Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 30;65(Pt 10):o2596. doi: 10.1107/S1600536809038951

N-[2-(Amino­carbon­yl)phen­yl]-4-hydr­oxy-2-methyl-2H-1,2-benzothia­zine-3-carboxamide 1,1-dioxide

Muhammad Nadeem Arshad a, Muhammad Zia-ur-Rehman b,*, Islam Ullah Khan a
PMCID: PMC2970422  PMID: 21578031

Abstract

In the title compound, C17H15N3O5S, the thia­zine ring adopts a distorted half-chair conformation. The mol­ecular structure is stabilized by intra­molecular N—H⋯O, N—H⋯N and O—H⋯O hydrogen bonding. Pairs of mol­ecules are bound together as centrosymmetric dimers through N—H⋯O hydrogen bonds.

Related literature

For the synthesis of related mol­ecules, see: Braun (1923); Ahmad et al. (2008); Zia-ur-Rehman et al. (2005, 2009). For the biological activity of 1,2-benzothia­zine 1,1-dioxides, see: Bihovsky et al. (2004); Turck et al. (1996); Zia-ur-Rehman et al. (2006). For similar mol­ecules, see: Kojić-Prodić & Rużić-Toroš (1982); Siddiqui et al. (2009); Weast et al. (1984); Zia-ur-Rehman et al. (2007).graphic file with name e-65-o2596-scheme1.jpg

Experimental

Crystal data

  • C17H15N3O5S

  • M r = 373.38

  • Monoclinic, Inline graphic

  • a = 8.1377 (6) Å

  • b = 7.0515 (6) Å

  • c = 29.069 (2) Å

  • β = 96.502 (3)°

  • V = 1657.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.25 × 0.11 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.915, T max = 0.975

  • 16109 measured reflections

  • 3753 independent reflections

  • 3011 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.087

  • wR(F 2) = 0.213

  • S = 1.09

  • 3753 reflections

  • 237 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038951/bt5073sup1.cif

e-65-o2596-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038951/bt5073Isup2.hkl

e-65-o2596-Isup2.hkl (184KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O4 0.82 1.85 2.569 (5) 145
N2—H2⋯O5 0.86 1.92 2.607 (5) 136
N2—H2⋯N1 0.86 2.28 2.728 (5) 113
N3—H3A⋯O5i 0.86 2.22 2.941 (6) 141

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the PCSIR Laboratories Complex, Lahore, for the provision of facilities necessary to complete this work.

supplementary crystallographic information

Comment

Owing to the verstaile applications of 1,2-benzothiazine 1,1-dioxides, considerable attention has been given to their synthesis since their very first synthesis (Braun, 1923). Among these, Piroxicam (Zia-ur-Rehman et al., 2005), and Meloxicam (Turck et al., 1996) are familiar for their analgesic action and are being used world wide as non-steroidal anti-inflammatory drugs (NSAIDs). Some of the 3,4-dihydro-1,2-benzothiazine-3-carboxylate 1,1-dioxide α-ketomide and P(2)—P(3) peptide mimetic aldehyde compounds act as potent calpain I inhibitors (Bihovsky et al., 2004) while 1,2-benzothiazin-3-yl-quinazolin-4(3H)-ones possess anti-bacterial properties (Zia-ur-Rehman et al., 2006).

In continuation of our work on the synthesis (Zia-ur-Rehman et al., 2006, biological activity (Zia-ur-Rehman et al., 2009) and crystal structures (Zia-ur-Rehman et al., 2007; Ahmad et al., 2008, Siddiqui et al., 2009) of various 1,2-benzothiazine-1,1-dioxides, we herein report the crystal structure of the title compound (I) (Scheme and figure 1). Like its already reported dimethylsulfoxide solvate analogue (Zia-ur-Rehman et al., 2007), thiazine ring involving two double bonds, exhibits sofa conformation; with S1/C1/C2/C7 relatively planar and N1 showing significant departure from plane due to its pyramidal geometry. The enolic hydrogen on O1 is involved in intramolecular hydrogen bonding [O1—H1···O4] with the carbonyl oxygen at C9 giving rise to a six-membered hydrogen bond ring (Table 1). Atom H2 forms hydrogen bonds with both N1 and O5 giving rise to five and six-membered hydrogen bond rings respectively. The C1—S1 [1.755 Å] bond is shorter than a normal C—S single bond (1.81–2.55 Å) (Weast et al., 1984) due to partial double bond character and is in agreement with similar molecules (Kojić-Prodić & Rużić-Toroš, 1982). Each molecule is centrosymmetrically linked to its adjacent one forming a dimer through intermolecular [N—H3B···O5] hydrogen bonds (Fig. 2).

Experimental

N-[2-(Aminocarbonyl)phenyl]-4-hydroxy-2-methyl-2H-1,2-benzothiazine- 3-carboxamide 1,1-dioxide was synthesized according to a literature method (Zia-ur-Rehman et al., 2006). Suitable crystals were obtained by dissoving the compound in chloroform followed by slow evaporation at room temperature.The compound was dissolved in a mixture of methanol and DMSO (80:20 v/v) at room temperature. Crystals were obtained by slow evaporation and dried under high vacuum.

Refinement

All hydrogen atoms were identified in the difference map. They were refined using a riding model with O—H = 0.84 Å, N—H = 0.86 Å, Cmethyl—H 0.98 Å and Caromatic—H = 0.95 Å. and U(H) set to 1.2Ueq of the parent atoms or set to 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional crystal packing showing hydrogen-bonded interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C17H15N3O5S F(000) = 776
Mr = 373.38 Dx = 1.496 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 6164 reflections
a = 8.1377 (6) Å θ = 2.5–27.1°
b = 7.0515 (6) Å µ = 0.23 mm1
c = 29.069 (2) Å T = 296 K
β = 96.502 (3)° Needles, colourless
V = 1657.3 (2) Å3 0.39 × 0.25 × 0.11 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 3753 independent reflections
Radiation source: fine-focus sealed tube 3011 reflections with I > 2σ(I)
graphite Rint = 0.039
φ and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −10→10
Tmin = 0.915, Tmax = 0.975 k = −9→9
16109 measured reflections l = −32→37

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.087 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.213 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0335P)2 + 9.427P] where P = (Fo2 + 2Fc2)/3
3753 reflections (Δ/σ)max < 0.001
237 parameters Δρmax = 0.38 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.35684 (14) 0.5031 (2) 0.33289 (4) 0.0343 (3)
O2 0.2977 (5) 0.6850 (5) 0.34450 (12) 0.0427 (9)
O3 0.5306 (4) 0.4668 (7) 0.33922 (13) 0.0538 (11)
O4 −0.1641 (4) 0.3152 (6) 0.38428 (12) 0.0480 (10)
O5 0.3670 (4) 0.3198 (6) 0.47838 (12) 0.0484 (10)
N1 0.2640 (5) 0.3427 (6) 0.36214 (13) 0.0310 (9)
N2 0.0743 (5) 0.2848 (6) 0.43247 (12) 0.0306 (8)
H2 0.1801 0.2826 0.4328 0.037*
N3 0.3804 (6) 0.4241 (8) 0.55160 (15) 0.0534 (13)
H3A 0.4817 0.4585 0.5513 0.064*
H3B 0.3319 0.4407 0.5761 0.064*
O1 −0.1513 (4) 0.3895 (6) 0.29823 (12) 0.0436 (9)
H1 −0.1968 0.3747 0.3218 0.065*
C1 0.2765 (6) 0.4493 (7) 0.27578 (16) 0.0329 (10)
C2 0.1069 (6) 0.4046 (7) 0.26901 (16) 0.0322 (10)
C3 0.0347 (8) 0.3766 (8) 0.22406 (17) 0.0445 (13)
H3 −0.0780 0.3516 0.2183 0.053*
C4 0.1301 (9) 0.3861 (9) 0.18781 (19) 0.0577 (17)
H4 0.0805 0.3685 0.1577 0.069*
C5 0.2966 (9) 0.4210 (10) 0.19540 (19) 0.0580 (17)
H5 0.3594 0.4221 0.1706 0.070*
C6 0.3718 (7) 0.4546 (9) 0.23979 (19) 0.0470 (14)
H6 0.4845 0.4802 0.2451 0.056*
C7 0.0124 (6) 0.3801 (7) 0.30885 (16) 0.0314 (10)
C8 0.0874 (6) 0.3479 (7) 0.35254 (16) 0.0308 (10)
C9 −0.0106 (6) 0.3133 (7) 0.39093 (15) 0.0315 (10)
C10 0.0150 (6) 0.2579 (6) 0.47583 (15) 0.0287 (9)
C11 0.1236 (6) 0.2888 (7) 0.51660 (16) 0.0323 (10)
C12 0.0636 (7) 0.2643 (7) 0.55876 (17) 0.0402 (12)
H12 0.1350 0.2810 0.5858 0.048*
C13 −0.0980 (7) 0.2160 (8) 0.56205 (18) 0.0441 (13)
H13 −0.1358 0.2046 0.5909 0.053*
C14 −0.2039 (7) 0.1845 (8) 0.5223 (2) 0.0448 (13)
H14 −0.3134 0.1514 0.5245 0.054*
C15 −0.1485 (6) 0.2019 (7) 0.47945 (17) 0.0374 (11)
H15 −0.2197 0.1764 0.4528 0.045*
C16 0.2986 (6) 0.3449 (8) 0.51412 (16) 0.0368 (11)
C17 0.3393 (7) 0.1508 (9) 0.3632 (2) 0.0521 (15)
H17A 0.3025 0.0790 0.3882 0.078*
H17B 0.4576 0.1619 0.3678 0.078*
H17C 0.3065 0.0873 0.3344 0.078*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0273 (5) 0.0450 (7) 0.0309 (6) −0.0003 (5) 0.0047 (4) 0.0006 (5)
O2 0.048 (2) 0.041 (2) 0.0391 (19) −0.0070 (17) 0.0065 (16) −0.0037 (16)
O3 0.0284 (18) 0.084 (3) 0.049 (2) 0.000 (2) 0.0067 (16) 0.010 (2)
O4 0.0289 (18) 0.079 (3) 0.0368 (19) 0.0027 (19) 0.0076 (14) 0.0050 (19)
O5 0.0350 (19) 0.075 (3) 0.0354 (19) −0.0012 (19) 0.0067 (15) −0.0072 (19)
N1 0.0278 (19) 0.038 (2) 0.0276 (19) 0.0065 (17) 0.0039 (15) 0.0006 (16)
N2 0.0260 (19) 0.039 (2) 0.0280 (19) 0.0001 (17) 0.0063 (15) 0.0053 (17)
N3 0.042 (3) 0.082 (4) 0.036 (2) −0.006 (3) 0.0011 (19) −0.009 (2)
O1 0.0307 (18) 0.065 (3) 0.0335 (18) −0.0013 (18) −0.0011 (14) 0.0024 (18)
C1 0.040 (3) 0.032 (2) 0.028 (2) 0.001 (2) 0.0079 (19) 0.0016 (18)
C2 0.037 (2) 0.031 (2) 0.029 (2) −0.001 (2) 0.0064 (19) 0.0005 (19)
C3 0.063 (4) 0.042 (3) 0.029 (2) −0.005 (3) 0.005 (2) −0.002 (2)
C4 0.087 (5) 0.056 (4) 0.029 (3) −0.013 (3) 0.004 (3) −0.005 (3)
C5 0.076 (4) 0.071 (4) 0.031 (3) −0.005 (4) 0.024 (3) −0.004 (3)
C6 0.046 (3) 0.057 (4) 0.041 (3) −0.003 (3) 0.016 (2) −0.001 (3)
C7 0.030 (2) 0.034 (2) 0.030 (2) 0.0008 (19) 0.0067 (18) −0.0015 (19)
C8 0.028 (2) 0.034 (2) 0.030 (2) 0.0032 (19) 0.0029 (17) 0.0000 (19)
C9 0.034 (2) 0.032 (2) 0.029 (2) 0.0000 (19) 0.0034 (18) −0.0003 (19)
C10 0.032 (2) 0.026 (2) 0.028 (2) 0.0039 (18) 0.0082 (18) 0.0025 (18)
C11 0.039 (3) 0.028 (2) 0.031 (2) 0.004 (2) 0.0072 (19) 0.0029 (19)
C12 0.058 (3) 0.035 (3) 0.029 (2) 0.002 (2) 0.011 (2) 0.001 (2)
C13 0.063 (4) 0.039 (3) 0.035 (3) 0.000 (3) 0.023 (2) 0.003 (2)
C14 0.045 (3) 0.039 (3) 0.054 (3) −0.002 (2) 0.021 (3) 0.005 (3)
C15 0.036 (3) 0.039 (3) 0.039 (3) 0.000 (2) 0.012 (2) 0.007 (2)
C16 0.034 (3) 0.044 (3) 0.031 (2) 0.006 (2) −0.0011 (19) 0.003 (2)
C17 0.052 (3) 0.049 (3) 0.058 (4) 0.020 (3) 0.020 (3) 0.014 (3)

Geometric parameters (Å, °)

S1—O2 1.424 (4) C4—C5 1.371 (9)
S1—O3 1.428 (4) C4—H4 0.9300
S1—N1 1.648 (4) C5—C6 1.384 (8)
S1—C1 1.755 (5) C5—H5 0.9300
O4—C9 1.242 (6) C6—H6 0.9300
O5—C16 1.246 (6) C7—C8 1.364 (6)
N1—C8 1.433 (6) C8—C9 1.464 (6)
N1—C17 1.484 (7) C10—C15 1.403 (6)
N2—C9 1.337 (6) C10—C11 1.413 (6)
N2—C10 1.412 (5) C11—C12 1.380 (6)
N2—H2 0.8600 C11—C16 1.488 (7)
N3—C16 1.333 (6) C12—C13 1.372 (8)
N3—H3A 0.8600 C12—H12 0.9300
N3—H3B 0.8600 C13—C14 1.378 (8)
O1—C7 1.335 (5) C13—H13 0.9300
O1—H1 0.8200 C14—C15 1.379 (7)
C1—C6 1.372 (7) C14—H14 0.9300
C1—C2 1.407 (7) C15—H15 0.9300
C2—C3 1.385 (7) C17—H17A 0.9600
C2—C7 1.471 (6) C17—H17B 0.9600
C3—C4 1.379 (8) C17—H17C 0.9600
C3—H3 0.9300
O2—S1—O3 119.2 (3) O1—C7—C2 114.2 (4)
O2—S1—N1 108.0 (2) C8—C7—C2 122.3 (4)
O3—S1—N1 108.4 (2) C7—C8—N1 121.2 (4)
O2—S1—C1 108.6 (2) C7—C8—C9 120.8 (4)
O3—S1—C1 109.9 (2) N1—C8—C9 117.9 (4)
N1—S1—C1 101.3 (2) O4—C9—N2 123.4 (4)
C8—N1—C17 115.4 (4) O4—C9—C8 120.3 (4)
C8—N1—S1 113.0 (3) N2—C9—C8 116.3 (4)
C17—N1—S1 115.1 (3) C15—C10—N2 121.8 (4)
C9—N2—C10 129.2 (4) C15—C10—C11 119.3 (4)
C9—N2—H2 115.4 N2—C10—C11 118.9 (4)
C10—N2—H2 115.4 C12—C11—C10 118.4 (5)
C16—N3—H3A 120.0 C12—C11—C16 120.9 (5)
C16—N3—H3B 120.0 C10—C11—C16 120.8 (4)
H3A—N3—H3B 120.0 C13—C12—C11 122.1 (5)
C7—O1—H1 109.5 C13—C12—H12 119.0
C6—C1—C2 122.0 (5) C11—C12—H12 119.0
C6—C1—S1 122.2 (4) C12—C13—C14 119.7 (5)
C2—C1—S1 115.8 (3) C12—C13—H13 120.2
C3—C2—C1 118.0 (5) C14—C13—H13 120.2
C3—C2—C7 121.5 (5) C13—C14—C15 120.4 (5)
C1—C2—C7 120.5 (4) C13—C14—H14 119.8
C4—C3—C2 119.9 (6) C15—C14—H14 119.8
C4—C3—H3 120.1 C14—C15—C10 120.2 (5)
C2—C3—H3 120.1 C14—C15—H15 119.9
C5—C4—C3 121.2 (5) C10—C15—H15 119.9
C5—C4—H4 119.4 O5—C16—N3 120.8 (5)
C3—C4—H4 119.4 O5—C16—C11 121.6 (4)
C4—C5—C6 120.4 (5) N3—C16—C11 117.6 (4)
C4—C5—H5 119.8 N1—C17—H17A 109.5
C6—C5—H5 119.8 N1—C17—H17B 109.5
C1—C6—C5 118.5 (5) H17A—C17—H17B 109.5
C1—C6—H6 120.7 N1—C17—H17C 109.5
C5—C6—H6 120.7 H17A—C17—H17C 109.5
O1—C7—C8 123.6 (4) H17B—C17—H17C 109.5
O2—S1—N1—C8 58.6 (4) O1—C7—C8—C9 2.6 (8)
O3—S1—N1—C8 −171.0 (3) C2—C7—C8—C9 −176.4 (4)
C1—S1—N1—C8 −55.4 (4) C17—N1—C8—C7 −96.6 (6)
O2—S1—N1—C17 −165.8 (4) S1—N1—C8—C7 38.8 (6)
O3—S1—N1—C17 −35.4 (4) C17—N1—C8—C9 82.0 (5)
C1—S1—N1—C17 80.2 (4) S1—N1—C8—C9 −142.6 (4)
O2—S1—C1—C6 106.1 (5) C10—N2—C9—O4 −2.0 (8)
O3—S1—C1—C6 −25.9 (5) C10—N2—C9—C8 176.5 (4)
N1—S1—C1—C6 −140.4 (5) C7—C8—C9—O4 −0.9 (8)
O2—S1—C1—C2 −72.5 (4) N1—C8—C9—O4 −179.6 (5)
O3—S1—C1—C2 155.5 (4) C7—C8—C9—N2 −179.5 (5)
N1—S1—C1—C2 41.0 (4) N1—C8—C9—N2 1.9 (7)
C6—C1—C2—C3 −3.9 (8) C9—N2—C10—C15 19.3 (8)
S1—C1—C2—C3 174.7 (4) C9—N2—C10—C11 −160.5 (5)
C6—C1—C2—C7 173.4 (5) C15—C10—C11—C12 −0.6 (7)
S1—C1—C2—C7 −8.0 (6) N2—C10—C11—C12 179.2 (4)
C1—C2—C3—C4 2.4 (8) C15—C10—C11—C16 178.9 (4)
C7—C2—C3—C4 −174.9 (5) N2—C10—C11—C16 −1.3 (7)
C2—C3—C4—C5 0.7 (10) C10—C11—C12—C13 −1.7 (8)
C3—C4—C5—C6 −2.4 (11) C16—C11—C12—C13 178.8 (5)
C2—C1—C6—C5 2.2 (9) C11—C12—C13—C14 2.2 (8)
S1—C1—C6—C5 −176.3 (5) C12—C13—C14—C15 −0.2 (8)
C4—C5—C6—C1 0.9 (10) C13—C14—C15—C10 −2.1 (8)
C3—C2—C7—O1 −20.1 (7) N2—C10—C15—C14 −177.3 (5)
C1—C2—C7—O1 162.7 (5) C11—C10—C15—C14 2.5 (7)
C3—C2—C7—C8 159.0 (5) C12—C11—C16—O5 160.7 (5)
C1—C2—C7—C8 −18.2 (7) C10—C11—C16—O5 −18.7 (8)
O1—C7—C8—N1 −178.8 (4) C12—C11—C16—N3 −19.5 (7)
C2—C7—C8—N1 2.1 (7) C10—C11—C16—N3 161.1 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O4 0.82 1.85 2.569 (5) 145
N2—H2···O5 0.86 1.92 2.607 (5) 136
N2—H2···N1 0.86 2.28 2.728 (5) 113
N3—H3A···O5i 0.86 2.22 2.941 (6) 141

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5073).

References

  1. Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M., Ashiq, M. I. & Tizzard, G. J. (2008). Acta Cryst. E64, o788. [DOI] [PMC free article] [PubMed]
  2. Bihovsky, R., Tao, M., Mallamo, J. P. & Wells, G. J. (2004). Bioorg. Med. Chem. Lett 14, 1035–1038. [DOI] [PubMed]
  3. Braun, J. (1923). Chem. Ber 56, 2332–2343.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Kojić-Prodić, B. & Rużić-Toroš, Ž. (1982). Acta Cryst. B38, 2948–2951.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Siddiqui, W. A., Ali, M., Zia-ur-Rehman, M., Sharif, S. & Tizzard, G. J. (2009). Acta Cryst. E65, o900–o901. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1996). J. Clin. Pharmacol 36, 79–84. [DOI] [PubMed]
  13. Weast, R. C., Astle, M. J. & Beyer, W. H. (1984). Handbook of Chemistry and Physics, 65th ed. Boca Raton, Florida: CRC Press.
  14. Zia-ur-Rehman, M., Choudary, J. A. & Ahmad, S. (2005). Bull. Korean Chem. Soc 26,1771–1775.
  15. Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull 54, 1175–1178. [DOI] [PubMed]
  16. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Ahmad, S. (2007). Acta Cryst. E63, o900–o901.
  17. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038951/bt5073sup1.cif

e-65-o2596-sup1.cif (20KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038951/bt5073Isup2.hkl

e-65-o2596-Isup2.hkl (184KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES