David J Watkin b, Francis X Wilson c, Robert J Nash d, George W J Fleet a
PMCID: PMC2970405  PMID: 21577876

Abstract

The crystal structure of the title compound, C6H11NO5, establishes the relative configuration at the four stereogenic centres; the absolute configuration is determined by the use of d-glucuronolactone as the starting material for the synthesis. Mol­ecules are linked by inter­molecular O—H⋯O and N—H⋯O hydrogen bonds into a three-dimensional network, with each mol­ecule acting as a donor and acceptor for five hydrogen bonds.

Related literature

For related literature on imino­sugars, see: Asano et al. (2000); Watson et al. (2001). For related literature on pipecolic acids, see: Fleet et al. (1987); Booth et al. (2007); Bashyal, Chow, Fellows & Fleet (1987); Manning et al. (1985); di Bello et al. (1984); Yoshimura et al. (2008). For related literature on bulgecinine, see: Toumi et al. (2008); Bashyal et al. (1986); Bashyal, Chow & Fleet (1987); Shinagawa et al. (1984, 1985). For related literature on alexines, see: Pereira et al. (1991); Donohoe et al. (2008); Kato et al. (2003); Wormald et al. (1998). For absolute configuration, see: Flack (1983); Flack & Bernardinelli (2000); Flack & Shmueli (2007); Hooft et al. (2008); Thompson et al. (2008); Watkin (1994). For the weighting scheme, see: Prince (1982); Thompson & Watkin (2009).graphic file with name e-65-o2418-scheme1.jpg

Experimental

Crystal data

  • C6H11NO5

  • M r = 177.16

  • Triclinic, Inline graphic

  • a = 5.4160 (2) Å

  • b = 5.8236 (3) Å

  • c = 6.6006 (3) Å

  • α = 102.836 (2)°

  • β = 104.776 (2)°

  • γ = 102.8244 (19)°

  • V = 187.50 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.14 mm−1

  • T = 150 K

  • 0.25 × 0.17 × 0.06 mm

Data collection

  • Area diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.94, T max = 0.99

  • 2314 measured reflections

  • 834 independent reflections

  • 814 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.027

  • wR(F 2) = 0.066

  • S = 1.00

  • 834 reflections

  • 109 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: COLLECT (Nonius, 2001); cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035636/lh2896sup1.cif

e-65-o2418-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035636/lh2896Isup2.hkl

e-65-o2418-Isup2.hkl (42.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O8—H81⋯O1i 0.83 1.85 2.679 (3) 175
N5—H51⋯O11ii 0.88 2.03 2.873 (3) 160
N5—H52⋯O3iii 0.89 1.93 2.814 (3) 173
O11—H111⋯O1iii 0.82 1.89 2.696 (3) 170
O12—H121⋯O8iv 0.82 1.91 2.668 (3) 154

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

This paper firmly establishes the structure of the trihydroxyproline 1 (Fig. 1), the amino acid corresponding to DMDP 2. There are over 100 iminosugars that have been isolated as natural products [such as DMDP 2 and DNJ 4] that are the equivalent of carbohydrates with the ring oxygen replaced by nitrogen (Asano et al., 2000; Watson et al., 2001). In contrast, the pipecolic acid BR1 3 [related to DNJ 4 in the same way as 1 to 2] (Fleet et al.,1987; Booth et al., 2007; Bashyal, Chow, Fellows & Fleet, 1987) is among the rare examples of naturally occurring amino acid sugar analogues. BR1 3 was isolated from the seeds of Baphia racemosa (Manning et al., 1985) and is an inhibitor of glucuronidase and iduronidase (di Bello et al., 1984; Yoshimura et al., 2008). Bulgecinine 5 (Toumi et al., 2008; Bashyal et al., 1986; Bashyal, Chow & Fleet, 1987), a deoxy analogue of 1, is a constituent of the bulgecin glycopeptide antibiotics (Shinagawa et al., 1984; Shinagawa et al., 1985). 7a-Epialexaflorine 6, isolated from the leaves of Alexa grandiflora (Pereira et al., 1991), is the only example of an amino acid analogue of the alexines (Donohoe et al., 2008; Kato et al., 2003; Wormald et al., 1998).

The title compound (Fig. 2) was seen to adopt an envelope conformation with C4 out of the plane. The absolute configuration was determined by the use of D-glucuronolactone as the starting material for the synthesis. The molecule exists as an extensively hydrogen bonded nextwork with each molecule acting as a donor and acceptor for 5 hydrogen bonds (Fig. 3, Fig. 4). Only classical hydrogen bonding has been considered.

Experimental

The title compound was recrystallized from a mixture of hot ethanol and water: m.p. 449 K - decomposed; [α]D25 +14.7 (c, 1.13 in H2O).

Refinement

Initial refinement of the Flack x parameter gave a value of -0.5 (10), suggesting that the absolute configuration could not be determined (Flack, 1983; Flack & Bernardinelli, 2000). Analysis of the Bijvoet differences using CRYSTALS gave the Hooft y parameter as -0.2 (7), and the probability the configuration is correct assuming the material is enantiopure was determioned to be 78.7% (Hooft et al., 2008; Thompson et al. 2008; Thompson & Watkin 2009). In the absence of significant anomalous scattering (FRIEDIF = 6.71; Flack & Shmueli, 2007), Friedel pairs were merged for the final refinement.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, N—H in the range 0.86–0.89 N—H to 0.86 O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

Figures

Fig. 1.

Fig. 1.

Synthetic scheme.

Fig. 2.

Fig. 2.

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitary radius.

Fig. 3.

Fig. 3.

Packing diagram for the title compound projected along the b-axis.

Fig. 4.

Fig. 4.

Packing diagram for the title compound. The compound exists as an extensively hydrogen bonded nextwork.

Crystal data

C6H11NO5 Z = 1
Mr = 177.16 F(000) = 94
Triclinic, P1 Dx = 1.569 Mg m3
Hall symbol: P 1 Melting point: not measured K
a = 5.4160 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 5.8236 (3) Å Cell parameters from 696 reflections
c = 6.6006 (3) Å θ = 5–27°
α = 102.836 (2)° µ = 0.14 mm1
β = 104.776 (2)° T = 150 K
γ = 102.8244 (19)° Plate, clear_pale_colourless
V = 187.50 (2) Å3 0.25 × 0.17 × 0.06 mm

Data collection

Area diffractometer 814 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 27.5°, θmin = 5.6°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −7→7
Tmin = 0.94, Tmax = 0.99 k = −6→7
2314 measured reflections l = −8→7
834 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027 H-atom parameters constrained
wR(F2) = 0.066 Method, part 1, Chebychev polynomial, (Watkin, 1994, Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 22.5 35.8 21.7 10.1 2.91
S = 1.00 (Δ/σ)max = 0.0001
834 reflections Δρmax = 0.24 e Å3
109 parameters Δρmin = −0.17 e Å3
3 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1323 (3) 0.4021 (3) 0.0397 (3) 0.0170
C2 0.3330 (4) 0.5769 (4) 0.1694 (3) 0.0124
O3 0.3285 (3) 0.7782 (3) 0.2816 (3) 0.0161
C4 0.6067 (4) 0.5299 (3) 0.1892 (3) 0.0118
N5 0.8297 (3) 0.7483 (3) 0.3462 (3) 0.0120
C6 0.8425 (4) 0.7309 (4) 0.5744 (3) 0.0130
C7 1.1277 (4) 0.8313 (4) 0.7284 (3) 0.0167
O8 1.2417 (3) 1.0809 (3) 0.7415 (3) 0.0209
C9 0.7092 (4) 0.4584 (4) 0.5443 (3) 0.0150
C10 0.6269 (4) 0.3243 (4) 0.2968 (3) 0.0135
O11 0.8192 (3) 0.2063 (3) 0.2544 (3) 0.0229
O12 0.4844 (4) 0.4511 (3) 0.6175 (3) 0.0252
H41 0.6365 0.4960 0.0477 0.0144*
H61 0.7333 0.8262 0.6278 0.0169*
H72 1.1284 0.8203 0.8747 0.0191*
H71 1.2343 0.7354 0.6770 0.0194*
H91 0.8360 0.3904 0.6257 0.0183*
H101 0.4566 0.2013 0.2549 0.0154*
H81 1.2048 1.1744 0.8368 0.0313*
H51 0.7954 0.8869 0.3332 0.0177*
H52 0.9817 0.7443 0.3204 0.0178*
H111 0.8993 0.2734 0.1839 0.0347*
H121 0.4206 0.3112 0.6224 0.0383*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0115 (7) 0.0187 (7) 0.0178 (7) 0.0024 (5) 0.0034 (5) 0.0030 (6)
C2 0.0128 (9) 0.0137 (9) 0.0134 (9) 0.0052 (7) 0.0051 (7) 0.0074 (7)
O3 0.0153 (7) 0.0148 (7) 0.0210 (7) 0.0075 (6) 0.0074 (5) 0.0057 (6)
C4 0.0113 (9) 0.0115 (8) 0.0130 (9) 0.0032 (7) 0.0050 (7) 0.0032 (7)
N5 0.0123 (8) 0.0098 (7) 0.0150 (8) 0.0039 (6) 0.0052 (6) 0.0042 (6)
C6 0.0142 (9) 0.0115 (8) 0.0136 (9) 0.0030 (7) 0.0053 (7) 0.0041 (7)
C7 0.0154 (9) 0.0161 (9) 0.0152 (9) 0.0013 (8) 0.0023 (7) 0.0042 (8)
O8 0.0246 (8) 0.0151 (8) 0.0190 (7) −0.0019 (6) 0.0100 (6) 0.0020 (6)
C9 0.0173 (10) 0.0130 (9) 0.0165 (10) 0.0042 (7) 0.0066 (8) 0.0067 (7)
C10 0.0121 (9) 0.0124 (9) 0.0176 (9) 0.0049 (7) 0.0058 (7) 0.0050 (7)
O11 0.0280 (8) 0.0223 (8) 0.0356 (9) 0.0180 (7) 0.0218 (7) 0.0179 (7)
O12 0.0325 (9) 0.0164 (7) 0.0304 (9) 0.0018 (7) 0.0222 (8) 0.0056 (7)

Geometric parameters (Å, °)

O1—C2 1.264 (3) C7—O8 1.421 (2)
C2—O3 1.249 (2) C7—H72 0.981
C2—C4 1.545 (2) C7—H71 0.959
C4—N5 1.498 (2) O8—H81 0.832
C4—C10 1.532 (3) C9—C10 1.545 (3)
C4—H41 0.972 C9—O12 1.415 (2)
N5—C6 1.517 (2) C9—H91 0.972
N5—H51 0.885 C10—O11 1.420 (2)
N5—H52 0.886 C10—H101 0.963
C6—C7 1.515 (3) O11—H111 0.816
C6—C9 1.535 (3) O12—H121 0.823
C6—H61 0.973
O1—C2—O3 126.24 (18) C6—C7—O8 111.22 (16)
O1—C2—C4 115.43 (17) C6—C7—H72 108.8
O3—C2—C4 118.32 (17) O8—C7—H72 109.4
C2—C4—N5 110.92 (15) C6—C7—H71 109.8
C2—C4—C10 109.46 (14) O8—C7—H71 108.5
N5—C4—C10 103.55 (15) H72—C7—H71 109.1
C2—C4—H41 111.2 C7—O8—H81 110.0
N5—C4—H41 108.5 C6—C9—C10 106.41 (15)
C10—C4—H41 113.0 C6—C9—O12 106.33 (16)
C4—N5—C6 106.33 (14) C10—C9—O12 111.81 (16)
C4—N5—H51 110.5 C6—C9—H91 110.0
C6—N5—H51 109.1 C10—C9—H91 109.3
C4—N5—H52 109.8 O12—C9—H91 112.7
C6—N5—H52 111.2 C9—C10—C4 103.65 (15)
H51—N5—H52 109.8 C9—C10—O11 109.89 (16)
N5—C6—C7 110.92 (15) C4—C10—O11 113.98 (15)
N5—C6—C9 105.61 (15) C9—C10—H101 108.3
C7—C6—C9 114.30 (16) C4—C10—H101 111.8
N5—C6—H61 108.0 O11—C10—H101 109.0
C7—C6—H61 109.9 C10—O11—H111 110.0
C9—C6—H61 107.9 C9—O12—H121 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C7—H71···O12i 0.96 2.39 3.328 (3) 166
C10—H101···O3ii 0.96 2.47 3.199 (3) 133
O8—H81···O1iii 0.83 1.85 2.679 (3) 175
N5—H51···O11iv 0.88 2.03 2.873 (3) 160
N5—H52···O3i 0.89 1.93 2.814 (3) 173
O11—H111···O1i 0.82 1.89 2.696 (3) 170
O12—H121···O8v 0.82 1.91 2.668 (3) 154

Symmetry codes: (i) x+1, y, z; (ii) x, y−1, z; (iii) x+1, y+1, z+1; (iv) x, y+1, z; (v) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2896).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000). Tetrahedron Asymmetry, 11, 1645–1680.
  3. Bashyal, B. P., Chow, H.-F., Fellows, L. E. & Fleet, G. W. J. (1987). Tetrahedron, 43, 415–422.
  4. Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1986). Tetrahedron Lett.27, 3205–3208.
  5. Bashyal, B. P., Chow, H.-F. & Fleet, G. W. J. (1987). Tetrahedron, 43, 423–430.
  6. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  7. Booth, K. V., Jenkinson, S. F., Watkin, D. J., Sharp, H., Jones, P. W., Nash, R. J. & Fleet, G. W. J. (2007). Acta Cryst. E63, o3783–o3784.
  8. di Bello, I. C., Dorling, P., Fellows, L. & Winchester, B. (1984). FEBS Lett.176, 61–64. [DOI] [PubMed]
  9. Donohoe, T. J., Cheeseman, M. D., O’Riordan, T. J. C. & Kershaw, J. A. (2008). Org. Biomol. Chem. pp. 3896–3898. [DOI] [PubMed]
  10. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  11. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst.33, 1143–1148.
  12. Flack, H. D. & Shmueli, U. (2007). Acta Cryst. A63, 257–265. [DOI] [PubMed]
  13. Fleet, G. W. J., Fellows, L. E. & Smith, P. W. (1987). Tetrahedron, 43, 979–990.
  14. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [DOI] [PMC free article] [PubMed]
  15. Kato, A., Kano, E., Adachi, I., Molyneux, R. J., Watson, A. A., Nash, R. J., Fleet, G. W. J., Wormald, M. R., Kizu, H., Ikeda, K. & Asano, N. (2003). Tetrahedron Asymmetry, 14, 325–331.
  16. Manning, K. S., Lynn, D. G., Shabanowitz, J., Fellows, L. E., Singh, M. & Schrire, B. D. (1985). J. Chem. Soc. Chem. Commun. pp. 127–129.
  17. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  18. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  19. Pereira, A. C. D., Kaplan, M. A. C., Maia, J. G. S., Gottlieb, O. R., Nash, R. J., Fleet, G., Pearce, L., Watkin, D. J. & Scofield, A. M. (1991). Tetrahedron, 47, 5637–5640.
  20. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science New York: Springer-Verlag.
  21. Shinagawa, S., Kasahara, F., Harada, S. & Asai, M. (1984). Tetrahedron, 40, 3465–3470.
  22. Shinagawa, S., Maki, M., Kintaka, K., Imada, A. & Asai, M. (1985). J. Antibiot.38, 17–23. [DOI] [PubMed]
  23. Thompson, A. L. & Watkin, D. J. (2009). Tetrahedron Asymmetry, 20, 712–717.
  24. Thompson, A. L., Watkin, D. J., Gal, Z. A., Jones, L., Hollinshead, J., Jenkinson, S. F., Fleet, G. W. J. & Nash, R. J. (2008). Acta Cryst. C64, o649–o652. [DOI] [PubMed]
  25. Toumi, M., Couty, F. & Evano, G. (2008). Tetrahedron Lett.49, 1175–1179.
  26. Watkin, D. (1994). Acta Cryst. A50, 411–437.
  27. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  28. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
  29. Wormald, M. R., Nash, R. J., Hrnciar, P., White, J. D., Molyneux, R. J. & Fleet, G. W. J. (1998). Tetrahedron Asymmetry, 9, 2549–2558.
  30. Yoshimura, Y., Ohara, C., Imahori, T., Saito, Y., Kato, A., Miyauchi, S., Adachi, I. & Takahata, H. (2008). Bioorg. Med. Chem.16, 8273–8286. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035636/lh2896sup1.cif

e-65-o2418-sup1.cif (14.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035636/lh2896Isup2.hkl

e-65-o2418-Isup2.hkl (42.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES