Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 31;65(Pt 11):o2918. doi: 10.1107/S1600536809044353

2-(2-Methyl­anilino)-N′-(propan-2-yl­idene)acetohydrazide

Muhammad Salim a, Zaid Mahmood a, M Nawaz Tahir b,*, Saeed Ahmad c, Azhar Saeed a
PMCID: PMC2970964  PMID: 21578496

Abstract

The conformation of the title compound, C12H17N3O, is consolidated by an intra­molecular N—H⋯O hydrogen bond, generating an S(5) ring. In the crystal, inversion dimers linked by pairs of N—H⋯O inter­actions occur, resulting in R 2 2(8) ring motifs.

Related literature

For related structures, see: Salim et al. (2009); Shi et al. (2007). For graph-set theory, see: Bernstein et al. (1995).graphic file with name e-65-o2918-scheme1.jpg

Experimental

Crystal data

  • C12H17N3O

  • M r = 219.29

  • Monoclinic, Inline graphic

  • a = 13.2194 (9) Å

  • b = 4.3865 (3) Å

  • c = 21.7413 (13) Å

  • β = 103.433 (3)°

  • V = 1226.22 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 296 K

  • 0.28 × 0.25 × 0.22 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.979, T max = 0.984

  • 13485 measured reflections

  • 2998 independent reflections

  • 1608 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.166

  • S = 1.00

  • 2998 reflections

  • 148 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044353/hb5183sup1.cif

e-65-o2918-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044353/hb5183Isup2.hkl

e-65-o2918-Isup2.hkl (144.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1 0.81 (3) 2.21 (3) 2.604 (2) 110 (2)
N2—H2⋯O1i 0.88 (2) 2.06 (2) 2.920 (2) 166 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

MS gratefully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN Code: 042–121068-PS2–109).

supplementary crystallographic information

Comment

Literature has shown that hydrazides as well as their derivatives are characterized by low toxicity and possess a broad spectrum of pharmaceutical activities. The title compound (I, Fig. 1) is one of the several hydrazide derivatives prepared with substitution and alteration of the basic moiety as a key to obtain good potency. In this context we have already reported the crystal structure of 2-(3,4-Dimethylanilino)acetohydrazide (Salim et al., 2009).

The crystal structure of (II) 2-(1H-Benzotriazol-1-yl)-N'-(propan-2-ylidene)acetohydrazide (Shi et al., 2007) has been published which contains the side chain of (I).

In (I) the 2-methylanilinic group A (C1—C6/N1/C12) and the side chain group B (C7/C8/N2/N3/C9—C11/O1) are planar with maximum r. m. s. deviations of 0.0064 and 0.0146 Å respectively, from the respective mean square planes. The dihedral angle between A/B is 4.70 (10)°. In (I), there exists intramolecular H-bonding of N—H···O type (Table 1, Fig. 1) completing S(5) ring motif (Bernstein et al., 1995). The molecules are dimerized due to intermolecular H-bonding of N—H···O type (Table 1, Fig. 2) completing R22(8) ring motif. There does not exist any C–H···π or π···π interactions.

Experimental

2-[(2-Methylphenyl)amino]acetohydrazide (0.9 g, 5 mmol) and acetone (0.29 g, 5 mmol) were refluxed along with stirring in 100 ml of ethylalcohol for 30 minutes and after evaporation of the solvent, the crude product obtained was recrystallized in methylalcohol to obtain colorless prisms of (I).

Refinement

The coordinates of H1, H2, H7A and H7B were refined. The other H-atoms were positioned geometrically (C–H = 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level. The dotted line represent the intramolecular H-bond.

Fig. 2.

Fig. 2.

The partial packing of (I), which shows that molecules form inversion dimers due to H-bondings.

Crystal data

C12H17N3O F(000) = 472
Mr = 219.29 Dx = 1.188 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2998 reflections
a = 13.2194 (9) Å θ = 3.0–28.2°
b = 4.3865 (3) Å µ = 0.08 mm1
c = 21.7413 (13) Å T = 296 K
β = 103.433 (3)° Prism, colourless
V = 1226.22 (14) Å3 0.28 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 2998 independent reflections
Radiation source: fine-focus sealed tube 1608 reflections with I > 2σ(I)
graphite Rint = 0.040
Detector resolution: 7.40 pixels mm-1 θmax = 28.2°, θmin = 3.0°
ω scans h = −17→17
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −5→5
Tmin = 0.979, Tmax = 0.984 l = −28→28
13485 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.166 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.067P)2 + 0.3661P] where P = (Fo2 + 2Fc2)/3
2998 reflections (Δ/σ)max < 0.001
148 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.16 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.47742 (12) 0.3771 (4) 0.42354 (7) 0.0780 (6)
N1 0.53042 (16) 0.2794 (5) 0.31712 (8) 0.0739 (7)
N2 0.61215 (13) 0.6771 (4) 0.46619 (8) 0.0572 (6)
N3 0.70384 (12) 0.8122 (4) 0.46023 (7) 0.0550 (5)
C1 0.54130 (15) 0.2216 (5) 0.25657 (8) 0.0537 (6)
C2 0.46554 (16) 0.0463 (5) 0.21591 (9) 0.0597 (7)
C3 0.47980 (19) −0.0121 (6) 0.15595 (10) 0.0751 (9)
C4 0.5629 (2) 0.0969 (6) 0.13542 (10) 0.0768 (9)
C5 0.63565 (18) 0.2686 (6) 0.17511 (10) 0.0704 (8)
C6 0.62626 (15) 0.3307 (5) 0.23575 (9) 0.0622 (7)
C7 0.59948 (16) 0.4699 (5) 0.36058 (9) 0.0551 (7)
C8 0.55802 (15) 0.5040 (5) 0.41921 (8) 0.0536 (6)
C9 0.75244 (15) 0.9750 (4) 0.50608 (9) 0.0524 (6)
C10 0.71970 (17) 1.0357 (6) 0.56608 (9) 0.0674 (8)
C11 0.85192 (17) 1.1136 (6) 0.49869 (11) 0.0728 (8)
C12 0.3731 (2) −0.0733 (7) 0.23729 (13) 0.0865 (10)
H1 0.478 (2) 0.222 (6) 0.3270 (12) 0.0887*
H2 0.5864 (16) 0.694 (5) 0.4998 (11) 0.0686*
H3 0.43077 −0.13040 0.12853 0.0902*
H4 0.56980 0.05417 0.09469 0.0922*
H5 0.69216 0.34476 0.16126 0.0845*
H6 0.67688 0.44581 0.26275 0.0747*
H7A 0.6053 (16) 0.673 (5) 0.3444 (10) 0.0661*
H7B 0.6679 (17) 0.383 (5) 0.3735 (10) 0.0661*
H10A 0.65304 1.13419 0.55670 0.1011*
H10B 0.76993 1.16536 0.59273 0.1011*
H10C 0.71507 0.84643 0.58744 0.1011*
H11A 0.86472 1.05450 0.45867 0.1092*
H11B 0.90797 1.04383 0.53216 0.1092*
H11C 0.84711 1.33164 0.50050 0.1092*
H12A 0.39624 −0.20103 0.27369 0.1299*
H12B 0.33007 −0.18975 0.20383 0.1299*
H12C 0.33383 0.09441 0.24803 0.1299*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0743 (10) 0.1126 (13) 0.0574 (9) −0.0338 (9) 0.0366 (7) −0.0246 (8)
N1 0.0746 (12) 0.1060 (16) 0.0500 (10) −0.0339 (11) 0.0325 (9) −0.0234 (10)
N2 0.0590 (10) 0.0746 (12) 0.0433 (9) −0.0111 (8) 0.0229 (7) −0.0086 (8)
N3 0.0568 (9) 0.0646 (10) 0.0474 (9) −0.0067 (8) 0.0196 (7) −0.0032 (8)
C1 0.0570 (11) 0.0650 (12) 0.0420 (10) 0.0042 (9) 0.0173 (8) −0.0040 (9)
C2 0.0613 (12) 0.0670 (13) 0.0512 (11) 0.0067 (10) 0.0141 (9) −0.0076 (10)
C3 0.0838 (16) 0.0852 (17) 0.0534 (12) 0.0070 (13) 0.0099 (11) −0.0179 (12)
C4 0.0926 (17) 0.0973 (18) 0.0456 (11) 0.0234 (15) 0.0262 (12) −0.0069 (12)
C5 0.0678 (13) 0.0986 (18) 0.0523 (12) 0.0206 (13) 0.0291 (11) 0.0085 (12)
C6 0.0561 (11) 0.0851 (15) 0.0489 (11) 0.0012 (10) 0.0192 (9) −0.0021 (10)
C7 0.0580 (11) 0.0679 (14) 0.0431 (10) −0.0073 (10) 0.0195 (9) −0.0039 (10)
C8 0.0571 (11) 0.0649 (12) 0.0426 (10) −0.0054 (10) 0.0192 (8) −0.0049 (9)
C9 0.0565 (10) 0.0556 (11) 0.0467 (10) −0.0007 (9) 0.0152 (8) 0.0010 (9)
C10 0.0738 (14) 0.0787 (15) 0.0522 (12) −0.0106 (12) 0.0198 (10) −0.0122 (11)
C11 0.0697 (13) 0.0839 (16) 0.0685 (14) −0.0171 (12) 0.0234 (11) −0.0067 (12)
C12 0.0758 (15) 0.102 (2) 0.0831 (17) −0.0268 (14) 0.0212 (13) −0.0220 (15)

Geometric parameters (Å, °)

O1—C8 1.225 (3) C9—C10 1.491 (3)
N1—C1 1.381 (2) C3—H3 0.9300
N1—C7 1.423 (3) C4—H4 0.9300
N2—N3 1.382 (2) C5—H5 0.9300
N2—C8 1.339 (3) C6—H6 0.9300
N3—C9 1.272 (2) C7—H7A 0.97 (2)
N1—H1 0.81 (3) C7—H7B 0.96 (2)
N2—H2 0.88 (2) C10—H10A 0.9600
C1—C2 1.402 (3) C10—H10B 0.9600
C1—C6 1.390 (3) C10—H10C 0.9600
C2—C3 1.384 (3) C11—H11A 0.9600
C2—C12 1.500 (4) C11—H11B 0.9600
C3—C4 1.365 (4) C11—H11C 0.9600
C4—C5 1.361 (3) C12—H12A 0.9600
C5—C6 1.380 (3) C12—H12B 0.9600
C7—C8 1.507 (3) C12—H12C 0.9600
C9—C11 1.491 (3)
C1—N1—C7 123.25 (19) C4—C5—H5 120.00
N3—N2—C8 119.78 (16) C6—C5—H5 120.00
N2—N3—C9 117.48 (16) C1—C6—H6 120.00
C7—N1—H1 117.5 (18) C5—C6—H6 120.00
C1—N1—H1 118.7 (18) N1—C7—H7A 113.1 (13)
N3—N2—H2 124.1 (15) N1—C7—H7B 112.1 (13)
C8—N2—H2 116.2 (15) C8—C7—H7A 106.9 (13)
N1—C1—C2 118.99 (19) C8—C7—H7B 107.1 (13)
N1—C1—C6 121.23 (19) H7A—C7—H7B 108.8 (19)
C2—C1—C6 119.78 (17) C9—C10—H10A 109.00
C3—C2—C12 121.8 (2) C9—C10—H10B 109.00
C1—C2—C3 117.5 (2) C9—C10—H10C 109.00
C1—C2—C12 120.72 (19) H10A—C10—H10B 109.00
C2—C3—C4 122.7 (2) H10A—C10—H10C 109.00
C3—C4—C5 119.4 (2) H10B—C10—H10C 109.00
C4—C5—C6 120.5 (2) C9—C11—H11A 109.00
C1—C6—C5 120.14 (19) C9—C11—H11B 109.00
N1—C7—C8 108.46 (18) C9—C11—H11C 109.00
O1—C8—N2 121.29 (17) H11A—C11—H11B 109.00
O1—C8—C7 120.90 (18) H11A—C11—H11C 109.00
N2—C8—C7 117.81 (18) H11B—C11—H11C 109.00
N3—C9—C11 116.23 (18) C2—C12—H12A 109.00
C10—C9—C11 117.65 (18) C2—C12—H12B 109.00
N3—C9—C10 126.12 (19) C2—C12—H12C 109.00
C2—C3—H3 119.00 H12A—C12—H12B 109.00
C4—C3—H3 119.00 H12A—C12—H12C 109.00
C3—C4—H4 120.00 H12B—C12—H12C 109.00
C5—C4—H4 120.00
C7—N1—C1—C2 −176.0 (2) C6—C1—C2—C12 −179.9 (2)
C7—N1—C1—C6 4.8 (3) N1—C1—C6—C5 179.7 (2)
C1—N1—C7—C8 174.7 (2) C2—C1—C6—C5 0.5 (3)
C8—N2—N3—C9 179.89 (19) C1—C2—C3—C4 −0.9 (4)
N3—N2—C8—O1 178.75 (19) C12—C2—C3—C4 179.4 (2)
N3—N2—C8—C7 −1.3 (3) C2—C3—C4—C5 0.4 (4)
N2—N3—C9—C10 −0.2 (3) C3—C4—C5—C6 0.5 (4)
N2—N3—C9—C11 179.05 (18) C4—C5—C6—C1 −0.9 (4)
N1—C1—C2—C3 −178.8 (2) N1—C7—C8—O1 0.2 (3)
N1—C1—C2—C12 0.9 (3) N1—C7—C8—N2 −179.80 (19)
C6—C1—C2—C3 0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1 0.81 (3) 2.21 (3) 2.604 (2) 110 (2)
N2—H2···O1i 0.88 (2) 2.06 (2) 2.920 (2) 166 (2)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5183).

References

  1. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  2. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Salim, M., Mahmood, Z., Tahir, M. N., Ahmad, S. & Yaseen, M. (2009). Acta Cryst. E65, o2595. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shi, Z.-Q., Ji, N.-N., Zheng, Z.-B. & Li, J.-K. (2007). Acta Cryst. E63, o4561.
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044353/hb5183sup1.cif

e-65-o2918-sup1.cif (16.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044353/hb5183Isup2.hkl

e-65-o2918-Isup2.hkl (144.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES