Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 30;65(Pt 10):m1258. doi: 10.1107/S1600536809038069

Tetra­aquabis(6-carboxy-1H-benzimid­azole-5-carboxyl­ato-κN 3)nickel(II) dimethyl­formamide disolvate dihydrate

Hao Wang a, Wen-Dong Song b,*, Shi-Jie Li a, Pei-Wen Qin c, Shi-Wei Hu a
PMCID: PMC2970488  PMID: 21577771

Abstract

The title compound, [Ni(C9H45N2O4)2(H2O)4]·2C3H7NO·2H2O, has the NiII center coordinated by four water mol­ecules and two N atoms from two 1H-benzimidazole-5,6-dicarboxyl­ate ligands in an octa­hedral geometry. The mol­ecule inter­acts with the solvent water and dimethyl­formamide mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds to form a three-dimensional supra­molecular network. The metal atom lies on a center of inversion.

Related literature

For the crystal structures of 1H-benzimidazole-5,6-dicarboxyl­ate complexes, see: Gao et al. (2008); Lo et al. (2007); Song et al. (2009).graphic file with name e-65-m1258-scheme1.jpg

Experimental

Crystal data

  • [Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O

  • M r = 723.30

  • Triclinic, Inline graphic

  • a = 8.5327 (17) Å

  • b = 9.1387 (18) Å

  • c = 11.624 (2) Å

  • α = 100.80 (3)°

  • β = 103.03 (3)°

  • γ = 114.04 (3)°

  • V = 765.7 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 293 K

  • 0.27 × 0.18 × 0.17 mm

Data collection

  • Rigaku/MSC Mercury CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998) T min = 0.830, T max = 0.888

  • 6116 measured reflections

  • 2737 independent reflections

  • 2613 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.137

  • S = 1.20

  • 2737 reflections

  • 217 parameters

  • 9 restraints

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.32 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL9.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038069/ng2646sup1.cif

e-65-m1258-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038069/ng2646Isup2.hkl

e-65-m1258-Isup2.hkl (134.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H2W⋯O1i 0.84 1.86 2.693 (3) 173
O1W—H1W⋯O3ii 0.84 2.00 2.801 (3) 160
O4—H4A⋯O5iii 0.82 1.78 2.585 (3) 167
O2W—H4W⋯O2iv 0.84 1.79 2.624 (3) 176
O2W—H3W⋯O1Wv 0.84 1.92 2.741 (2) 166
O3W—H5W⋯O1Wv 0.84 2.06 2.810 (3) 148
O3W—H6W⋯O1vi 0.84 1.81 2.634 (3) 169
N2—H2⋯O5vii 0.86 1.98 2.779 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors acknowledge Guang Dong Ocean University for supporting this work.

supplementary crystallographic information

Comment

From the structuralpoint of view, 1H-benzimidazole-5,6-dicarboxylic acid possesses two nitrogen atoms of imidazole ring and four oxygen atoms of carboxylate groups, and might be used as versatile linker in constructing coordination polymers with abundant hydrogen bonds. And several coordination polymers fomed by this ligand have been reported recently:Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-kN3)copper(II) pentahydrate(Gao et al.,2008), Bis(1H-benzimidazole-5,6-dicarboxylato)bis[tetraaquadicobalt(II)] pentahydrate(Lo et al.,2007), Pentaaqua(1H-benzimidazole-5,6-dicarboxylato-kN3) cobalt(II)pentahydrate(Song et al.,2009).In the present paper, we synthesized a novel coordination complex [Ni(C9H4N2O4)2(H2O)4].2H2O.2C3H7NO.

As shown in Figure 1, the NiII atom exhibits an octahedral coordination sphere, defined by two N atoms from two different 1H-benzimidazole-5,6-dicarboxylate ligands, and four water molecules. The equatorial plane is defined by O2w, O3w, O2wi and O3wi atoms, while N1 and N1i occupy the axial position (symmetry codes: i = 1 - x, 1 - y, 1 - z). Inter/intramolecular O—H···O and N—H···O hydrogen bonds between the carboxylate O atoms of 1H-benzimidazole-5,6-dicarboxylate and the coordinated water molecule lead to the structure more stable(Fig 2).The hydrogen bonds are in the normal range(Table 1).

Experimental

A C3H7NO solution (20 mL)containing Ni(NO3)2(0.1 mmol)and 1H-benzimidazole-5,6-dicarboxylic acid(0.2 mmol) was stirred for a few minutes in air,and left to stand at room temperature for about four weeks, then the green crystals were obtained.

Refinement

Carbon and nitrogen bound H atoms were placed at calculated positions and were treated as riding on the parent C or N atoms with C—H = 0.93 Å, N—H = 0.86 Å, and with Uiso(H) = 1.2 Ueq(C, N). The water H-atoms were located in a difference map, and were refined with a distance restraint of O—H = 0.84 Å; their Uiso values were refined.

Figures

Fig. 1.

Fig. 1.

The structure of the title compound, showing the atomic numbering scheme with 30% probability displacement ellipsoids. [Symmetry codes: (i) 1 - x, 1 - y, 1 - z.]

Fig. 2.

Fig. 2.

A view of the three-dimensional network constructed by O—H···O and N—H···O hydrogen bonding interactions.

Crystal data

[Ni(C9H5N2O4)2(H2O)4]·2C3H7NO·2H2O Z = 1
Mr = 723.30 F(000) = 378
Triclinic, P1 Dx = 1.569 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.5327 (17) Å Cell parameters from 3600 reflections
b = 9.1387 (18) Å θ = 1.4–28°
c = 11.624 (2) Å µ = 0.72 mm1
α = 100.80 (3)° T = 293 K
β = 103.03 (3)° Block, green
γ = 114.04 (3)° 0.27 × 0.18 × 0.17 mm
V = 765.7 (3) Å3

Data collection

Rigaku/MSC Mercury CCD diffractometer 2737 independent reflections
Radiation source: fine-focus sealed tube 2613 reflections with I > 2σ(I)
graphite Rint = 0.020
ω scans θmax = 25.2°, θmin = 3.3°
Absorption correction: multi-scan (REQAB; Jacobson, 1998) h = −10→10
Tmin = 0.830, Tmax = 0.888 k = −10→9
6116 measured reflections l = −13→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.1051P)2 + 0.01P] where P = (Fo2 + 2Fc2)/3
2737 reflections (Δ/σ)max < 0.001
217 parameters Δρmax = 0.61 e Å3
9 restraints Δρmin = −0.32 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2895 (3) 0.4030 (3) 0.2261 (2) 0.0301 (5)
H1 0.2030 0.3062 0.2339 0.036*
N1 0.4387 (2) 0.5153 (2) 0.31852 (17) 0.0272 (4)
Ni1 0.5000 0.5000 0.5000 0.02200 (19)
C2 0.4271 (3) 0.5938 (3) 0.1432 (2) 0.0272 (5)
N2 0.2739 (2) 0.4415 (2) 0.11945 (17) 0.0324 (4)
H2 0.1861 0.3832 0.0499 0.039*
C3 0.5296 (3) 0.6391 (3) 0.2686 (2) 0.0252 (4)
O3W 0.75996 (16) 0.54366 (16) 0.50333 (12) 0.0345 (4)
C4 0.6923 (3) 0.7892 (3) 0.3224 (2) 0.0271 (5)
H4 0.7612 0.8210 0.4056 0.033*
C5 0.7498 (3) 0.8909 (3) 0.2494 (2) 0.0248 (4)
O1 0.9319 (2) 1.1775 (2) 0.37262 (18) 0.0456 (5)
C6 0.6429 (3) 0.8423 (3) 0.1223 (2) 0.0280 (5)
O2 1.0690 (2) 1.0376 (2) 0.3063 (2) 0.0522 (5)
C7 0.4811 (3) 0.6925 (3) 0.0690 (2) 0.0307 (5)
H7 0.4113 0.6596 −0.0141 0.037*
C8 0.6944 (3) 0.9451 (3) 0.0384 (2) 0.0327 (5)
C9 0.9321 (3) 1.0500 (3) 0.31293 (19) 0.0261 (5)
O2W 0.41483 (16) 0.24688 (15) 0.42925 (12) 0.0295 (4)
H6W 0.8553 0.6369 0.5347 0.044*
H5W 0.7568 0.4874 0.4361 0.044*
H3W 0.4755 0.2330 0.3845 0.044*
H4W 0.3028 0.1830 0.3922 0.044*
O3 0.6082 (3) 0.8962 (3) −0.07127 (17) 0.0591 (6)
O4 0.8343 (3) 1.0927 (3) 0.09199 (18) 0.0633 (7)
H4A 0.8481 1.1446 0.0415 0.095*
O1W 0.3424 (2) 0.7464 (3) 0.69171 (17) 0.0487 (5)
H1W 0.3996 0.7866 0.7687 0.073*
H2W 0.2637 0.7784 0.6716 0.073*
O5 0.0718 (2) 0.7407 (2) 0.05904 (16) 0.0462 (5)
C12 −0.0319 (4) 0.5721 (4) 0.2255 (3) 0.0570 (8)
H12A −0.1264 0.6015 0.2316 0.086*
H12B −0.0161 0.5128 0.2835 0.086*
H12C −0.0653 0.5013 0.1426 0.086*
N3 0.1376 (3) 0.7248 (3) 0.25427 (18) 0.0352 (5)
C11 0.2581 (4) 0.8066 (4) 0.3847 (2) 0.0522 (7)
H11A 0.3625 0.9074 0.3914 0.078*
H11B 0.2971 0.7308 0.4129 0.078*
H11C 0.1933 0.8351 0.4351 0.078*
C10 0.1722 (3) 0.7970 (3) 0.1704 (2) 0.0356 (5)
H10 0.2794 0.8978 0.1949 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0264 (11) 0.0250 (11) 0.0280 (11) 0.0029 (9) 0.0068 (9) 0.0092 (9)
N1 0.0272 (9) 0.0227 (9) 0.0259 (9) 0.0057 (7) 0.0082 (7) 0.0098 (7)
Ni1 0.0196 (3) 0.0191 (3) 0.0217 (3) 0.00424 (18) 0.00625 (17) 0.00652 (17)
C2 0.0216 (10) 0.0230 (10) 0.0262 (11) 0.0024 (8) 0.0062 (8) 0.0055 (9)
N2 0.0256 (9) 0.0274 (10) 0.0254 (9) −0.0008 (8) 0.0021 (7) 0.0071 (8)
C3 0.0242 (10) 0.0248 (10) 0.0264 (11) 0.0093 (8) 0.0112 (8) 0.0099 (9)
O3W 0.0231 (8) 0.0295 (8) 0.0380 (9) 0.0049 (6) 0.0105 (6) 0.0003 (7)
C4 0.0231 (10) 0.0266 (11) 0.0223 (10) 0.0059 (8) 0.0037 (8) 0.0060 (8)
C5 0.0223 (10) 0.0237 (11) 0.0245 (10) 0.0075 (8) 0.0074 (8) 0.0078 (8)
O1 0.0282 (9) 0.0305 (9) 0.0559 (11) 0.0043 (7) 0.0102 (7) −0.0071 (8)
C6 0.0252 (10) 0.0278 (11) 0.0258 (11) 0.0073 (9) 0.0082 (8) 0.0098 (9)
O2 0.0233 (9) 0.0324 (9) 0.0833 (15) 0.0073 (7) 0.0126 (8) 0.0002 (9)
C7 0.0283 (11) 0.0312 (11) 0.0217 (10) 0.0069 (9) 0.0037 (8) 0.0072 (9)
C8 0.0295 (11) 0.0328 (12) 0.0266 (12) 0.0063 (9) 0.0078 (9) 0.0113 (10)
C9 0.0220 (10) 0.0249 (11) 0.0249 (11) 0.0059 (9) 0.0050 (8) 0.0095 (9)
O2W 0.0250 (7) 0.0233 (7) 0.0316 (8) 0.0058 (6) 0.0076 (6) 0.0054 (6)
O3 0.0561 (12) 0.0527 (12) 0.0269 (9) −0.0082 (9) 0.0002 (8) 0.0191 (9)
O4 0.0599 (12) 0.0464 (11) 0.0327 (10) −0.0161 (9) −0.0030 (9) 0.0224 (9)
O1W 0.0396 (10) 0.0590 (12) 0.0390 (10) 0.0258 (9) 0.0087 (8) −0.0036 (9)
O5 0.0409 (10) 0.0468 (10) 0.0272 (9) 0.0019 (8) 0.0025 (7) 0.0156 (8)
C12 0.0560 (17) 0.0591 (18) 0.0607 (19) 0.0195 (14) 0.0312 (15) 0.0326 (15)
N3 0.0421 (11) 0.0367 (11) 0.0260 (10) 0.0184 (9) 0.0101 (9) 0.0103 (9)
C11 0.078 (2) 0.0531 (17) 0.0285 (13) 0.0379 (16) 0.0077 (13) 0.0140 (12)
C10 0.0363 (12) 0.0301 (12) 0.0302 (12) 0.0083 (10) 0.0065 (10) 0.0104 (10)

Geometric parameters (Å, °)

C1—N1 1.317 (3) C6—C7 1.386 (3)
C1—N2 1.344 (3) C6—C8 1.492 (3)
C1—H1 0.9300 O2—C9 1.236 (3)
N1—C3 1.397 (3) C7—H7 0.9300
N1—Ni1 2.1014 (18) C8—O3 1.209 (3)
Ni1—O2W 2.0501 (14) C8—O4 1.293 (3)
Ni1—O2Wi 2.0501 (14) O2W—H3W 0.8401
Ni1—O3Wi 2.0773 (13) O2W—H4W 0.8400
Ni1—O3W 2.0773 (13) O4—H4A 0.8200
Ni1—N1i 2.1014 (18) O1W—H1W 0.8408
C2—C7 1.379 (3) O1W—H2W 0.8405
C2—N2 1.390 (3) O5—C10 1.252 (3)
C2—C3 1.401 (3) C12—N3 1.454 (4)
N2—H2 0.8600 C12—H12A 0.9600
C3—C4 1.391 (3) C12—H12B 0.9600
O3W—H6W 0.8402 C12—H12C 0.9600
O3W—H5W 0.8394 N3—C10 1.298 (3)
C4—C5 1.391 (3) N3—C11 1.470 (3)
C4—H4 0.9300 C11—H11A 0.9600
C5—C6 1.424 (3) C11—H11B 0.9600
C5—C9 1.522 (3) C11—H11C 0.9600
O1—C9 1.240 (3) C10—H10 0.9300
N1—C1—N2 113.71 (18) C4—C5—C9 115.96 (18)
N1—C1—H1 123.1 C6—C5—C9 123.63 (19)
N2—C1—H1 123.1 C7—C6—C5 120.7 (2)
C1—N1—C3 104.99 (18) C7—C6—C8 115.74 (19)
C1—N1—Ni1 123.63 (15) C5—C6—C8 123.59 (19)
C3—N1—Ni1 131.30 (15) C2—C7—C6 117.85 (19)
O2W—Ni1—O2Wi 180.0 C2—C7—H7 121.1
O2W—Ni1—O3Wi 91.85 (6) C6—C7—H7 121.1
O2Wi—Ni1—O3Wi 88.15 (6) O3—C8—O4 122.2 (2)
O2W—Ni1—O3W 88.15 (6) O3—C8—C6 122.5 (2)
O2Wi—Ni1—O3W 91.85 (6) O4—C8—C6 115.3 (2)
O3Wi—Ni1—O3W 180.0 O2—C9—O1 125.6 (2)
O2W—Ni1—N1i 90.06 (7) O2—C9—C5 116.7 (2)
O2Wi—Ni1—N1i 89.94 (7) O1—C9—C5 117.58 (18)
O3Wi—Ni1—N1i 90.14 (7) Ni1—O2W—H3W 109.0
O3W—Ni1—N1i 89.86 (7) Ni1—O2W—H4W 117.7
O2W—Ni1—N1 89.94 (7) H3W—O2W—H4W 110.9
O2Wi—Ni1—N1 90.06 (7) C8—O4—H4A 109.5
O3Wi—Ni1—N1 89.86 (7) H1W—O1W—H2W 111.4
O3W—Ni1—N1 90.14 (7) N3—C12—H12A 109.5
N1i—Ni1—N1 180.0 N3—C12—H12B 109.5
C7—C2—N2 131.9 (2) H12A—C12—H12B 109.5
C7—C2—C3 122.56 (19) N3—C12—H12C 109.5
N2—C2—C3 105.48 (19) H12A—C12—H12C 109.5
C1—N2—C2 106.79 (18) H12B—C12—H12C 109.5
C1—N2—H2 126.6 C10—N3—C12 121.1 (2)
C2—N2—H2 126.6 C10—N3—C11 120.7 (2)
C4—C3—N1 131.2 (2) C12—N3—C11 117.8 (2)
C4—C3—C2 119.76 (19) N3—C11—H11A 109.5
N1—C3—C2 109.02 (19) N3—C11—H11B 109.5
Ni1—O3W—H6W 126.3 H11A—C11—H11B 109.5
Ni1—O3W—H5W 111.1 N3—C11—H11C 109.5
H6W—O3W—H5W 111.6 H11A—C11—H11C 109.5
C5—C4—C3 118.77 (19) H11B—C11—H11C 109.5
C5—C4—H4 120.6 O5—C10—N3 124.8 (2)
C3—C4—H4 120.6 O5—C10—H10 117.6
C4—C5—C6 120.39 (19) N3—C10—H10 117.6

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H2W···O1ii 0.84 1.86 2.693 (3) 173
O1W—H1W···O3iii 0.84 2.00 2.801 (3) 160
O4—H4A···O5iv 0.82 1.78 2.585 (3) 167
O2W—H4W···O2v 0.84 1.79 2.624 (3) 176
O2W—H3W···O1Wi 0.84 1.92 2.741 (2) 166
O3W—H5W···O1Wi 0.84 2.06 2.810 (3) 148
O3W—H6W···O1vi 0.84 1.81 2.634 (3) 169
N2—H2···O5vii 0.86 1.98 2.779 (3) 155

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) x, y, z+1; (iv) −x+1, −y+2, −z; (v) x−1, y−1, z; (i) −x+1, −y+1, −z+1; (vi) −x+2, −y+2, −z+1; (vii) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2646).

References

  1. Gao, Q., Gao, W.-H., Zhang, C.-Y. & Xie, Y.-B. (2008). Acta Cryst. E64, m928. [DOI] [PMC free article] [PubMed]
  2. Jacobson, R. (1998). REQAB. Molecular Structure Corporation, The Woodlands, Texas, USA.
  3. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  4. Lo, Y.-L., Wang, W.-C., Lee, G.-A. & Liu, Y.-H. (2007). Acta Cryst. E63, m2657–m2658.
  5. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Song, W.-D., Wang, H., Li, S.-J., Qin, P.-W. & Hu, S.-W. (2009). Acta Cryst. E65, m702. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809038069/ng2646sup1.cif

e-65-m1258-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809038069/ng2646Isup2.hkl

e-65-m1258-Isup2.hkl (134.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES