Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 9;65(Pt 10):m1191–m1192. doi: 10.1107/S1600536809035594

Bis(1,3-dibutylthiourea)dicyanido­mercury(II)

Saeed Ahmad a,*, Haseeba Sadaf a, Mehmet Akkurt b,*, Shahzad Sharif c, Islam Ullah Khan c
PMCID: PMC2970451  PMID: 21577723

Abstract

In the title compound, [Hg(CN)2(C9H20N2S)2], the Hg atom lies on a twofold rotation axis. There is only half a mol­ecule in the asymmetric unit. The Hg atom has a distorted tetra­hedral coordination involving the S atoms of two 1-butyl-3-propyl­thio­urea groups and the C atoms of the two CN anions. In the crystal packing, adjacent mol­ecules are connected by inter­molecular N—H⋯N and N—H⋯S hydrogen bonds, forming infinite chains in three dimensions.

Related literature

For the coordination chemistry of thio­urea-type ligands, see: Nadeem et al. (2009, 2008); Zoufalá et al. (2007); Khan et al. (2007); Hanif et al. (2007); Fuks et al. (2005); Moro et al. (2009); Matesanz & Souza (2007). For crystallographic reports about mercury(II) complexes containing thio­amides, see: Popovic et al. (2000, 2002); Pavlović et al. (2000); Jiang et al. (2001); Wu et al. (2004). For the spectroscopy and structural chemistry of cyanide complexes of silver(I) and gold(I) with thio­nes, see: Hanif et al. (2007); Wu et al. (2004); Ahmad, Isab & Ashraf (2002); Ahmad, Isab & Perzanowski (2002); Ashraf et al. (2002); Ahmad & Isab (2001); Ahmad (2004).graphic file with name e-65-m1191-scheme1.jpg

Experimental

Crystal data

  • [Hg(CN)2(C9H20N2S)2]

  • M r = 629.31

  • Monoclinic, Inline graphic

  • a = 17.4692 (3) Å

  • b = 9.5928 (2) Å

  • c = 17.4699 (4) Å

  • β = 111.540 (1)°

  • V = 2723.12 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.82 mm−1

  • T = 296 K

  • 0.14 × 0.15 × 0.17 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 15120 measured reflections

  • 3372 independent reflections

  • 2918 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.044

  • S = 1.02

  • 3372 reflections

  • 134 parameters

  • H-atom parameters constrained

  • Δρmax = 0.40 e Å−3

  • Δρmin = −0.72 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035594/bt5052sup1.cif

e-65-m1191-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035594/bt5052Isup2.hkl

e-65-m1191-Isup2.hkl (162.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.86 2.68 3.479 (2) 155
N3—H3⋯N1ii 0.86 2.20 2.991 (3) 153
C7—H7B⋯S1 0.97 2.67 3.070 (3) 105

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The coordination chemistry of thiourea type ligands has been the subject of several recent studies because of the relevance of their binding sites to those in living systems (Nadeem et al., 2009; Nadeem et al., 2008; Zoufalá et al., 2007; Khan et al., 2007; Hanif et al., 2007; Fuks et al., 2005; Moro et al., 2009; Matesanz & Souza, 2007). Crystallographic reports about mercury (II) complexes containing thioamides establish that these ligands are coordinated via the sulfur atom(Popovic et al., 2000, 2002; Pavlović, Popović, Soldin et al., 2000; Jiang et al., 2001; Wu et al., 2004). We have been involved in investigating the spectral and structural chemistry of cyanido complexes of silver (I) and gold (I) with thiones with emphasis onligand scrambling reactions (Hanif et al., 2007; Wu et al., 2004; Ahmad, Isab & Ashraf, 2002; Ahmad, Isab & Perzanowski, 2002; Ashraf et al., 2002; Ahmad & Isab, 2001; Ahmad, 2004). As a part ofextension of our work towards complexation of Hg (CN)2 with thiones, we report here the crystal structures of [(N,N/-dibutylthiourea)2Hg(CN)2], (I).

In the title compound (I), (Fig. 1), the Hg anion lies on a twofold rotation axes paralel to the b axis in space group C2/c and one half of the molecule to the other half are connected by this symmetry operation. The Hg atom has a distorted tetrahedral coordination by the S atoms of two N,N/-dibutylthiourea groups and the C atoms of the two CN groups. The bond distances Hg—S and Hg—C are 2.7424 (7) Å and 2.072 (3) Å, and the bond angles C—Hg—C, S—Hg—S and C—Hg—C are 150.51 (11)°, 95.55 (2)° and 100.45 (8)°. All bond lengths and bond angles in (I) are in the range of expected values.

In the crystal packing, the adjacent molecules are connected by intermolecular N—H···N and N—H···S hydrogen bonds (Table 1). In Fig. 2, the packing and hydrogen bonding of (I) are shown viewed down b axis.

Experimental

For the preparation of the title complex, Hg (CN)2 was prepared first by the reaction of 1 mmol HgCl2 in methanol with 2 mmole of KCN in water. Then 0.253 g (1 mmole) Hg (CN)2 dissolved in15 ml methanol was mixed with 2 equivalents of N,N/-dibutylthiourea in 15 methanol. After stirring for 15 minutes, the resulting mixture was filtered and filtrate was kept at room temperature. After 24 h white crystals were obtained.

Refinement

H atoms were located geometrically and treated as riding with C—H = 0.97 Å (methylene), C—H = 0.96 Å (methyl) and N—H = 0.86 Å with Uiso(H) = 1.2 or 1.5Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

The title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The packing and hydrogen bonding of (I) viewed down b axis. Hydrogen atoms not involved in the showed interactions have been omitted for clarity.

Crystal data

[Hg(CN)2(C9H20N2S)2] F(000) = 1256
Mr = 629.31 Dx = 1.535 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6609 reflections
a = 17.4692 (3) Å θ = 2.5–27.2°
b = 9.5928 (2) Å µ = 5.82 mm1
c = 17.4699 (4) Å T = 296 K
β = 111.540 (1)° Irregular, white
V = 2723.12 (10) Å3 0.17 × 0.15 × 0.14 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer 2918 reflections with I > 2σ(I)
Radiation source: sealed tube Rint = 0.032
graphite θmax = 28.3°, θmin = 2.5°
φ and ω scans h = −23→23
15120 measured reflections k = −12→12
3372 independent reflections l = −20→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.044 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0211P)2], where P = (Fo2 + 2Fc2)/3
3372 reflections (Δ/σ)max = 0.001
134 parameters Δρmax = 0.40 e Å3
0 restraints Δρmin = −0.72 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Hg1 1.00000 0.20478 (1) 0.75000 0.0405 (1)
S1 1.08516 (3) 0.39691 (7) 0.86634 (4) 0.0414 (2)
N1 0.86048 (15) 0.1224 (3) 0.81955 (17) 0.0718 (10)
N2 1.11488 (12) 0.5094 (2) 0.74219 (12) 0.0422 (7)
N3 1.22801 (11) 0.4758 (2) 0.85840 (12) 0.0411 (7)
C1 0.91098 (16) 0.1498 (3) 0.79668 (17) 0.0475 (9)
C2 1.14750 (13) 0.4655 (2) 0.81878 (15) 0.0341 (7)
C3 1.16093 (17) 0.5591 (3) 0.69240 (17) 0.0548 (10)
C4 1.10347 (17) 0.6051 (3) 0.60900 (17) 0.0534 (10)
C5 1.0548 (2) 0.7334 (4) 0.6094 (2) 0.0633 (12)
C6 0.9979 (3) 0.7767 (4) 0.5243 (3) 0.0875 (17)
C7 1.27223 (15) 0.4387 (3) 0.94375 (16) 0.0441 (8)
C8 1.27906 (17) 0.5571 (3) 1.00242 (16) 0.0473 (9)
C9 1.3311 (2) 0.5232 (3) 1.09034 (17) 0.0586 (11)
C10 1.3434 (3) 0.6466 (4) 1.1477 (2) 0.0795 (14)
H2 1.06210 0.50880 0.71950 0.0510*
H3 1.25650 0.50710 0.83120 0.0490*
H3A 1.19600 0.48500 0.68630 0.0660*
H3B 1.19580 0.63660 0.72020 0.0660*
H4A 1.13530 0.62230 0.57470 0.0640*
H4B 1.06550 0.52970 0.58410 0.0640*
H5A 1.09240 0.80930 0.63420 0.0760*
H5B 1.02240 0.71650 0.64330 0.0760*
H6A 1.02880 0.78550 0.48910 0.1310*
H6B 0.97300 0.86460 0.52750 0.1310*
H6C 0.95580 0.70750 0.50240 0.1310*
H7A 1.32710 0.40780 0.95010 0.0530*
H7B 1.24430 0.36120 0.95810 0.0530*
H8A 1.22430 0.58250 0.99950 0.0570*
H8B 1.30250 0.63730 0.98510 0.0570*
H9A 1.38450 0.49040 1.09270 0.0700*
H9B 1.30520 0.44820 1.10920 0.0700*
H10A 1.36760 0.72220 1.12850 0.1190*
H10B 1.37910 0.62040 1.20210 0.1190*
H10C 1.29110 0.67540 1.14870 0.1190*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0323 (1) 0.0459 (1) 0.0478 (1) 0.0000 0.0199 (1) 0.0000
S1 0.0359 (3) 0.0566 (4) 0.0340 (3) −0.0115 (3) 0.0154 (3) −0.0005 (3)
N1 0.0516 (14) 0.104 (2) 0.0668 (17) −0.0297 (15) 0.0300 (13) −0.0046 (17)
N2 0.0326 (10) 0.0594 (14) 0.0352 (12) −0.0068 (9) 0.0133 (9) 0.0057 (11)
N3 0.0313 (10) 0.0545 (13) 0.0383 (12) −0.0043 (9) 0.0136 (9) 0.0051 (10)
C1 0.0385 (13) 0.0553 (16) 0.0463 (16) −0.0125 (12) 0.0126 (12) −0.0037 (14)
C2 0.0330 (11) 0.0369 (13) 0.0340 (14) −0.0030 (9) 0.0142 (10) −0.0015 (11)
C3 0.0473 (15) 0.076 (2) 0.0491 (17) −0.0018 (14) 0.0270 (14) 0.0144 (15)
C4 0.0563 (16) 0.069 (2) 0.0396 (16) −0.0019 (14) 0.0232 (13) 0.0039 (15)
C5 0.076 (2) 0.066 (2) 0.052 (2) 0.0065 (17) 0.0285 (17) 0.0103 (16)
C6 0.084 (3) 0.101 (3) 0.074 (3) 0.026 (2) 0.025 (2) 0.020 (2)
C7 0.0353 (12) 0.0476 (15) 0.0446 (16) 0.0040 (11) 0.0089 (11) 0.0054 (13)
C8 0.0477 (14) 0.0466 (15) 0.0427 (16) 0.0038 (12) 0.0110 (12) 0.0064 (13)
C9 0.0665 (19) 0.0565 (19) 0.0433 (17) 0.0044 (15) 0.0090 (15) 0.0050 (15)
C10 0.107 (3) 0.066 (2) 0.051 (2) −0.005 (2) 0.012 (2) −0.0008 (19)

Geometric parameters (Å, °)

Hg1—S1 2.7424 (7) C3—H3A 0.9700
Hg1—C1 2.072 (3) C3—H3B 0.9700
Hg1—S1i 2.7424 (7) C4—H4A 0.9700
Hg1—C1i 2.072 (3) C4—H4B 0.9700
S1—C2 1.724 (2) C5—H5A 0.9700
N1—C1 1.125 (4) C5—H5B 0.9700
N2—C2 1.316 (3) C6—H6A 0.9600
N2—C3 1.465 (4) C6—H6B 0.9600
N3—C2 1.324 (3) C6—H6C 0.9600
N3—C7 1.449 (3) C7—H7A 0.9700
N2—H2 0.8600 C7—H7B 0.9700
N3—H3 0.8600 C8—H8A 0.9700
C3—C4 1.500 (4) C8—H8B 0.9700
C4—C5 1.497 (5) C9—H9A 0.9700
C5—C6 1.512 (6) C9—H9B 0.9700
C7—C8 1.505 (4) C10—H10A 0.9600
C8—C9 1.505 (4) C10—H10B 0.9600
C9—C10 1.514 (5) C10—H10C 0.9600
S1···C1 3.693 (3) H3A···N3 2.8500
S1···C8 3.684 (3) H3A···H3 2.3700
S1···N2i 3.479 (2) H3A···H10Cvi 2.5200
S1···H7B 2.6700 H3B···N3 2.7400
S1···H2i 2.6800 H3B···H3 2.2200
S1···H6Aii 3.1900 H3B···H5A 2.5000
N1···N3iii 2.991 (3) H3B···N1iv 2.7600
N1···C3iii 3.431 (4) H4A···H6A 2.4700
N2···S1i 3.479 (2) H4B···H2 2.4000
N3···N1iv 2.991 (3) H4B···H6C 2.5700
N1···H3Biii 2.7600 H5A···H3B 2.5000
N1···H3iii 2.2000 H5A···H7Avii 2.5600
N2···H5B 2.7400 H5B···N2 2.7400
N3···H3A 2.8500 H5B···H2 2.3500
N3···H3B 2.7400 H6A···H4A 2.4700
C1···S1 3.693 (3) H6A···S1vi 3.1900
C1···C2i 3.574 (4) H6C···H4B 2.5700
C3···N1iv 3.431 (4) H7A···H9A 2.4500
C8···S1 3.684 (3) H7A···H5Aviii 2.5600
C1···H10Bv 3.0100 H7B···S1 2.6700
C3···H3 2.4400 H7B···H9B 2.6000
C5···H2 2.8600 H7B···H7Bix 2.5500
H2···C5 2.8600 H8A···H10C 2.5900
H2···H4B 2.4000 H8B···H10A 2.4800
H2···H5B 2.3500 H9A···H7A 2.4500
H2···S1i 2.6800 H9B···H7B 2.6000
H3···C3 2.4400 H10A···H8B 2.4800
H3···H3A 2.3700 H10B···C1x 3.0100
H3···H3B 2.2200 H10C···H8A 2.5900
H3···N1iv 2.2000 H10C···H3Aii 2.5200
S1—Hg1—C1 99.25 (8) C4—C5—H5A 109.00
S1—Hg1—S1i 95.55 (2) C4—C5—H5B 109.00
S1—Hg1—C1i 100.45 (8) C6—C5—H5A 109.00
S1i—Hg1—C1 100.45 (8) C6—C5—H5B 109.00
C1—Hg1—C1i 150.51 (11) H5A—C5—H5B 108.00
S1i—Hg1—C1i 99.25 (8) C5—C6—H6A 109.00
Hg1—S1—C2 99.56 (8) C5—C6—H6B 109.00
C2—N2—C3 125.5 (2) C5—C6—H6C 109.00
C2—N3—C7 125.6 (2) H6A—C6—H6B 109.00
C2—N2—H2 117.00 H6A—C6—H6C 110.00
C3—N2—H2 117.00 H6B—C6—H6C 109.00
C2—N3—H3 117.00 N3—C7—H7A 109.00
C7—N3—H3 117.00 N3—C7—H7B 109.00
Hg1—C1—N1 177.4 (3) C8—C7—H7A 109.00
S1—C2—N2 119.84 (19) C8—C7—H7B 109.00
S1—C2—N3 120.95 (18) H7A—C7—H7B 108.00
N2—C2—N3 119.2 (2) C7—C8—H8A 109.00
N2—C3—C4 110.8 (2) C7—C8—H8B 109.00
C3—C4—C5 114.6 (2) C9—C8—H8A 109.00
C4—C5—C6 113.0 (3) C9—C8—H8B 109.00
N3—C7—C8 113.2 (2) H8A—C8—H8B 108.00
C7—C8—C9 113.5 (2) C8—C9—H9A 109.00
C8—C9—C10 113.1 (3) C8—C9—H9B 109.00
N2—C3—H3A 109.00 C10—C9—H9A 109.00
N2—C3—H3B 109.00 C10—C9—H9B 109.00
C4—C3—H3A 109.00 H9A—C9—H9B 108.00
C4—C3—H3B 109.00 C9—C10—H10A 109.00
H3A—C3—H3B 108.00 C9—C10—H10B 109.00
C3—C4—H4A 109.00 C9—C10—H10C 109.00
C3—C4—H4B 109.00 H10A—C10—H10B 110.00
C5—C4—H4A 109.00 H10A—C10—H10C 109.00
C5—C4—H4B 109.00 H10B—C10—H10C 110.00
H4A—C4—H4B 108.00
C1—Hg1—S1—C2 −169.87 (11) C7—N3—C2—S1 −2.8 (3)
S1i—Hg1—S1—C2 −68.30 (8) C7—N3—C2—N2 176.7 (2)
C1i—Hg1—S1—C2 32.19 (11) C2—N3—C7—C8 −88.9 (3)
Hg1—S1—C2—N2 51.24 (18) N2—C3—C4—C5 67.9 (3)
Hg1—S1—C2—N3 −129.28 (17) C3—C4—C5—C6 179.8 (3)
C3—N2—C2—S1 −174.74 (19) N3—C7—C8—C9 −175.0 (2)
C3—N2—C2—N3 5.8 (3) C7—C8—C9—C10 175.2 (3)
C2—N2—C3—C4 −178.1 (2)

Symmetry codes: (i) −x+2, y, −z+3/2; (ii) x, −y+1, z+1/2; (iii) x−1/2, y−1/2, z; (iv) x+1/2, y+1/2, z; (v) x−1/2, −y+1/2, z−1/2; (vi) x, −y+1, z−1/2; (vii) −x+5/2, y+1/2, −z+3/2; (viii) −x+5/2, y−1/2, −z+3/2; (ix) −x+5/2, −y+1/2, −z+2; (x) x+1/2, −y+1/2, z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···S1i 0.86 2.68 3.479 (2) 155
N3—H3···N1iv 0.86 2.20 2.991 (3) 153
C7—H7B···S1 0.97 2.67 3.070 (3) 105

Symmetry codes: (i) −x+2, y, −z+3/2; (iv) x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5052).

References

  1. Ahmad, S. (2004). Coord. Chem. Rev.248, 231–243.
  2. Ahmad, S. & Isab, A. A. (2001). Inorg. Chem. Commun.4, 362–364.
  3. Ahmad, S., Isab, A. A. & Ashraf, W. (2002). Inorg. Chem. Commun.5, 816–819.
  4. Ahmad, S., Isab, A. A. & Perzanowski, H. P. (2002). Can. J. Chem.80, 1279–1283.
  5. Ashraf, W., Ahmad, S. & Isab, A. A. (2002). Transition Met. Chem.29, 400–404.
  6. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Fuks, L., Sadlej-Sosnowska, N., Samochocka, K. & Starosta, W. (2005). J. Mol. Struct.740, 229–235.
  10. Hanif, M., Ahmad, S., Altaf, M. & Stoeckli-Evans, H. (2007). Acta Cryst. E63, m2594.
  11. Jiang, X. N., Xu, D., Yuan, D. R., Yu, W. T., Lu, M. K., Gu, S. Y., Zu, G. H. & Fu, Q. (2001). Chin. Chem. Lett.12, 279–282,.
  12. Khan, I. U., Mufakkar, M., Ahmad, S., Fun, H.-K. & Chantrapromma, S. (2007). Acta Cryst. E63, m2550–m2551.
  13. Matesanz, A. I. & Souza, P. (2007). J. Inorg. Biochem.101, 1354–1361. [DOI] [PubMed]
  14. Moro, A. C., Netto, A. V. G., Ananias, S. R., Quilles, M. B., Carlos, I. Z., Pavan, F. R., Leite, C. Q. F. & Hörner, M. (2009). Eur. J. Med. Chem. In the press. [DOI] [PubMed]
  15. Nadeem, S., Khawar Rauf, M., Ebihara, M., Tirmizi, S. A. & Ahmad, S. (2008). Acta Cryst. E64, m698–m699. [DOI] [PMC free article] [PubMed]
  16. Nadeem, S., Rauf, M. K., Ahmad, S., Ebihara, M., Tirmizi, S. A. & Badshah, A. B. (2009). Transition Met. Chem.34, 197–202.
  17. Pavlović, G., Popović, Z., Soldin, Z. & Matković-Čalogović, D. (2000). Acta Cryst. C56, 61–63. [DOI] [PubMed]
  18. Popovic, Z., Pavlovic, G., Matkovic-Calogovic, D., Soldin, Z., Rajic, M., Vikic-Topic, D. & Kovacek, D. (2000). Inorg. Chim. Acta, 306, 142–152.
  19. Popovic, Z., Soldin, Z., Pavlovic, G., Calogovic, D. M. & Rajic, M. M. S. (2002). Struct. Chem.13, 425–436.
  20. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  21. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  22. Wu, Z.-Y., Xu, D.-J. & Hung, C.-H. (2004). J. Coord. Chem.57, 791–796.
  23. Zoufalá, P., Rüffer, T., Lang, H., Ahmad, S. & Mufakkar, M. (2007). Anal. Sci. X-ray Struct. Anal. Online, 23, x219–x220.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809035594/bt5052sup1.cif

e-65-m1191-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035594/bt5052Isup2.hkl

e-65-m1191-Isup2.hkl (162.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES