Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 5;65(Pt 10):o2329. doi: 10.1107/S1600536809032267

2,4,5-Tri-4-pyridyl-1H-imidazole monohydrate

Qiang Huang a,*
PMCID: PMC2970424  PMID: 21577800

Abstract

The title compound, C18H13N5·H2O, was synthesized by the condensation of pyridine-4-carbaldehyde and ammonium acetate, forming a multipyridyl ligand. In the crystal, mol­ecules are linked into chains by O—H⋯N hydrogen bonds. The chains are linked by weak C—H⋯N inter­actions, generating a layer structure.

Related literature

2,4,5-Tri-4-pyrid­yl-imidazole is used in the construction of metal-organic coordination polymers, see: Liang et al. (2009).graphic file with name e-65-o2329-scheme1.jpg

Experimental

Crystal data

  • C18H13N5·H2O

  • M r = 317.35

  • Triclinic, Inline graphic

  • a = 8.910 (2) Å

  • b = 9.401 (2) Å

  • c = 10.638 (2) Å

  • α = 72.027 (4)°

  • β = 70.624 (4)°

  • γ = 77.716 (4)°

  • V = 793.4 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.26 × 0.22 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.974, T max = 0.981

  • 4313 measured reflections

  • 3067 independent reflections

  • 1720 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.059

  • S = 1.02

  • 3067 reflections

  • 217 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97; software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032267/hg2553sup1.cif

e-65-o2329-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032267/hg2553Isup2.hkl

e-65-o2329-Isup2.hkl (150.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected torsion angles (°).

C4—C3—C6—N2 −12.2 (4)
C14—C7—C8—C9 1.8 (5)
N1—C8—C9—C13 −88.5 (3)
N2—C7—C14—C18 −7.7 (3)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1C⋯O1 0.94 1.82 2.756 (2) 173
C10—H10⋯N2i 0.93 2.59 3.467 (3) 158
O1—H1B⋯N4ii 0.91 1.96 2.869 (2) 174
O1—H1A⋯N5iii 0.87 1.94 2.808 (2) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author gratefully acknowledges financial support from the Educational Commission of Jiangxi Province of China (GJJ08448) and the Natural Science Foundation of Jiangxi Province of China (2008GQC0002).

supplementary crystallographic information

Comment

2,4,5-tri(4-pyridyl)imidazole is a multipyridyl compound, which is useful to construct new metal-organic coordination polymers (Liang et al., 2009). In this paper, we report the synthesis and X-ray crystal structure analysis of the title compound, (I,) 2,4,5-tri(4-pyridyl)imidazole with one co-crystallized water molecule.

In 2,4,5-tri(4-pyridyl)imidazole three pyridyl groups are directly connected with the imidazole ring. The dihedral angles between the mean planes of pyridyl ring A and imidazole ring D is 11.6 (4)°, that of pyridyl ring B and imidazole ring D is 8.4 (3)°, and that of pyridyl ring C and imidazole ring D is 84.1 (3)°, suggesting that the plane of ring A and B are co-planar with ring D, but that ring C and ring D are almost vertical.

In the crystal lattice the molecules are linked by O—H···N hydrogen bonds, and by weak C—H···N interactions to generate a three-dimensional layer structure (Fig 2).

Experimental

A mixture of 2 g (0.018 mol) of 4-pyridinecarbaldehyde and 8 g (0.1 mol) of ammonium acetate was heated to 393 K with stirring 3 h. The reaction mixture was cooled, the precipitate was filtered off, washed with water, 5% solution of NaOH, and recrystallized from ethanol. Single crystals of 2,4,5-tri(4-pyridyl)imidazole suitable for X-ray analysis were obtained by slow evaporation at room temperature of a methanol solution. 1H NMR (500 MHz, DMSO-d6) 8.70(t, 4H), 8.54 (s, 2H), 8.02 (s, 2H), 7.53 (s, 4H) MS: found [M+] = 299.1, cal [M+] = 299.3.

Refinement

The H atoms of the pyridyl rings were constrainted as idealized aromatic CH groups. The H atoms of water, H1A and H1B, were located in a difference Fourier map and the O1—H1A and O1—H1B were restrained to 0.85Å, the H1A—H1Bwas restrained to 1.35Å. The proton on the imidazole N atom, H1C,was also located in a difference Fourier map and N1—H1C was restrained to 0.94Å. The Uiso(H) was equal to 1.2 times that of the parent atoms for all H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of (I), viewed along the c axis; hydrogen bonds are shown as dashed lines.

Crystal data

C18H13N5·H2O Z = 2
Mr = 317.35 F(000) = 332
Triclinic, P1 Dx = 1.328 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.910 (2) Å Cell parameters from 4826 reflections
b = 9.401 (2) Å θ = 0.9–28.3°
c = 10.638 (2) Å µ = 0.09 mm1
α = 72.027 (4)° T = 293 K
β = 70.624 (4)° Block, yellow
γ = 77.716 (4)° 0.30 × 0.26 × 0.22 mm
V = 793.4 (3) Å3

Data collection

Bruker APEXII area-detector diffractometer 3067 independent reflections
Radiation source: fine-focus sealed tube 1720 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 26.1°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −11→10
Tmin = 0.974, Tmax = 0.981 k = −11→8
4313 measured reflections l = −13→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0004P)2] where P = (Fo2 + 2Fc2)/3
3067 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.15 e Å3
3 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3675 (3) 0.6040 (2) 0.2766 (3) 0.0664 (8)
H1 0.2702 0.6621 0.2711 0.080*
C2 0.3638 (3) 0.4768 (2) 0.3848 (2) 0.0539 (7)
H2 0.2669 0.4515 0.4492 0.065*
C3 0.5060 (3) 0.3871 (2) 0.3965 (2) 0.0403 (6)
C4 0.6444 (3) 0.4344 (2) 0.2983 (2) 0.0505 (7)
H4 0.7436 0.3798 0.3023 0.061*
C5 0.6343 (3) 0.5632 (3) 0.1943 (2) 0.0616 (8)
H5 0.7295 0.5920 0.1291 0.074*
C6 0.5121 (2) 0.2487 (2) 0.5058 (2) 0.0391 (6)
C7 0.5929 (2) 0.0342 (2) 0.6266 (2) 0.0394 (6)
C8 0.4352 (2) 0.0717 (2) 0.6957 (2) 0.0409 (6)
C9 0.3254 (2) −0.0054 (2) 0.8263 (2) 0.0411 (6)
C10 0.2358 (3) −0.1086 (2) 0.8270 (3) 0.0599 (8)
H10 0.2408 −0.1288 0.7453 0.072*
C11 0.1383 (3) −0.1815 (3) 0.9518 (3) 0.0648 (8)
H11 0.0798 −0.2522 0.9513 0.078*
C12 0.2082 (3) −0.0560 (3) 1.0683 (3) 0.0626 (8)
H12 0.1995 −0.0363 1.1511 0.075*
C13 0.3095 (2) 0.0224 (2) 0.9487 (2) 0.0530 (7)
H13 0.3659 0.0932 0.9519 0.064*
C14 0.7046 (2) −0.1000 (2) 0.6596 (2) 0.0408 (6)
C15 0.6737 (2) −0.2114 (2) 0.7826 (2) 0.0518 (7)
H15 0.5777 −0.2024 0.8512 0.062*
C16 0.7863 (3) −0.3359 (2) 0.8028 (3) 0.0609 (8)
H16 0.7620 −0.4090 0.8862 0.073*
C17 0.9555 (3) −0.2501 (3) 0.5936 (3) 0.0675 (9)
H17 1.0532 −0.2614 0.5274 0.081*
C18 0.8497 (2) −0.1228 (2) 0.5640 (2) 0.0558 (8)
H18 0.8765 −0.0523 0.4792 0.067*
N1 0.38651 (19) 0.20619 (17) 0.61671 (17) 0.0441 (5)
H1C 0.2849 0.2595 0.6454 0.053*
N2 0.63900 (18) 0.14695 (18) 0.50748 (17) 0.0417 (5)
N3 0.4987 (3) 0.6500 (2) 0.1798 (2) 0.0669 (7)
N4 0.9263 (2) −0.3581 (2) 0.7116 (2) 0.0642 (7)
N5 0.1230 (2) −0.1573 (2) 1.0716 (2) 0.0578 (6)
O1 0.07758 (16) 0.34217 (15) 0.70240 (16) 0.0723 (6)
H1A 0.0112 0.2912 0.7740 0.087*
H1B 0.0296 0.4357 0.7119 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0606 (18) 0.0525 (17) 0.075 (2) −0.0030 (13) −0.0288 (16) 0.0057 (15)
C2 0.0493 (16) 0.0470 (16) 0.0557 (18) −0.0069 (12) −0.0138 (13) −0.0002 (13)
C3 0.0441 (14) 0.0339 (13) 0.0413 (15) −0.0052 (11) −0.0110 (12) −0.0087 (11)
C4 0.0506 (15) 0.0445 (15) 0.0472 (16) −0.0069 (12) −0.0090 (13) −0.0039 (13)
C5 0.0673 (19) 0.0564 (17) 0.0499 (18) −0.0210 (14) −0.0076 (15) 0.0009 (14)
C6 0.0371 (14) 0.0352 (13) 0.0391 (15) −0.0044 (11) −0.0068 (12) −0.0059 (11)
C7 0.0389 (14) 0.0316 (13) 0.0431 (15) −0.0020 (10) −0.0094 (11) −0.0072 (12)
C8 0.0427 (14) 0.0306 (13) 0.0403 (15) −0.0023 (11) −0.0074 (12) −0.0029 (11)
C9 0.0379 (14) 0.0310 (14) 0.0423 (16) 0.0039 (10) −0.0062 (12) −0.0035 (12)
C10 0.0671 (18) 0.0481 (16) 0.0545 (18) −0.0157 (13) 0.0014 (14) −0.0138 (14)
C11 0.0677 (19) 0.0475 (17) 0.069 (2) −0.0186 (13) −0.0037 (17) −0.0105 (16)
C12 0.0691 (19) 0.0614 (18) 0.0475 (18) −0.0080 (14) −0.0121 (15) −0.0054 (15)
C13 0.0559 (17) 0.0472 (16) 0.0466 (17) −0.0126 (12) −0.0087 (13) −0.0017 (13)
C14 0.0371 (13) 0.0352 (13) 0.0478 (16) −0.0029 (10) −0.0111 (12) −0.0097 (12)
C15 0.0468 (15) 0.0437 (15) 0.0510 (17) 0.0046 (12) −0.0081 (13) −0.0060 (13)
C16 0.0644 (18) 0.0460 (16) 0.0592 (19) 0.0018 (14) −0.0175 (15) −0.0014 (13)
C17 0.0456 (16) 0.0552 (18) 0.077 (2) 0.0033 (13) −0.0018 (15) −0.0065 (16)
C18 0.0424 (14) 0.0429 (15) 0.0631 (18) 0.0009 (12) −0.0061 (13) −0.0009 (13)
N1 0.0363 (11) 0.0334 (11) 0.0475 (13) 0.0033 (8) −0.0024 (10) −0.0050 (10)
N2 0.0382 (11) 0.0356 (11) 0.0430 (12) −0.0028 (9) −0.0068 (9) −0.0048 (9)
N3 0.0751 (16) 0.0556 (14) 0.0610 (16) −0.0149 (13) −0.0254 (13) 0.0083 (12)
N4 0.0509 (14) 0.0481 (13) 0.0766 (17) 0.0070 (10) −0.0139 (12) −0.0061 (12)
N5 0.0524 (14) 0.0451 (14) 0.0571 (16) −0.0041 (10) −0.0046 (12) −0.0001 (12)
O1 0.0484 (10) 0.0450 (10) 0.0835 (13) 0.0044 (7) 0.0126 (9) −0.0020 (9)

Geometric parameters (Å, °)

C1—N3 1.325 (2) C10—H10 0.9300
C1—C2 1.377 (3) C11—N5 1.321 (3)
C1—H1 0.9300 C11—H11 0.9300
C2—C3 1.385 (3) C12—N5 1.324 (3)
C2—H2 0.9300 C12—C13 1.385 (3)
C3—C4 1.379 (2) C12—H12 0.9300
C3—C6 1.458 (3) C13—H13 0.9300
C4—C5 1.374 (3) C14—C18 1.377 (2)
C4—H4 0.9300 C14—C15 1.386 (3)
C5—N3 1.333 (3) C15—C16 1.382 (3)
C5—H5 0.9300 C15—H15 0.9300
C6—N2 1.318 (2) C16—N4 1.324 (2)
C6—N1 1.352 (2) C16—H16 0.9300
C7—C8 1.379 (2) C17—N4 1.335 (3)
C7—N2 1.381 (2) C17—C18 1.380 (3)
C7—C14 1.460 (3) C17—H17 0.9300
C8—N1 1.359 (2) C18—H18 0.9300
C8—C9 1.480 (3) N1—H1C 0.9393
C9—C13 1.362 (3) O1—H1A 0.8697
C9—C10 1.378 (3) O1—H1B 0.9124
C10—C11 1.383 (3)
N3—C1—C2 125.1 (2) N5—C11—H11 117.9
N3—C1—H1 117.4 C10—C11—H11 117.9
C2—C1—H1 117.4 N5—C12—C13 123.8 (3)
C1—C2—C3 119.2 (2) N5—C12—H12 118.1
C1—C2—H2 120.4 C13—C12—H12 118.1
C3—C2—H2 120.4 C9—C13—C12 119.2 (2)
C4—C3—C2 116.7 (2) C9—C13—H13 120.4
C4—C3—C6 120.74 (19) C12—C13—H13 120.4
C2—C3—C6 122.61 (19) C18—C14—C15 116.15 (19)
C5—C4—C3 119.3 (2) C18—C14—C7 119.69 (19)
C5—C4—H4 120.3 C15—C14—C7 124.15 (19)
C3—C4—H4 120.3 C16—C15—C14 119.7 (2)
N3—C5—C4 125.0 (2) C16—C15—H15 120.1
N3—C5—H5 117.5 C14—C15—H15 120.1
C4—C5—H5 117.5 N4—C16—C15 124.4 (2)
N2—C6—N1 111.24 (18) N4—C16—H16 117.8
N2—C6—C3 124.49 (18) C15—C16—H16 117.8
N1—C6—C3 124.24 (18) N4—C17—C18 124.0 (2)
C8—C7—N2 109.24 (17) N4—C17—H17 118.0
C8—C7—C14 130.29 (19) C18—C17—H17 118.0
N2—C7—C14 120.44 (17) C14—C18—C17 120.1 (2)
N1—C8—C7 105.72 (17) C14—C18—H18 119.9
N1—C8—C9 121.56 (17) C17—C18—H18 119.9
C7—C8—C9 132.71 (19) C6—N1—C8 108.05 (16)
C13—C9—C10 118.0 (2) C6—N1—H1C 129.5
C13—C9—C8 121.6 (2) C8—N1—H1C 122.1
C10—C9—C8 120.4 (2) C6—N2—C7 105.72 (16)
C9—C10—C11 118.5 (2) C1—N3—C5 114.6 (2)
C9—C10—H10 120.7 C16—N4—C17 115.58 (19)
C11—C10—H10 120.7 C11—N5—C12 116.2 (2)
N5—C11—C10 124.3 (3) H1A—O1—H1B 96.8
N3—C1—C2—C3 −0.1 (4) C8—C7—C14—C18 170.3 (3)
C1—C2—C3—C4 1.3 (4) N2—C7—C14—C18 −7.7 (3)
C1—C2—C3—C6 −178.4 (2) C8—C7—C14—C15 −8.4 (4)
C2—C3—C4—C5 −1.5 (3) N2—C7—C14—C15 173.6 (2)
C6—C3—C4—C5 178.2 (2) C18—C14—C15—C16 0.0 (4)
C3—C4—C5—N3 0.5 (4) C7—C14—C15—C16 178.7 (2)
C4—C3—C6—N2 −12.2 (4) C14—C15—C16—N4 0.3 (4)
C2—C3—C6—N2 167.5 (2) C15—C14—C18—C17 −0.6 (4)
C4—C3—C6—N1 169.8 (2) C7—C14—C18—C17 −179.4 (2)
C2—C3—C6—N1 −10.4 (4) N4—C17—C18—C14 0.9 (4)
N2—C7—C8—N1 0.8 (3) N2—C6—N1—C8 1.3 (3)
C14—C7—C8—N1 −177.4 (2) C3—C6—N1—C8 179.5 (2)
N2—C7—C8—C9 180.0 (2) C7—C8—N1—C6 −1.3 (3)
C14—C7—C8—C9 1.8 (5) C9—C8—N1—C6 179.5 (2)
N1—C8—C9—C13 −88.5 (3) N1—C6—N2—C7 −0.8 (3)
C7—C8—C9—C13 92.5 (3) C3—C6—N2—C7 −179.0 (2)
N1—C8—C9—C10 91.7 (3) C8—C7—N2—C6 0.0 (3)
C7—C8—C9—C10 −87.4 (4) C14—C7—N2—C6 178.4 (2)
C13—C9—C10—C11 −1.8 (3) C2—C1—N3—C5 −0.9 (4)
C8—C9—C10—C11 178.05 (19) C4—C5—N3—C1 0.7 (4)
C9—C10—C11—N5 1.1 (4) C15—C16—N4—C17 0.0 (4)
C10—C9—C13—C12 1.6 (3) C18—C17—N4—C16 −0.6 (4)
C8—C9—C13—C12 −178.25 (19) C10—C11—N5—C12 0.0 (4)
N5—C12—C13—C9 −0.6 (4) C13—C12—N5—C11 −0.2 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1C···O1 0.94 1.82 2.756 (2) 173
C10—H10···N2i 0.93 2.59 3.467 (3) 158
O1—H1B···N4ii 0.91 1.96 2.869 (2) 174
O1—H1A···N5iii 0.87 1.94 2.808 (2) 174

Symmetry codes: (i) −x+1, −y, −z+1; (ii) x−1, y+1, z; (iii) −x, −y, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2553).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liang, X. Q., Zhou, X. H., Chen, C., Xiao, H. P., Li, Y. Z., Zuo, J. L. & You, X. Z. (2009). Cryst. Growth Des.9, 1041–1053.
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809032267/hg2553sup1.cif

e-65-o2329-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809032267/hg2553Isup2.hkl

e-65-o2329-Isup2.hkl (150.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES