Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 12;65(Pt 10):o2453. doi: 10.1107/S1600536809036113

2-Methanesulfonamidobenzoic acid

Muhammad Shafiq a,*, Muhammad Zia-ur-Rehman b, Islam Ullah Khan a, Muhammad Nadeem Arshad a, Imtiaz Ahmad a
PMCID: PMC2970411  PMID: 21577908

Abstract

In the title compound, C8H9NO4S, an intra­molecular N—H⋯O hydrogen bond gives rise to a six-membered ring. In the crystal structure, two mol­ecules are connected by O—H⋯O hydrogen bonds, forming a centrosymmetric dimer. These dimers are further connected by C—H⋯O hydrogen bonds.

Related literature

For the synthesis and biological evaluation of sulfur-containing heterocyclic compounds, see: Zia-ur-Rehman et al. (2005, 2006, 2009); Xiao & Timberlake (2000); Lee & Lee (2002). For biological evaluation of sulfonamides, see: Hanson et al. (1999); Moree et al. (1991); Rough et al. (1998). For related literature on sulfonamides, see: Esteve & Bidal (2002); Soledade et al. (2006). For related structures, see: Gowda et al. (2007); Arshad et al. (2008).graphic file with name e-65-o2453-scheme1.jpg

Experimental

Crystal data

  • C8H9NO4S

  • M r = 215.23

  • Triclinic, Inline graphic

  • a = 5.2001 (2) Å

  • b = 8.6120 (4) Å

  • c = 11.2314 (5) Å

  • α = 72.675 (3)°

  • β = 84.155 (3)°

  • γ = 86.846 (3)°

  • V = 477.50 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.19 × 0.09 × 0.02 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997) T min = 0.941, T max = 0.993

  • 9379 measured reflections

  • 2330 independent reflections

  • 1261 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.121

  • S = 1.01

  • 2330 reflections

  • 131 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036113/bt5054sup1.cif

e-65-o2453-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036113/bt5054Isup2.hkl

e-65-o2453-Isup2.hkl (114.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.78 (3) 1.89 (3) 2.671 (2) 172 (4)
N1—H1⋯O1 0.86 2.03 2.652 (2) 128
C4—H4⋯O3ii 0.93 2.37 3.235 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission for a grant to purchase he X-ray diffractometer.

supplementary crystallographic information

Comment

Sulfonamides are well known for their enormous potential as biologically active molecules (Hanson et al., 1999; Moree et al., 1991; Rough et al., 1998). Few of these are familiar as anti-hypertensive, anti-convulsant, herbicidal, anti-microbial and anti-microbial activities (Esteve & Bidal, 2002; Soledade et al., 2006; Xiao & Timberlake, 2000; Lee & Lee, 2002). In the present paper, the structure of the 2-[(methylsulfonyl)amino]benzoic acid has been determined as a part of a research program involving the synthesis and biological evaluation of sulfur containing heterocyclic compounds (Zia-ur-Rehman et al., 2005, 2006, 2009). In the molecule of (Fig. 1), bond lengths and bond angles are are almost similar to those in related molecules (Gowda et al., 2007; Arshad et al., 2008) and are within normal ranges. Each molecule exhibits an intramolecular N—H···O hydrogen bond which stabilizes the planar conformation and is linked to an adjacent one through head-to-tail pairs of O—H···O intermolecular interactions giving rise to dimeric motifs typical for carboxylic acids. Neighbouring dimers are further linked to each other through C—H···O interactions (Fig. 2).

Experimental

A mixture of methyl 2-[(methylsulfonyl)amino]benzoate (1.0 g; 4.4 mmoles), sodium hydroxide (0.2 g; 5.0 mmoles) and water (30.0 ml) was stirred at room temperature for a period of one hour followed by addition of dilute hydrochloric acid to Congo Red (pH~5). Precipitates formed were filtered, washed with cold water and dried under vacuum followed by recrystallization in ethanol.

Refinement

H atoms bond to C and N were placed in geometric positions (N—H = 0.86, Caromatic—H = 0.93, Cmethyl—H = 0.96 Å) using a riding model with Uiso(H) = 1.2Ueq(C,N,O) or Uiso(H) = 1.5Ueq(Cmethyl). The coordinates of the H atom bonded to O were refined.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with displacement ellipsoids at the 50% probability level.

Crystal data

C8H9NO4S Z = 2
Mr = 215.23 F(000) = 224
Triclinic, P1 Dx = 1.497 Mg m3
Hall symbol: -P 1 Melting point: 373 K
a = 5.2001 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.6120 (4) Å Cell parameters from 2313 reflections
c = 11.2314 (5) Å θ = 2.6–26.6°
α = 72.675 (3)° µ = 0.33 mm1
β = 84.155 (3)° T = 296 K
γ = 86.846 (3)° Needle, colourless
V = 477.50 (4) Å3 0.19 × 0.09 × 0.02 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 2330 independent reflections
Radiation source: fine-focus sealed tube 1261 reflections with I > 2σ(I)
graphite Rint = 0.030
φ and ω scans θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) h = −6→6
Tmin = 0.941, Tmax = 0.993 k = −11→11
9379 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.0282P] where P = (Fo2 + 2Fc2)/3
2330 reflections (Δ/σ)max < 0.001
131 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.13958 (10) 0.86241 (8) 0.36548 (6) 0.0718 (3)
O1 0.7317 (3) 0.9547 (2) 0.09332 (14) 0.0702 (4)
O2 0.9632 (3) 0.7901 (2) 0.00272 (17) 0.0884 (6)
H2 1.047 (6) 0.868 (4) −0.020 (3) 0.106*
O3 0.1286 (4) 1.0325 (2) 0.3430 (2) 0.1179 (8)
O4 −0.0938 (3) 0.7780 (2) 0.38190 (16) 0.0881 (6)
N1 0.3205 (3) 0.8337 (2) 0.24607 (18) 0.0737 (6)
H1 0.3768 0.9197 0.1899 0.088*
C1 0.6130 (4) 0.6764 (3) 0.14278 (19) 0.0580 (6)
C2 0.3943 (4) 0.6848 (3) 0.22472 (19) 0.0579 (6)
C3 0.2556 (4) 0.5456 (3) 0.2809 (2) 0.0770 (7)
H3 0.1102 0.5498 0.3355 0.092*
C4 0.3279 (5) 0.4020 (3) 0.2577 (3) 0.0826 (7)
H4 0.2305 0.3101 0.2959 0.099*
C5 0.5438 (5) 0.3919 (3) 0.1784 (3) 0.0839 (8)
H5 0.5945 0.2937 0.1635 0.101*
C6 0.6818 (5) 0.5284 (3) 0.1222 (2) 0.0778 (7)
H6 0.8272 0.5219 0.0682 0.093*
C7 0.7712 (4) 0.8198 (3) 0.07879 (19) 0.0617 (6)
C8 0.3072 (5) 0.7722 (4) 0.4963 (3) 0.0931 (9)
H8A 0.4750 0.8186 0.4842 0.140*
H8B 0.3260 0.6573 0.5079 0.140*
H8C 0.2130 0.7910 0.5690 0.140*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0519 (3) 0.0691 (5) 0.0812 (5) −0.0032 (3) 0.0323 (3) −0.0144 (3)
O1 0.0596 (9) 0.0739 (11) 0.0679 (10) −0.0159 (8) 0.0290 (7) −0.0160 (8)
O2 0.0795 (11) 0.0919 (14) 0.0887 (13) −0.0233 (9) 0.0491 (9) −0.0336 (11)
O3 0.1275 (16) 0.0632 (12) 0.1399 (18) −0.0009 (10) 0.0728 (14) −0.0229 (11)
O4 0.0469 (8) 0.1114 (14) 0.0933 (13) −0.0105 (8) 0.0251 (8) −0.0194 (10)
N1 0.0676 (11) 0.0592 (12) 0.0772 (13) −0.0082 (9) 0.0391 (10) −0.0078 (10)
C1 0.0512 (11) 0.0722 (15) 0.0480 (12) −0.0099 (10) 0.0099 (9) −0.0167 (11)
C2 0.0486 (11) 0.0615 (14) 0.0558 (13) −0.0077 (10) 0.0123 (9) −0.0099 (10)
C3 0.0625 (13) 0.0719 (17) 0.0865 (18) −0.0136 (12) 0.0254 (12) −0.0161 (13)
C4 0.0825 (16) 0.0716 (17) 0.0894 (19) −0.0235 (13) 0.0146 (14) −0.0207 (14)
C5 0.0952 (19) 0.0732 (17) 0.0866 (18) −0.0142 (14) 0.0148 (15) −0.0340 (14)
C6 0.0761 (15) 0.0870 (19) 0.0708 (16) −0.0099 (14) 0.0227 (13) −0.0322 (14)
C7 0.0510 (11) 0.0813 (17) 0.0466 (12) −0.0093 (11) 0.0156 (9) −0.0146 (12)
C8 0.0601 (14) 0.132 (2) 0.089 (2) −0.0001 (15) 0.0122 (13) −0.0406 (18)

Geometric parameters (Å, °)

S1—O3 1.4091 (18) C2—C3 1.381 (3)
S1—O4 1.4164 (16) C3—C4 1.363 (3)
S1—N1 1.6307 (18) C3—H3 0.9300
S1—C8 1.740 (3) C4—C5 1.376 (3)
O1—C7 1.223 (3) C4—H4 0.9300
O2—C7 1.312 (2) C5—C6 1.361 (3)
O2—H2 0.78 (3) C5—H5 0.9300
N1—C2 1.400 (3) C6—H6 0.9300
N1—H1 0.8600 C8—H8A 0.9600
C1—C6 1.384 (3) C8—H8B 0.9600
C1—C2 1.401 (3) C8—H8C 0.9600
C1—C7 1.477 (3)
O3—S1—O4 119.14 (12) C3—C4—C5 120.6 (2)
O3—S1—N1 104.71 (10) C3—C4—H4 119.7
O4—S1—N1 109.48 (11) C5—C4—H4 119.7
O3—S1—C8 109.48 (15) C6—C5—C4 118.8 (2)
O4—S1—C8 107.25 (12) C6—C5—H5 120.6
N1—S1—C8 106.10 (11) C4—C5—H5 120.6
C7—O2—H2 107 (2) C5—C6—C1 122.2 (2)
C2—N1—S1 127.27 (14) C5—C6—H6 118.9
C2—N1—H1 116.4 C1—C6—H6 118.9
S1—N1—H1 116.4 O1—C7—O2 121.91 (19)
C6—C1—C2 118.5 (2) O1—C7—C1 124.62 (18)
C6—C1—C7 119.46 (19) O2—C7—C1 113.5 (2)
C2—C1—C7 122.1 (2) S1—C8—H8A 109.5
C3—C2—N1 121.92 (19) S1—C8—H8B 109.5
C3—C2—C1 118.7 (2) H8A—C8—H8B 109.5
N1—C2—C1 119.34 (18) S1—C8—H8C 109.5
C4—C3—C2 121.2 (2) H8A—C8—H8C 109.5
C4—C3—H3 119.4 H8B—C8—H8C 109.5
C2—C3—H3 119.4
O3—S1—N1—C2 179.0 (2) C1—C2—C3—C4 −0.1 (4)
O4—S1—N1—C2 −52.2 (2) C2—C3—C4—C5 0.7 (4)
C8—S1—N1—C2 63.2 (2) C3—C4—C5—C6 −0.9 (4)
S1—N1—C2—C3 22.1 (3) C4—C5—C6—C1 0.4 (4)
S1—N1—C2—C1 −158.81 (18) C2—C1—C6—C5 0.3 (4)
C6—C1—C2—C3 −0.4 (3) C7—C1—C6—C5 180.0 (2)
C7—C1—C2—C3 179.9 (2) C6—C1—C7—O1 −177.7 (2)
C6—C1—C2—N1 −179.6 (2) C2—C1—C7—O1 2.0 (4)
C7—C1—C2—N1 0.7 (3) C6—C1—C7—O2 2.3 (3)
N1—C2—C3—C4 179.1 (2) C2—C1—C7—O2 −177.9 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.78 (3) 1.89 (3) 2.671 (2) 172 (4)
N1—H1···O1 0.86 2.03 2.652 (2) 128
C4—H4···O3ii 0.93 2.37 3.235 (3) 155

Symmetry codes: (i) −x+2, −y+2, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5054).

References

  1. Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284. [DOI] [PMC free article] [PubMed]
  2. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Esteve, C. & Bidal, B. (2002). Tetrahedron Lett.43, 1019–1021.
  4. Gowda, B. T., Foro, S. & Fuess, H. (2007). Acta Cryst. E63, o2339.
  5. Hanson, P. R., Probst, D. A., Robinson, R. E. & Yau, M. (1999). Tetrahedron Lett.40, 4761–4763.
  6. Lee, J. S. & Lee, C. H. (2002). Bull. Korean Chem. Soc.23, 167–169.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Moree, W. J., Van der Marel, G. A. & Liskamp, R. M. (1991). Tetrahedron Lett.32, 409–411.
  9. Rough, W. R., Gwaltney, S. L., Cheng, J., Scheidt, K. A., Mc Kerrow, J. H. & Hansell, E. (1998). J. Am. Chem. Soc.120, 10994–10995.
  10. Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Soledade, M., Pedras, C. & Jha, M. (2006). Bioorg. Med. Chem.14, 4958–4979. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Xiao, Z. & Timberlake, J. W. (2000). J. Heterocycl. Chem.37, 773–777.
  15. Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc.26, 1771–1775.
  16. Zia-ur-Rehman, M. Z., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [DOI] [PubMed]
  17. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem.44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809036113/bt5054sup1.cif

e-65-o2453-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036113/bt5054Isup2.hkl

e-65-o2453-Isup2.hkl (114.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES