Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 5;65(Pt 10):o2361. doi: 10.1107/S1600536809034813

5-Chloro­acetyl-4-methyl-2,3,4,5-tetra­hydro-1H-1,5-benzodiazepin-2-one

K Ravichandran a, P Sakthivel b, S Ponnuswamy b, P Ramesh a, M N Ponnuswamy a,*
PMCID: PMC2970477  PMID: 21577829

Abstract

In the title compound, C12H13ClN2O2, the benzodiazepine ring adopts a distorted boat conformation. The carbonyl O atom and the Cl atom of the chloro­acetyl group are in a cis conformation. The crystal packing is controlled by inter­molecular C—H⋯O and N—H⋯O inter­actions.

Related literature

For hydrogen-bond motifs, see: Bernstein et al. (1995). For puckering and asymmetry parameters, see: Cremer & Pople (1975); Nardelli (1983). For the use of benzodiazepines in the treatment of gastrointestinal and central nervous system disorders, see: Rahbaek et al. (1999).graphic file with name e-65-o2361-scheme1.jpg

Experimental

Crystal data

  • C12H13ClN2O2

  • M r = 252.69

  • Monoclinic, Inline graphic

  • a = 16.7656 (4) Å

  • b = 8.8171 (2) Å

  • c = 17.0125 (4) Å

  • β = 105.803 (1)°

  • V = 2419.80 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.31 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.912, T max = 0.940

  • 17051 measured reflections

  • 4087 independent reflections

  • 2835 reflections with I > 2σ(I)

  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.128

  • S = 1.02

  • 4087 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.33 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034813/bt5035sup1.cif

e-65-o2361-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034813/bt5035Isup2.hkl

e-65-o2361-Isup2.hkl (196.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O2 0.98 2.32 2.6952 (17) 102
N1—H1⋯O1i 0.881 (18) 1.958 (18) 2.8375 (16) 176.4 (16)
C7—H7⋯O2ii 0.93 2.43 3.2818 (17) 153
C14—H14A⋯O1iii 0.97 2.52 3.2411 (18) 131

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

KR thanks Dr Babu Varghese, SAIF, IIT-Madras, India, for his help with the data collection and the management of Kandaswami Kandar’s College, Velur, Namakkal, India, for their encouragement to pursue the programme.

supplementary crystallographic information

Comment

Benzodiazepines are known for their natural occurrence in filamentous fungi and actinomycetes of the genera pencillium, aspergillus and streptomyces. Benzodiazepines from aspergillus include asperlicin, which is used for treatment of gastrointestinal and central nervous system (CNS) disorders (Rahbaek et al.,1999). In view of these importance and to ascertain the molecular conformation, crystallographic study of the title compound has been carried out.

The ORTEP diagram of the title compound is shown in Fig.1. The benzodiazepine ring adopts a distorted boat conformation. The puckering parameters (Cremer & Pople, 1975) and the asymmetry parameters (Nardelli, 1983) for this ring are q2 = 0.965 (1) Å, q3 = 0.155 (1) Å, φ2 = 144.0 (1)°, φ3 = 11.4 (5)° and Δ2(C4)=7.8 (1)°. The sum of the bond angles at N1(359.4°) and N5(359.99°) of the benzodiazepine ring is in accrdance with sp2 hybridization. The choloroacetyl group adopts an extended conformation, which is evidenced from the torsion angle N5—C13—C14—Cl1[-161.9 (1)°].

The crystal packing is controlled by C—H···O and N—H···O types of intra and intermolecular interactions in addition to van der Waals forces. Atom N1 at (x, y, z) donates a proton to O1 (-x + 1, -y, -z + 1), which forms a graph set motif of R22(8) dimer (Bernstein et al., 1995). The intermolecular hydrogen bond C14—H14A···O1 connect the dimers into a C9 one dimensional chain running along c–axis as shown in Fig 2. Thus the two dimensional network is connected by an intermolecular hydrogen bond C7—H7···O2 which leads to a C6 zig–zag chain running along b–axis.

Experimental

To a solution of tetrahydro-4-methyl-1,5-benzodiazepin-2-one (0.88 g, 5 mmol) in anhydrous benzene (50 ml) was added triethylamine (2.8 ml, 20 mmol) and chloroacetyl chloride (1.59 ml, 20 mmol). The contents were allowed to reflux on a water bath for 6hrs. The reaction mixture was washed with sodium bicarbonate solution (10%), water and dried. The crude mass was crystallized from ethanol.

Refinement

The H atom bonded to N was freely refined and the other H atoms were positioned geometrically (C—H=0.93–0.98 Å) and allowed to ride on their parent atoms, with 1.5Ueq(C) for methyl H and 1.2 Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

Perspective view of the molecule showing the thermal ellipsoids are drawn at 50% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed down b–axis. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C12H13ClN2O2 F(000) = 1056
Mr = 252.69 Dx = 1.387 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 3025 reflections
a = 16.7656 (4) Å θ = 2.5–31.7°
b = 8.8171 (2) Å µ = 0.31 mm1
c = 17.0125 (4) Å T = 293 K
β = 105.803 (1)° Block, colourless
V = 2419.80 (10) Å3 0.30 × 0.25 × 0.20 mm
Z = 8

Data collection

Bruker Kappa APEXII area-detector diffractometer 4087 independent reflections
Radiation source: fine-focus sealed tube 2835 reflections with I > 2σ(I)
graphite Rint = 0.026
ω and φ scans θmax = 31.7°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −24→24
Tmin = 0.912, Tmax = 0.940 k = −13→12
17051 measured reflections l = −25→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0588P)2 + 0.9172P] where P = (Fo2 + 2Fc2)/3
4087 reflections (Δ/σ)max = 0.001
159 parameters Δρmax = 0.30 e Å3
0 restraints Δρmin = −0.33 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.44292 (4) −0.22883 (6) 0.84052 (3) 0.07928 (19)
O1 0.40338 (7) −0.08925 (12) 0.45164 (6) 0.0519 (3)
O2 0.31233 (7) −0.25824 (11) 0.68948 (6) 0.0512 (3)
N1 0.42899 (7) 0.08091 (13) 0.55371 (7) 0.0417 (2)
H1 0.4810 (11) 0.0878 (19) 0.5523 (10) 0.052 (4)*
C2 0.37704 (8) −0.00571 (15) 0.49681 (7) 0.0406 (3)
C3 0.28614 (8) 0.00659 (16) 0.48988 (8) 0.0422 (3)
H3A 0.2551 −0.0382 0.4386 0.051*
H3B 0.2711 0.1129 0.4890 0.051*
C4 0.26188 (8) −0.07178 (15) 0.55987 (8) 0.0413 (3)
H4 0.2691 −0.1812 0.5543 0.050*
N5 0.31771 (7) −0.02397 (11) 0.63873 (6) 0.0373 (2)
C6 0.34684 (8) 0.12893 (13) 0.64881 (7) 0.0361 (2)
C7 0.31913 (9) 0.22890 (15) 0.69873 (8) 0.0439 (3)
H7 0.2790 0.1982 0.7238 0.053*
C8 0.35122 (10) 0.37389 (16) 0.71114 (9) 0.0497 (3)
H8 0.3328 0.4406 0.7447 0.060*
C9 0.41025 (10) 0.41982 (16) 0.67405 (9) 0.0503 (3)
H9 0.4327 0.5167 0.6837 0.060*
C10 0.43651 (9) 0.32312 (16) 0.62248 (9) 0.0452 (3)
H10 0.4763 0.3552 0.5973 0.054*
C11 0.40373 (7) 0.17797 (14) 0.60811 (7) 0.0364 (2)
C12 0.17216 (10) −0.0438 (2) 0.55670 (11) 0.0639 (4)
H12A 0.1588 −0.0971 0.6007 0.096*
H12B 0.1373 −0.0794 0.5055 0.096*
H12C 0.1634 0.0629 0.5619 0.096*
C13 0.33861 (8) −0.12933 (14) 0.69903 (7) 0.0377 (3)
C14 0.39552 (10) −0.07538 (17) 0.77936 (8) 0.0502 (3)
H14A 0.3639 −0.0165 0.8085 0.060*
H14B 0.4379 −0.0100 0.7687 0.060*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.1088 (4) 0.0608 (3) 0.0534 (3) 0.0146 (2) −0.0032 (2) 0.00910 (19)
O1 0.0638 (6) 0.0553 (6) 0.0420 (5) −0.0034 (5) 0.0236 (5) −0.0139 (4)
O2 0.0711 (7) 0.0363 (5) 0.0469 (6) −0.0094 (4) 0.0173 (5) 0.0016 (4)
N1 0.0455 (6) 0.0460 (6) 0.0362 (5) −0.0005 (5) 0.0157 (4) −0.0071 (4)
C2 0.0535 (7) 0.0411 (6) 0.0296 (6) 0.0012 (5) 0.0157 (5) 0.0000 (5)
C3 0.0510 (7) 0.0443 (7) 0.0297 (6) 0.0010 (5) 0.0084 (5) −0.0011 (5)
C4 0.0514 (7) 0.0388 (6) 0.0329 (6) −0.0055 (5) 0.0101 (5) −0.0041 (5)
N5 0.0521 (6) 0.0314 (5) 0.0300 (5) −0.0039 (4) 0.0139 (4) −0.0040 (4)
C6 0.0473 (6) 0.0300 (5) 0.0317 (5) 0.0003 (4) 0.0121 (5) −0.0033 (4)
C7 0.0547 (7) 0.0401 (7) 0.0403 (7) 0.0036 (5) 0.0189 (6) −0.0069 (5)
C8 0.0658 (9) 0.0368 (7) 0.0450 (7) 0.0071 (6) 0.0123 (6) −0.0112 (5)
C9 0.0611 (8) 0.0322 (6) 0.0517 (8) −0.0038 (6) 0.0050 (6) −0.0069 (6)
C10 0.0495 (7) 0.0398 (7) 0.0459 (7) −0.0057 (5) 0.0122 (6) −0.0007 (5)
C11 0.0430 (6) 0.0339 (6) 0.0315 (5) 0.0020 (5) 0.0090 (5) −0.0024 (4)
C12 0.0541 (9) 0.0832 (12) 0.0549 (9) −0.0114 (8) 0.0160 (7) 0.0011 (8)
C13 0.0491 (6) 0.0354 (6) 0.0335 (6) −0.0010 (5) 0.0195 (5) −0.0014 (4)
C14 0.0695 (9) 0.0445 (7) 0.0346 (6) −0.0015 (6) 0.0108 (6) 0.0016 (5)

Geometric parameters (Å, °)

Cl1—C14 1.7591 (15) C6—C11 1.3913 (17)
O1—C2 1.2299 (15) C7—C8 1.3808 (19)
O2—C13 1.2138 (15) C7—H7 0.9300
N1—C2 1.3490 (17) C8—C9 1.372 (2)
N1—C11 1.4077 (15) C8—H8 0.9300
N1—H1 0.881 (18) C9—C10 1.379 (2)
C2—C3 1.5002 (19) C9—H9 0.9300
C3—C4 1.5247 (18) C10—C11 1.3880 (18)
C3—H3A 0.9700 C10—H10 0.9300
C3—H3B 0.9700 C12—H12A 0.9600
C4—N5 1.4730 (16) C12—H12B 0.9600
C4—C12 1.511 (2) C12—H12C 0.9600
C4—H4 0.9800 C13—C14 1.5147 (19)
N5—C13 1.3573 (16) C14—H14A 0.9700
N5—C6 1.4283 (15) C14—H14B 0.9700
C6—C7 1.3888 (16)
C2—N1—C11 124.40 (11) C9—C8—C7 120.19 (13)
C2—N1—H1 118.0 (11) C9—C8—H8 119.9
C11—N1—H1 116.9 (11) C7—C8—H8 119.9
O1—C2—N1 121.06 (12) C8—C9—C10 120.36 (13)
O1—C2—C3 121.61 (12) C8—C9—H9 119.8
N1—C2—C3 117.32 (11) C10—C9—H9 119.8
C2—C3—C4 112.78 (11) C9—C10—C11 120.17 (13)
C2—C3—H3A 109.0 C9—C10—H10 119.9
C4—C3—H3A 109.0 C11—C10—H10 119.9
C2—C3—H3B 109.0 C10—C11—C6 119.41 (11)
C4—C3—H3B 109.0 C10—C11—N1 120.05 (12)
H3A—C3—H3B 107.8 C6—C11—N1 120.53 (11)
N5—C4—C12 111.43 (11) C4—C12—H12A 109.5
N5—C4—C3 110.07 (10) C4—C12—H12B 109.5
C12—C4—C3 111.88 (12) H12A—C12—H12B 109.5
N5—C4—H4 107.8 C4—C12—H12C 109.5
C12—C4—H4 107.8 H12A—C12—H12C 109.5
C3—C4—H4 107.8 H12B—C12—H12C 109.5
C13—N5—C6 123.09 (10) O2—C13—N5 122.02 (12)
C13—N5—C4 117.50 (10) O2—C13—C14 122.09 (12)
C6—N5—C4 119.42 (10) N5—C13—C14 115.88 (11)
C7—C6—C11 119.74 (11) C13—C14—Cl1 111.36 (10)
C7—C6—N5 120.80 (11) C13—C14—H14A 109.4
C11—C6—N5 119.46 (10) Cl1—C14—H14A 109.4
C8—C7—C6 119.98 (13) C13—C14—H14B 109.4
C8—C7—H7 120.0 Cl1—C14—H14B 109.4
C6—C7—H7 120.0 H14A—C14—H14B 108.0
C11—N1—C2—O1 −179.31 (12) C7—C8—C9—C10 1.7 (2)
C11—N1—C2—C3 1.92 (19) C8—C9—C10—C11 −0.4 (2)
O1—C2—C3—C4 107.11 (14) C9—C10—C11—C6 −2.7 (2)
N1—C2—C3—C4 −74.12 (15) C9—C10—C11—N1 178.28 (13)
C2—C3—C4—N5 49.39 (14) C7—C6—C11—C10 4.55 (19)
C2—C3—C4—C12 173.86 (12) N5—C6—C11—C10 −175.39 (12)
C12—C4—N5—C13 91.37 (15) C7—C6—C11—N1 −176.42 (12)
C3—C4—N5—C13 −143.90 (11) N5—C6—C11—N1 3.64 (18)
C12—C4—N5—C6 −88.25 (14) C2—N1—C11—C10 −135.90 (14)
C3—C4—N5—C6 36.49 (15) C2—N1—C11—C6 45.08 (18)
C13—N5—C6—C7 −69.95 (17) C6—N5—C13—O2 179.08 (12)
C4—N5—C6—C7 109.65 (14) C4—N5—C13—O2 −0.52 (18)
C13—N5—C6—C11 110.00 (14) C6—N5—C13—C14 0.10 (18)
C4—N5—C6—C11 −70.41 (16) C4—N5—C13—C14 −179.51 (11)
C11—C6—C7—C8 −3.4 (2) O2—C13—C14—Cl1 19.10 (18)
N5—C6—C7—C8 176.59 (13) N5—C13—C14—Cl1 −161.92 (10)
C6—C7—C8—C9 0.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O2 0.98 2.32 2.6952 (17) 102
N1—H1···O1i 0.881 (18) 1.958 (18) 2.8375 (16) 176.4 (16)
C7—H7···O2ii 0.93 2.43 3.2818 (17) 153
C14—H14A···O1iii 0.97 2.52 3.2411 (18) 131

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1/2, y+1/2, −z+3/2; (iii) x, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5035).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  6. Rahbaek, L., Breinholt, J., Frisvad, J. C. & Christophersen, C. (1999). J. Org. Chem.64, 1689–1692. [DOI] [PubMed]
  7. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809034813/bt5035sup1.cif

e-65-o2361-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809034813/bt5035Isup2.hkl

e-65-o2361-Isup2.hkl (196.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES