Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Sep 26;65(Pt 10):o2536. doi: 10.1107/S1600536809037908

2-Eth­oxy-4-[2-(3-nitro­phen­yl)­hydrazono­meth­yl]phenol

Jun-Qiang Chen a,*, Ling Jiang b, Shu-Mian Li b, Yu-Zhen Chen b
PMCID: PMC2970498  PMID: 21577980

Abstract

The title Schiff base compound, C15H15N3O4, was prepared from a condensation reaction of 3-eth­oxy-4-hydroxy­benz­aldehyde and 3-nitro­phenyl­hydrazine. The mol­ecule is nearly planar; the dihedral angle between the hydroxy­benzene ring and the nitro­benzene ring is 6.57 (7)°. O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonding helps to stabilize the crystal structure.

Related literature

For applications of Schiff base compounds, see: Kahwa et al. (1986); Santos et al. (2001).graphic file with name e-65-o2536-scheme1.jpg

Experimental

Crystal data

  • C15H15N3O4

  • M r = 301.30

  • Monoclinic, Inline graphic

  • a = 12.4160 (6) Å

  • b = 7.7429 (4) Å

  • c = 16.2249 (9) Å

  • β = 110.497 (6)°

  • V = 1461.04 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.20 × 0.16 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998) T min = 0.979, T max = 0.982

  • 5606 measured reflections

  • 2835 independent reflections

  • 1558 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.077

  • S = 0.80

  • 2835 reflections

  • 203 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037908/xu2611sup1.cif

e-65-o2536-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037908/xu2611Isup2.hkl

e-65-o2536-Isup2.hkl (139.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1 0.89 (2) 2.14 (2) 2.6582 (16) 116.7 (18)
O2—H2A⋯N1i 0.89 (2) 2.32 (2) 3.0345 (19) 137.0 (15)
C11—H11A⋯O2ii 0.93 2.56 3.340 (2) 141

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The chemistry of Schiff base has attracted a great deal of interest in recent years. These compounds play an important role in the development of various proteins and enzymes (Kahwa et al., 1986; Santos et al., 2001). As part of our study of the coordination chemistry of Schiff bases, we synthesized the title compound and determined its crystal structure.

The molecular structure of (I) is shown in Fig. 1. The hydroxybenzene ring and the nitrobenzene ring is roughly co-planar, making a dihedral angle of 6.57 (7)°. Intramolecular O—H···O hydrogen bond and intermolecular O—H···N and C—H···O hydrogen bonds are observed (Table 1), they help to stabilize the crystal structure (Fig. 2).

Experimental

2-Nitrophenylhydrazine (1 mmol, 0.153 g) was dissolved in anhydrous ethanol (15 ml). The solution was stirred for several min at 351 K, 3-ethoxy-4-hydroxybenzaldehyde (1 mmol, 0.166 g) in ethanol (8 mm l) was added dropwise and the mixture was stirred at refluxing temperature for 2 h. The solid product was isolated and recrystallized from methanol, red single crystals were obtained after 3 d.

Refinement

Hydroxy H atom was located in a difference Fourier map and refined isotropically. The other H atoms were positioned geometrically and refined as riding with C—H = 0.93 (aromatic), 0.97 (methylene), 0.96 Å (methyl) and N—H = 0.86 Å, with Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level, showing intramolecular hydrogen bonds as dashed line.

Fig. 2.

Fig. 2.

The unit cell packing diagram showing intermolecular hydrogen bonding as dashed lines.

Crystal data

C15H15N3O4 F(000) = 632
Mr = 301.30 Dx = 1.370 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1850 reflections
a = 12.4160 (6) Å θ = 3.2–28.2°
b = 7.7429 (4) Å µ = 0.10 mm1
c = 16.2249 (9) Å T = 296 K
β = 110.497 (6)° Block, red
V = 1461.04 (13) Å3 0.20 × 0.16 × 0.13 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2835 independent reflections
Radiation source: fine-focus sealed tube 1558 reflections with I > 2σ(I)
graphite Rint = 0.022
ω scans θmax = 26.0°, θmin = 3.2°
Absorption correction: multi-scan (SADABS; Bruker, 1998) h = −15→15
Tmin = 0.979, Tmax = 0.982 k = −9→8
5606 measured reflections l = −20→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077 H atoms treated by a mixture of independent and constrained refinement
S = 0.80 w = 1/[σ2(Fo2) + (0.0412P)2] where P = (Fo2 + 2Fc2)/3
2835 reflections (Δ/σ)max < 0.001
203 parameters Δρmax = 0.13 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.13682 (9) 0.87732 (14) 0.23604 (7) 0.0531 (3)
O2 0.22167 (11) 0.78440 (15) 0.40430 (8) 0.0574 (3)
N1 0.50471 (10) 1.09280 (16) 0.17334 (8) 0.0449 (3)
C6 0.44686 (13) 0.95951 (18) 0.28540 (10) 0.0400 (4)
C10 0.58320 (12) 1.20825 (19) 0.06891 (10) 0.0408 (4)
C11 0.47700 (12) 1.22659 (19) 0.00284 (10) 0.0424 (4)
H11A 0.4099 1.1937 0.0117 0.051*
N3 0.36075 (12) 1.31235 (19) −0.14578 (10) 0.0586 (4)
C2 0.25328 (13) 0.89131 (18) 0.27554 (10) 0.0403 (4)
C4 0.40865 (14) 0.86218 (19) 0.41319 (10) 0.0498 (4)
H4A 0.4353 0.8353 0.4728 0.060*
C5 0.48479 (13) 0.91857 (19) 0.37376 (10) 0.0467 (4)
H5A 0.5625 0.9290 0.4072 0.056*
N2 0.59659 (11) 1.14119 (17) 0.15028 (9) 0.0566 (4)
H2B 0.6649 1.1291 0.1881 0.068*
C9 0.53084 (13) 1.02074 (18) 0.24853 (10) 0.0449 (4)
H9A 0.6083 1.0066 0.2817 0.054*
C1 0.32963 (13) 0.94411 (18) 0.23613 (10) 0.0415 (4)
H1B 0.3030 0.9697 0.1763 0.050*
C12 0.47362 (12) 1.29476 (19) −0.07618 (10) 0.0418 (4)
C3 0.29426 (14) 0.84598 (18) 0.36459 (10) 0.0424 (4)
C15 0.68158 (13) 1.2571 (2) 0.05225 (11) 0.0525 (4)
H15A 0.7534 1.2441 0.0959 0.063*
O3 0.27636 (11) 1.2634 (2) −0.13242 (10) 0.1076 (6)
C13 0.56883 (14) 1.3452 (2) −0.09402 (11) 0.0545 (5)
H13A 0.5630 1.3915 −0.1483 0.065*
O4 0.35438 (11) 1.3746 (2) −0.21577 (9) 0.0961 (5)
C7 0.08594 (14) 0.9091 (2) 0.14407 (11) 0.0570 (5)
H7A 0.1026 0.8145 0.1112 0.068*
H7B 0.1167 1.0146 0.1288 0.068*
C14 0.67357 (14) 1.3242 (2) −0.02778 (12) 0.0627 (5)
H14A 0.7403 1.3562 −0.0376 0.075*
C8 −0.04114 (14) 0.9256 (2) 0.12228 (12) 0.0676 (5)
H8A −0.0776 0.9469 0.0604 0.101*
H8B −0.0567 1.0200 0.1549 0.101*
H8C −0.0707 0.8206 0.1376 0.101*
H2A 0.1526 (18) 0.777 (2) 0.3624 (14) 0.100 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0394 (6) 0.0719 (8) 0.0458 (7) −0.0045 (5) 0.0122 (5) 0.0102 (6)
O2 0.0559 (8) 0.0773 (8) 0.0446 (8) −0.0088 (7) 0.0246 (7) 0.0017 (6)
N1 0.0349 (7) 0.0587 (8) 0.0418 (8) −0.0058 (6) 0.0142 (6) 0.0001 (7)
C6 0.0386 (9) 0.0409 (9) 0.0397 (10) −0.0013 (7) 0.0127 (8) −0.0005 (7)
C10 0.0327 (9) 0.0507 (9) 0.0379 (10) −0.0041 (7) 0.0112 (7) −0.0017 (7)
C11 0.0310 (9) 0.0550 (10) 0.0429 (10) −0.0045 (7) 0.0152 (8) −0.0059 (8)
N3 0.0406 (9) 0.0810 (10) 0.0471 (10) 0.0004 (8) 0.0064 (8) 0.0040 (8)
C2 0.0376 (9) 0.0406 (9) 0.0416 (10) −0.0012 (7) 0.0125 (8) 0.0015 (7)
C4 0.0519 (11) 0.0609 (11) 0.0333 (10) −0.0019 (9) 0.0107 (8) 0.0043 (8)
C5 0.0395 (9) 0.0525 (10) 0.0420 (10) −0.0015 (8) 0.0065 (8) 0.0020 (8)
N2 0.0293 (7) 0.0921 (11) 0.0443 (9) −0.0077 (7) 0.0078 (6) 0.0119 (8)
C9 0.0349 (9) 0.0529 (10) 0.0421 (11) −0.0007 (8) 0.0074 (8) −0.0006 (8)
C1 0.0428 (9) 0.0441 (9) 0.0345 (9) −0.0022 (7) 0.0098 (7) 0.0017 (7)
C12 0.0338 (9) 0.0508 (10) 0.0387 (10) −0.0019 (7) 0.0101 (7) −0.0044 (7)
C3 0.0469 (10) 0.0445 (9) 0.0391 (10) −0.0024 (8) 0.0193 (8) −0.0002 (7)
C15 0.0301 (9) 0.0729 (12) 0.0501 (11) −0.0061 (8) 0.0087 (8) 0.0071 (9)
O3 0.0362 (8) 0.1872 (16) 0.0859 (11) −0.0113 (9) 0.0045 (7) 0.0440 (10)
C13 0.0493 (11) 0.0695 (12) 0.0447 (11) −0.0089 (9) 0.0165 (9) 0.0063 (8)
O4 0.0645 (9) 0.1613 (15) 0.0501 (9) −0.0042 (8) 0.0043 (7) 0.0324 (9)
C7 0.0453 (10) 0.0696 (11) 0.0488 (11) −0.0090 (9) 0.0071 (9) 0.0076 (9)
C14 0.0378 (10) 0.0927 (14) 0.0594 (13) −0.0133 (9) 0.0192 (9) 0.0098 (10)
C8 0.0471 (11) 0.0812 (12) 0.0652 (13) 0.0020 (10) 0.0081 (9) 0.0044 (10)

Geometric parameters (Å, °)

O1—C2 1.3654 (16) C4—C3 1.368 (2)
O1—C7 1.4234 (18) C4—C5 1.385 (2)
O2—C3 1.3643 (18) C4—H4A 0.9300
O2—H2A 0.89 (2) C5—H5A 0.9300
N1—C9 1.2759 (17) N2—H2B 0.8600
N1—N2 1.3713 (16) C9—H9A 0.9300
C6—C5 1.380 (2) C1—H1B 0.9300
C6—C1 1.3989 (19) C12—C13 1.369 (2)
C6—C9 1.451 (2) C15—C14 1.369 (2)
C10—N2 1.3735 (19) C15—H15A 0.9300
C10—C11 1.385 (2) C13—C14 1.376 (2)
C10—C15 1.393 (2) C13—H13A 0.9300
C11—C12 1.374 (2) C7—C8 1.497 (2)
C11—H11A 0.9300 C7—H7A 0.9700
N3—O3 1.2031 (17) C7—H7B 0.9700
N3—O4 1.2105 (17) C14—H14A 0.9300
N3—C12 1.4660 (19) C8—H8A 0.9600
C2—C1 1.3782 (19) C8—H8B 0.9600
C2—C3 1.398 (2) C8—H8C 0.9600
C2—O1—C7 119.12 (12) C2—C1—C6 120.48 (14)
C3—O2—H2A 106.4 (14) C2—C1—H1B 119.8
C9—N1—N2 115.03 (13) C6—C1—H1B 119.8
C5—C6—C1 118.84 (14) C13—C12—C11 124.11 (15)
C5—C6—C9 118.04 (14) C13—C12—N3 118.29 (15)
C1—C6—C9 123.11 (14) C11—C12—N3 117.60 (14)
N2—C10—C11 123.01 (14) O2—C3—C4 118.96 (15)
N2—C10—C15 118.04 (14) O2—C3—C2 120.94 (14)
C11—C10—C15 118.94 (14) C4—C3—C2 120.09 (14)
C12—C11—C10 118.13 (14) C14—C15—C10 120.65 (15)
C12—C11—H11A 120.9 C14—C15—H15A 119.7
C10—C11—H11A 120.9 C10—C15—H15A 119.7
O3—N3—O4 121.30 (16) C12—C13—C14 116.81 (15)
O3—N3—C12 119.33 (15) C12—C13—H13A 121.6
O4—N3—C12 119.37 (15) C14—C13—H13A 121.6
O1—C2—C1 126.38 (14) O1—C7—C8 107.85 (14)
O1—C2—C3 114.05 (13) O1—C7—H7A 110.1
C1—C2—C3 119.57 (14) C8—C7—H7A 110.1
C3—C4—C5 120.11 (15) O1—C7—H7B 110.1
C3—C4—H4A 119.9 C8—C7—H7B 110.1
C5—C4—H4A 119.9 H7A—C7—H7B 108.4
C6—C5—C4 120.84 (15) C15—C14—C13 121.35 (15)
C6—C5—H5A 119.6 C15—C14—H14A 119.3
C4—C5—H5A 119.6 C13—C14—H14A 119.3
N1—N2—C10 122.22 (13) C7—C8—H8A 109.5
N1—N2—H2B 118.9 C7—C8—H8B 109.5
C10—N2—H2B 118.9 H8A—C8—H8B 109.5
N1—C9—C6 123.92 (14) C7—C8—H8C 109.5
N1—C9—H9A 118.0 H8A—C8—H8C 109.5
C6—C9—H9A 118.0 H8B—C8—H8C 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1 0.89 (2) 2.14 (2) 2.6582 (16) 116.7 (18)
O2—H2A···N1i 0.89 (2) 2.32 (2) 3.0345 (19) 137.0 (15)
C11—H11A···O2ii 0.93 2.56 3.340 (2) 141

Symmetry codes: (i) −x+1/2, y−1/2, −z+1/2; (ii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2611).

References

  1. Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kahwa, I. A., Selbin, I., Hsieh, T. C. Y. & Laine, R. A. (1986). Inorg. Chim. Acta, 118, 179–185.
  3. Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838–844.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809037908/xu2611sup1.cif

e-65-o2536-sup1.cif (17KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809037908/xu2611Isup2.hkl

e-65-o2536-Isup2.hkl (139.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES