Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 5;65(Pt 10):m1176. doi: 10.1107/S1600536809035193

(2-Amino-4,6-dimethyl­pyrimidine-κN 1)(2-amino-4-methyl­pyrimidine-κN 1)silver(I) perchlorate

Hua Yang a,*
PMCID: PMC2970461  PMID: 21577711

Abstract

Colourless crystals of the title mixed ligand complex, [Ag(C5H7N3)(C6H9N3)]ClO4, were obtained from a solution of 2-amino-4-methyl­pyrimidine, 2-amino-4,6-dimethyl­pyrim­idine and silver perchlorate in water and methanol. The crystal structure is stabilized by inter­molecular N—H⋯O and N—H⋯N hydrogen bonds and π–π stacking inter­actions of the aromatic rings of the two ligands [inter­planar distance = 3.652 (10) Å]. The AgI atom shows a linear coordination [N—Ag—N = 174.6 (1)°].

Related literature

For N—Ag—N geometry, see: Greenwood & Earnshaw (1997). For π–π stacking, see: Munakata et al. (2000). For silver coordination networks, see: Shimizu et al. (1999); Seward et al. (2004).graphic file with name e-65-m1176-scheme1.jpg

Experimental

Crystal data

  • [Ag(C5H7N3)(C6H9N3)]ClO4

  • M r = 439.62

  • Monoclinic, Inline graphic

  • a = 12.3952 (5) Å

  • b = 7.8324 (4) Å

  • c = 15.9956 (5) Å

  • β = 94.339 (3)°

  • V = 1548.47 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.50 mm−1

  • T = 120 K

  • 0.40 × 0.40 × 0.25 mm

Data collection

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.553, T max = 0.678

  • 8880 measured reflections

  • 2678 independent reflections

  • 2254 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.07

  • 2678 reflections

  • 211 parameters

  • H-atom parameters constrained

  • Δρmax = 1.36 e Å−3

  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035193/ng2621sup1.cif

e-65-m1176-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035193/ng2621Isup2.hkl

e-65-m1176-Isup2.hkl (131.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5C⋯O4i 0.86 2.32 3.131 (5) 158
N5—H5B⋯N3ii 0.86 2.20 3.050 (5) 172
N2—H2B⋯O2 0.86 2.50 3.077 (5) 126
N2—H2A⋯N6iii 0.86 2.30 3.147 (5) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author thanks the Natural Science Foundation of Heilongjiang Province for financial support.

supplementary crystallographic information

Comment

The structure of the title compound (I) comprises of uncoordinated ClO4- anions and [Ag(2-amino-4-methylpyrimidine)(2-amino-4,6-dimethylpyrimidine)]+ cations. The central silver(I) ion, possessing its vacant s and p orbitals, coordinated to two nitrogen atoms from those two different pyrimidine derivative ligands, presenting nearly linear N-Ag-N geometry Greenwood et al., 1997). An one dimensional framework was built by multiple intermolecular N–H–N hydrogen bonds along one of the diagonals of a and c axial plane, while pi–pi stacking interaction of the aromatic rings with an interplane distance 3.65 Å stabilized the whole crystal structure (Munakata et al., 2000).

Experimental

A solution of 108 mg (1 mmol) 2-amino-4-methylpyrimidine and 123 mg (1 mmol) of 2-amino-4,6-dimethylpyrimidine in distilled water-CH3OH (1:1 v/v, 10 mL) was added to an aqueous solution of AgClO4 208 mg (1 mmol) in 3 ml distilled water at 333 K. A small amount of white precipitate was removed from the resulting solution. Prism colorless crystals were obtained by slow evaporation at room temperature over a period of 3 days.

Refinement

All H atoms were placed in calculated positions and refined as riding, with C–H = 0.96–0.98 Å, and N–H = 0.86 Å, and Uiso(H) = 1.2 or 1.5Ueq(C,N). The final difference map had a peak near Ag1.

Figures

Fig. 1.

Fig. 1.

The molecular structure with atom labels and 30% probability displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The packing diagram of molecules, viewed down the b axis, with the weak interactions shown as dashed lines.

Crystal data

[Ag(C5H7N3)(C6H9N3)]ClO4 F(000) = 880
Mr = 439.62 Dx = 1.886 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2795 reflections
a = 12.3952 (5) Å θ = 2.6–32.8°
b = 7.8324 (4) Å µ = 1.50 mm1
c = 15.9956 (5) Å T = 120 K
β = 94.339 (3)° Prism, colourless
V = 1548.47 (11) Å3 0.40 × 0.40 × 0.25 mm
Z = 4

Data collection

Bruker APEXII diffractometer 2678 independent reflections
Radiation source: fine-focus sealed tube 2254 reflections with I > 2σ(I)
graphite Rint = 0.028
φ and ω scans θmax = 25.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −14→14
Tmin = 0.553, Tmax = 0.678 k = −8→9
8880 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0544P)2 + 2.3112P] where P = (Fo2 + 2Fc2)/3
2678 reflections (Δ/σ)max = 0.001
211 parameters Δρmax = 1.36 e Å3
0 restraints Δρmin = −0.52 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ag1 0.19079 (3) 0.45483 (5) 0.720510 (19) 0.04423 (15)
C1 0.1554 (4) 0.3648 (7) 0.3245 (3) 0.0544 (12)
H1A 0.1108 0.2682 0.3087 0.082*
H1B 0.2261 0.3487 0.3051 0.082*
H1C 0.1235 0.4663 0.2998 0.082*
C2 0.1644 (3) 0.3818 (5) 0.4169 (3) 0.0373 (9)
C3 0.0929 (3) 0.3330 (5) 0.5423 (2) 0.0332 (9)
C4 0.2530 (4) 0.4782 (6) 0.5433 (3) 0.0398 (10)
H4A 0.3106 0.5345 0.5720 0.048*
C5 0.2516 (4) 0.4648 (6) 0.4585 (3) 0.0410 (10)
H5A 0.3073 0.5097 0.4294 0.049*
C6 0.3056 (3) 0.4035 (5) 0.8973 (2) 0.0316 (8)
C7 0.1481 (3) 0.5552 (5) 0.9020 (3) 0.0369 (9)
C8 0.0587 (4) 0.6489 (7) 0.8581 (3) 0.0566 (13)
H8A 0.0871 0.7365 0.8240 0.085*
H8B 0.0149 0.7000 0.8983 0.085*
H8C 0.0153 0.5717 0.8231 0.085*
C9 0.1577 (4) 0.5429 (6) 0.9877 (3) 0.0419 (10)
H9A 0.1075 0.5953 1.0197 0.050*
C10 0.2424 (4) 0.4521 (5) 1.0253 (3) 0.0380 (9)
C11 0.2548 (5) 0.4273 (8) 1.1177 (3) 0.0606 (14)
H11A 0.3269 0.4582 1.1384 0.091*
H11B 0.2420 0.3097 1.1307 0.091*
H11C 0.2037 0.4979 1.1437 0.091*
N1 0.2212 (3) 0.4824 (4) 0.8553 (2) 0.0319 (7)
N2 0.3831 (3) 0.3336 (4) 0.8522 (2) 0.0383 (8)
H2A 0.4366 0.2798 0.8774 0.046*
H2B 0.3785 0.3430 0.7985 0.046*
N3 0.3176 (3) 0.3841 (5) 0.9803 (2) 0.0365 (8)
N4 0.1743 (3) 0.4133 (4) 0.5875 (2) 0.0350 (8)
N5 0.0136 (3) 0.2635 (5) 0.5824 (2) 0.0455 (9)
H5B −0.0386 0.2113 0.5545 0.055*
H5C 0.0144 0.2708 0.6360 0.055*
N6 0.0857 (3) 0.3161 (4) 0.4580 (2) 0.0361 (8)
Cl1 0.50494 (9) 0.64276 (14) 0.68793 (6) 0.0412 (3)
O1 0.4928 (3) 0.6816 (5) 0.6012 (2) 0.0629 (10)
O2 0.4001 (3) 0.6130 (5) 0.7187 (2) 0.0617 (9)
O3 0.5697 (3) 0.4961 (5) 0.7031 (3) 0.0666 (10)
O4 0.5523 (4) 0.7822 (6) 0.7327 (3) 0.0775 (12)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ag1 0.0420 (2) 0.0623 (3) 0.02780 (19) −0.00167 (16) −0.00078 (13) −0.00457 (14)
C1 0.062 (3) 0.071 (3) 0.030 (2) −0.007 (3) 0.003 (2) 0.006 (2)
C2 0.044 (2) 0.037 (2) 0.031 (2) 0.0077 (19) 0.0058 (18) 0.0064 (17)
C3 0.036 (2) 0.035 (2) 0.0282 (19) 0.0065 (17) 0.0038 (16) 0.0023 (16)
C4 0.035 (2) 0.043 (2) 0.041 (2) 0.0017 (19) −0.0023 (18) 0.0003 (19)
C5 0.041 (2) 0.045 (2) 0.038 (2) −0.001 (2) 0.0064 (19) 0.0027 (19)
C6 0.036 (2) 0.032 (2) 0.0266 (19) −0.0052 (17) 0.0030 (16) −0.0023 (15)
C7 0.038 (2) 0.031 (2) 0.041 (2) −0.0037 (18) 0.0006 (18) −0.0006 (17)
C8 0.060 (3) 0.062 (3) 0.047 (3) 0.008 (3) 0.001 (2) 0.007 (2)
C9 0.049 (3) 0.038 (2) 0.041 (2) −0.005 (2) 0.018 (2) −0.0107 (19)
C10 0.045 (2) 0.037 (2) 0.032 (2) −0.004 (2) 0.0037 (18) −0.0054 (17)
C11 0.074 (4) 0.078 (4) 0.031 (2) 0.008 (3) 0.009 (2) −0.006 (2)
N1 0.0344 (17) 0.0330 (17) 0.0285 (16) −0.0038 (14) 0.0044 (14) −0.0037 (13)
N2 0.0432 (19) 0.047 (2) 0.0250 (16) 0.0066 (16) 0.0074 (14) 0.0008 (14)
N3 0.0381 (18) 0.0430 (19) 0.0288 (17) −0.0001 (16) 0.0050 (14) −0.0035 (15)
N4 0.0326 (17) 0.0402 (19) 0.0318 (17) 0.0028 (15) −0.0010 (14) 0.0000 (14)
N5 0.047 (2) 0.063 (2) 0.0269 (17) −0.0130 (19) 0.0049 (15) −0.0005 (17)
N6 0.0416 (19) 0.0403 (19) 0.0264 (16) 0.0019 (16) 0.0011 (14) 0.0031 (14)
Cl1 0.0467 (6) 0.0444 (6) 0.0331 (5) −0.0052 (5) 0.0068 (4) 0.0038 (4)
O1 0.064 (2) 0.090 (3) 0.0356 (17) −0.004 (2) 0.0119 (16) 0.0148 (17)
O2 0.053 (2) 0.086 (3) 0.049 (2) −0.0050 (19) 0.0193 (16) 0.0121 (18)
O3 0.067 (2) 0.058 (2) 0.074 (3) 0.0125 (18) 0.000 (2) 0.0080 (19)
O4 0.092 (3) 0.077 (3) 0.063 (2) −0.031 (2) −0.001 (2) −0.007 (2)

Geometric parameters (Å, °)

Ag1—N4 2.146 (3) C7—C8 1.465 (7)
Ag1—N1 2.171 (3) C8—H8A 0.9600
C1—C2 1.479 (6) C8—H8B 0.9600
C1—H1A 0.9600 C8—H8C 0.9600
C1—H1B 0.9600 C9—C10 1.370 (7)
C1—H1C 0.9600 C9—H9A 0.9300
C2—N6 1.322 (6) C10—N3 1.330 (6)
C2—C5 1.387 (6) C10—C11 1.487 (6)
C3—N5 1.330 (6) C11—H11A 0.9600
C3—N6 1.351 (5) C11—H11B 0.9600
C3—N4 1.352 (5) C11—H11C 0.9600
C4—N4 1.347 (6) N2—H2A 0.8600
C4—C5 1.360 (6) N2—H2B 0.8600
C4—H4A 0.9300 N5—H5B 0.8600
C5—H5A 0.9300 N5—H5C 0.8600
C6—N3 1.334 (5) Cl1—O4 1.409 (4)
C6—N1 1.350 (5) Cl1—O3 1.412 (4)
C6—N2 1.359 (5) Cl1—O1 1.417 (3)
C7—N1 1.344 (6) Cl1—O2 1.443 (4)
C7—C9 1.370 (6)
N4—Ag1—N1 174.61 (13) C7—C9—H9A 120.6
C2—C1—H1A 109.5 C10—C9—H9A 120.6
C2—C1—H1B 109.5 N3—C10—C9 121.0 (4)
H1A—C1—H1B 109.5 N3—C10—C11 117.4 (4)
C2—C1—H1C 109.5 C9—C10—C11 121.5 (4)
H1A—C1—H1C 109.5 C10—C11—H11A 109.5
H1B—C1—H1C 109.5 C10—C11—H11B 109.5
N6—C2—C5 121.4 (4) H11A—C11—H11B 109.5
N6—C2—C1 117.3 (4) C10—C11—H11C 109.5
C5—C2—C1 121.3 (4) H11A—C11—H11C 109.5
N5—C3—N6 116.4 (4) H11B—C11—H11C 109.5
N5—C3—N4 118.8 (4) C7—N1—C6 116.6 (3)
N6—C3—N4 124.7 (4) C7—N1—Ag1 121.4 (3)
N4—C4—C5 122.7 (4) C6—N1—Ag1 121.2 (3)
N4—C4—H4A 118.6 C6—N2—H2A 120.0
C5—C4—H4A 118.6 C6—N2—H2B 120.0
C4—C5—C2 117.7 (4) H2A—N2—H2B 120.0
C4—C5—H5A 121.1 C10—N3—C6 117.6 (4)
C2—C5—H5A 121.1 C4—N4—C3 115.8 (4)
N3—C6—N1 124.8 (4) C4—N4—Ag1 116.4 (3)
N3—C6—N2 116.9 (4) C3—N4—Ag1 127.7 (3)
N1—C6—N2 118.2 (3) C3—N5—H5B 120.0
N1—C7—C9 121.1 (4) C3—N5—H5C 120.0
N1—C7—C8 117.6 (4) H5B—N5—H5C 120.0
C9—C7—C8 121.3 (4) C2—N6—C3 117.6 (4)
C7—C8—H8A 109.5 O4—Cl1—O3 109.5 (3)
C7—C8—H8B 109.5 O4—Cl1—O1 109.9 (2)
H8A—C8—H8B 109.5 O3—Cl1—O1 111.1 (3)
C7—C8—H8C 109.5 O4—Cl1—O2 107.6 (3)
H8A—C8—H8C 109.5 O3—Cl1—O2 109.0 (3)
H8B—C8—H8C 109.5 O1—Cl1—O2 109.6 (2)
C7—C9—C10 118.8 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N5—H5C···O4i 0.86 2.32 3.131 (5) 158
N5—H5B···N3ii 0.86 2.20 3.050 (5) 172
N2—H2B···O2 0.86 2.50 3.077 (5) 126
N2—H2A···N6iii 0.86 2.30 3.147 (5) 169
C1—H1C···O4iv 0.96 2.38 3.339 (7) 177
C4—H4A···O1 0.93 2.55 3.437 (6) 160
C4—H4A···O2 0.93 2.59 3.396 (6) 145
C8—H8C···O4i 0.96 2.55 3.456 (7) 157

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) x−1/2, −y+1/2, z−1/2; (iii) x+1/2, −y+1/2, z+1/2; (iv) x−1/2, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2621).

References

  1. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Greenwood, N. N. & Earnshaw, A. (1997). In Chemistry of the Elements, 2nd ed. Oxford: Pergamon Press.
  5. Munakata, M., Wu, L. P. & Ning, G. L. (2000). Coord. Chem. Rev 198, 171–203.
  6. Seward, C., Jia, W. L., Wang, R. Y., Enright, G. D. & Wang, S. (2004). Angew. Chem. Int. Ed. Engl.43, 2933–2936. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shimizu, G. K. H., Enright, G. D., Ratcliffe, C. I., Preston, K. F., Reid, J. L. & Ripmeester, J. A. (1999). Chem. Commun. pp. 1485–1486.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809035193/ng2621sup1.cif

e-65-m1176-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809035193/ng2621Isup2.hkl

e-65-m1176-Isup2.hkl (131.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES