Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):m1436. doi: 10.1107/S160053680904344X

Hexaaqua­magnesium(II) bis­[4-(3-pyrid­yl)pyrimidine-2-sulfonate] tetra­hydrate

Yan-Ping Wang a, Jian Li a, Hua-Ze Dong a,*
PMCID: PMC2970970  PMID: 21578168

Abstract

The asymmetric unit of the title compound, [Mg(H2O)6](C9H6N3O3S)2·4H2O, contains half of a centrosymmetric cation, one 4-(3-pyrid­yl)pyrimidin-2-sulfonate anion and two solvent water mol­ecules. Inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the cations, anions and water mol­ecules into a three-dimensional supra­molecular structure. The crystal packing also exhibits inter­molecular π–π inter­actions between the aromatic rings of the anions with a centroid–centroid distance of 3.604 (2) Å.

Related literature

For coordination complexes with pyridin-2-sulfonate ligands, see: Kimura et al. (1999); Lobana et al. (2004). For coordination complexes with 4-(pyridin-yl)pyrimidin-2-sulfonate, see: Zhu et al. (2007); Fang et al. (2009).graphic file with name e-65-m1436-scheme1.jpg

Experimental

Crystal data

  • [Mg(H2O)6](C9H6N3O3S)2·4H2O

  • M r = 676.95

  • Monoclinic, Inline graphic

  • a = 6.9835 (2) Å

  • b = 13.3600 (3) Å

  • c = 16.2565 (4) Å

  • β = 98.7240 (10)°

  • V = 1499.18 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 291 K

  • 0.30 × 0.15 × 0.12 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.917, T max = 0.966

  • 14712 measured reflections

  • 3438 independent reflections

  • 2848 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.102

  • S = 1.04

  • 3438 reflections

  • 236 parameters

  • 7 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904344X/cv2632sup1.cif

e-65-m1436-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904344X/cv2632Isup2.hkl

e-65-m1436-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4A⋯O1i 0.83 (2) 1.94 (2) 2.7650 (19) 180 (3)
O4—H4B⋯O2 0.86 (2) 1.89 (2) 2.7475 (19) 176 (2)
O5—H5B⋯O3i 0.83 (2) 2.04 (2) 2.8705 (19) 177.0 (18)
O5—H5A⋯O8ii 0.86 (2) 1.91 (2) 2.755 (3) 167 (3)
O6—H6B⋯O3iii 0.83 (2) 2.03 (3) 2.8601 (19) 178 (2)
O6—H6A⋯N3iv 0.85 (3) 1.92 (3) 2.763 (2) 173 (2)
O7—H7B⋯O3v 0.84 (3) 2.51 (3) 3.110 (2) 130 (3)
O7—H7B⋯N2v 0.84 (3) 2.21 (3) 2.984 (2) 154 (3)
O7—H7A⋯O2 0.84 (3) 2.12 (3) 2.923 (2) 161 (3)
O8—H8B⋯O1vi 0.85 (4) 2.43 (4) 3.064 (2) 132 (4)
O8—H8A⋯O7iii 0.85 (3) 1.93 (3) 2.769 (3) 170 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

The authors are indebted to the Anhui Provincial Natural Science Research Project (KJ2009B240Z) and the National Natural Science Foundation of China (grant No. 20871039) for financial support.

supplementary crystallographic information

Comment

The rational design and synthesis of coordination complexes derived from heterocyclic sulfonate ligands have been of increasing interest recently in chemical research (Kimura et al., 1999; Lobana et al., 2004). In our previous work (Zhu et al., 2007; Fang et al., 2009), we have also studied transition metal coordination complexes with the heterocyclic sulfonate ligands, namely 4-(pyridin-2-yl)pyrimidin-2-sulfonate and 4-(pyridin-4-yl)pyrimidin-2-sulfonate. Herein, we report the magnesium(II) coordination complex with its analog, viz. 4-(pyridin-3-yl)pyrimidin-2-sulfonate.

The asymmetric unit of the title compound (Fig. 1) consists of a 4-(3-pyridyl)pyrimidin-2-sulfonate anion, one half of an [Mg(H2O)6]2+ cation and two free water molecules. The averaged Mg—O coordinating bond length is 2.0664 (13) Å. In the crystal structure, intermolecular O—H···O and O—H···N hydrogen bonds (Table 1) link cations, anions and crystalline water molecules into three-dimensinal network. The crystal packing exhibits also intermolecular π—π interactions between the aromatic rings of the anions with the centroid-centroid distance of 3.604 (2) Å.

Experimental

All solvents and chemicals were of analytical grade and were used without further purification. 4-(3-Pyridyl)pyrimidin-2-sulfonate (L) was prepared by similar procedure reported in the literature (Zhu et al., 2007; Fang et al., 2009). For the synthesis of title compoud, a solution of L (0.1 mmol), MgSO4 (0.1 mmol) in 30 ml methanol was stirred for 1 h at room temperature. After filtration, the mother liguid was stood for one week to give the colourless crystals suitable for X-ray diffraction annalysis.

Refinement

C-bound H atoms were placed in geometrically idealized positions (C—H 0.93 Å) and treated as riding on their parent atoms , with Uiso(H)=1.2Ueq(C). O-bound H atoms were located on a difference map and refined isotropically with the bond restraint O—H = 0.84 (2) Å.

Figures

Fig. 1.

Fig. 1.

A portion of the crystal structure of (I) showing 30% probability displacement ellipsoids and the atom-numbering scheme [symmetry code: (A) -1 - x, 1 - y, 1 - z].

Crystal data

[Mg(H2O)6](C9H6N3O3S)2·4H2O F(000) = 708
Mr = 676.95 Dx = 1.500 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 15164 reflections
a = 6.9835 (2) Å θ = 2.0–27.5°
b = 13.3600 (3) Å µ = 0.28 mm1
c = 16.2565 (4) Å T = 291 K
β = 98.724 (1)° Block, colourless
V = 1499.18 (7) Å3 0.30 × 0.15 × 0.12 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3438 independent reflections
Radiation source: fine-focus sealed tube 2848 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 27.5°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −9→9
Tmin = 0.917, Tmax = 0.966 k = −17→15
14712 measured reflections l = −19→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102 H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.508P] where P = (Fo2 + 2Fc2)/3
3438 reflections (Δ/σ)max = 0.001
236 parameters Δρmax = 0.23 e Å3
7 restraints Δρmin = −0.40 e Å3

Special details

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mg1 0.5000 0.5000 0.5000 0.03117 (19)
S1 0.05652 (6) 0.48762 (3) 0.71033 (2) 0.03373 (13)
N1 0.1709 (2) 0.47749 (10) 0.87143 (9) 0.0339 (3)
O1 −0.12580 (18) 0.43964 (10) 0.71840 (8) 0.0441 (3)
O2 0.20815 (19) 0.41651 (10) 0.70020 (8) 0.0484 (3)
N3 0.3137 (2) 0.26720 (11) 1.05433 (9) 0.0425 (4)
N2 0.1324 (2) 0.64241 (10) 0.81545 (9) 0.0416 (3)
C4 0.2220 (2) 0.51444 (12) 0.94866 (10) 0.0320 (3)
C1 0.1302 (2) 0.54365 (12) 0.81052 (10) 0.0324 (3)
O3 0.03921 (19) 0.56801 (9) 0.64992 (8) 0.0443 (3)
C9 0.2743 (3) 0.33887 (12) 0.99732 (11) 0.0380 (4)
H9 0.2487 0.3200 0.9417 0.046*
C5 0.2691 (2) 0.44024 (12) 1.01627 (10) 0.0319 (3)
C6 0.3095 (3) 0.46696 (14) 1.09979 (10) 0.0411 (4)
H6 0.3084 0.5339 1.1155 0.049*
C8 0.3510 (3) 0.29500 (14) 1.13397 (11) 0.0448 (4)
H8 0.3782 0.2456 1.1744 0.054*
C3 0.2265 (3) 0.61758 (13) 0.96124 (11) 0.0412 (4)
H3 0.2593 0.6445 1.0142 0.049*
C7 0.3512 (3) 0.39317 (14) 1.15898 (11) 0.0466 (4)
H7 0.3792 0.4096 1.2151 0.056*
C2 0.1811 (3) 0.67811 (13) 0.89291 (12) 0.0465 (4)
H2 0.1843 0.7471 0.9006 0.056*
O7 0.4762 (3) 0.29673 (14) 0.81603 (13) 0.0812 (6)
H7A 0.407 (5) 0.342 (2) 0.791 (2) 0.137 (15)*
H7B 0.438 (5) 0.2425 (19) 0.793 (2) 0.133 (14)*
O6 0.7440 (2) 0.42088 (10) 0.48561 (9) 0.0445 (3)
O4 0.5193 (2) 0.43705 (11) 0.61644 (8) 0.0477 (3)
O5 0.6808 (2) 0.61790 (10) 0.54696 (9) 0.0467 (3)
O8 0.1251 (4) 0.72373 (16) 0.14928 (13) 0.0869 (6)
H6A 0.773 (3) 0.3654 (19) 0.5094 (15) 0.064 (7)*
H6B 0.804 (4) 0.425 (2) 0.4457 (14) 0.081 (8)*
H4B 0.422 (3) 0.4341 (17) 0.6427 (14) 0.056 (6)*
H5A 0.647 (4) 0.6623 (18) 0.5805 (15) 0.088 (9)*
H5B 0.786 (3) 0.602 (2) 0.5755 (16) 0.085 (9)*
H4A 0.626 (3) 0.438 (2) 0.6468 (15) 0.074 (8)*
H8A 0.245 (4) 0.717 (2) 0.1660 (17) 0.072 (9)*
H8B 0.055 (6) 0.681 (3) 0.169 (3) 0.168 (19)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mg1 0.0328 (4) 0.0308 (4) 0.0295 (4) 0.0031 (3) 0.0035 (3) 0.0025 (3)
S1 0.0337 (2) 0.0357 (2) 0.0314 (2) −0.00007 (16) 0.00366 (16) 0.00238 (16)
N1 0.0345 (7) 0.0317 (7) 0.0342 (7) −0.0004 (6) 0.0008 (6) 0.0002 (6)
O1 0.0399 (7) 0.0520 (7) 0.0390 (7) −0.0115 (6) 0.0012 (5) −0.0002 (6)
O2 0.0504 (8) 0.0518 (7) 0.0445 (7) 0.0138 (6) 0.0115 (6) 0.0012 (6)
N3 0.0540 (9) 0.0327 (7) 0.0396 (8) −0.0044 (7) 0.0038 (7) 0.0016 (6)
N2 0.0472 (9) 0.0315 (7) 0.0440 (8) −0.0003 (6) −0.0003 (7) 0.0036 (6)
C4 0.0270 (8) 0.0330 (8) 0.0357 (8) −0.0004 (6) 0.0034 (6) −0.0023 (7)
C1 0.0271 (8) 0.0328 (8) 0.0364 (8) −0.0010 (6) 0.0018 (6) 0.0027 (7)
O3 0.0493 (7) 0.0459 (7) 0.0370 (7) 0.0006 (6) 0.0044 (5) 0.0092 (5)
C9 0.0433 (10) 0.0354 (8) 0.0337 (8) −0.0031 (7) 0.0011 (7) −0.0024 (7)
C5 0.0287 (8) 0.0324 (8) 0.0343 (8) −0.0014 (6) 0.0037 (6) −0.0014 (6)
C6 0.0487 (10) 0.0363 (9) 0.0379 (9) 0.0024 (8) 0.0057 (8) −0.0060 (7)
C8 0.0546 (11) 0.0429 (9) 0.0369 (9) 0.0013 (8) 0.0067 (8) 0.0076 (8)
C3 0.0481 (10) 0.0342 (8) 0.0403 (9) −0.0014 (8) 0.0038 (8) −0.0056 (7)
C7 0.0585 (12) 0.0504 (10) 0.0303 (9) 0.0041 (9) 0.0051 (8) −0.0025 (8)
C2 0.0575 (12) 0.0285 (8) 0.0518 (11) 0.0014 (8) 0.0026 (9) −0.0022 (8)
O7 0.1034 (15) 0.0525 (10) 0.0792 (12) 0.0227 (11) −0.0132 (11) −0.0133 (9)
O6 0.0488 (8) 0.0411 (7) 0.0463 (8) 0.0148 (6) 0.0164 (6) 0.0104 (6)
O4 0.0383 (8) 0.0696 (9) 0.0344 (7) 0.0010 (7) 0.0025 (6) 0.0124 (6)
O5 0.0434 (8) 0.0399 (7) 0.0532 (8) 0.0009 (6) −0.0044 (7) −0.0073 (6)
O8 0.1058 (18) 0.0780 (13) 0.0705 (12) −0.0248 (13) −0.0067 (12) 0.0268 (10)

Geometric parameters (Å, °)

Mg1—O6 2.0487 (13) C5—C6 1.391 (2)
Mg1—O6i 2.0487 (13) C6—C7 1.378 (3)
Mg1—O4 2.0570 (13) C6—H6 0.9300
Mg1—O4i 2.0570 (13) C8—C7 1.373 (3)
Mg1—O5i 2.0893 (13) C8—H8 0.9300
Mg1—O5 2.0893 (13) C3—C2 1.372 (3)
S1—O3 1.4480 (13) C3—H3 0.9300
S1—O1 1.4491 (13) C7—H7 0.9300
S1—O2 1.4504 (13) C2—H2 0.9300
S1—C1 1.7954 (17) O7—H7A 0.838 (18)
N1—C1 1.326 (2) O7—H7B 0.837 (19)
N1—C4 1.346 (2) O6—H6A 0.85 (3)
N3—C9 1.332 (2) O6—H6B 0.827 (17)
N3—C8 1.334 (2) O4—H4B 0.85 (2)
N2—C1 1.322 (2) O4—H4A 0.827 (17)
N2—C2 1.341 (2) O5—H5A 0.862 (17)
C4—C3 1.393 (2) O5—H5B 0.837 (17)
C4—C5 1.480 (2) O8—H8A 0.85 (3)
C9—C5 1.391 (2) O8—H8B 0.844 (19)
C9—H9 0.9300
O6—Mg1—O6i 180.00 (8) N3—C9—H9 118.1
O6—Mg1—O4 87.40 (6) C5—C9—H9 118.1
O6i—Mg1—O4 92.60 (6) C9—C5—C6 117.26 (16)
O6—Mg1—O4i 92.60 (6) C9—C5—C4 119.88 (15)
O6i—Mg1—O4i 87.40 (6) C6—C5—C4 122.86 (15)
O4—Mg1—O4i 180.0 C7—C6—C5 119.23 (16)
O6—Mg1—O5i 92.08 (6) C7—C6—H6 120.4
O6i—Mg1—O5i 87.92 (6) C5—C6—H6 120.4
O4—Mg1—O5i 88.83 (6) N3—C8—C7 122.99 (17)
O4i—Mg1—O5i 91.17 (6) N3—C8—H8 118.5
O6—Mg1—O5 87.92 (6) C7—C8—H8 118.5
O6i—Mg1—O5 92.08 (6) C2—C3—C4 117.84 (16)
O4—Mg1—O5 91.17 (6) C2—C3—H3 121.1
O4i—Mg1—O5 88.83 (6) C4—C3—H3 121.1
O5i—Mg1—O5 180.00 (5) C8—C7—C6 119.09 (17)
O3—S1—O1 113.91 (8) C8—C7—H7 120.5
O3—S1—O2 113.33 (8) C6—C7—H7 120.5
O1—S1—O2 112.78 (8) N2—C2—C3 123.04 (16)
O3—S1—C1 106.80 (8) N2—C2—H2 118.5
O1—S1—C1 103.71 (7) C3—C2—H2 118.5
O2—S1—C1 105.22 (8) H7A—O7—H7B 106 (4)
C1—N1—C4 116.66 (14) Mg1—O6—H6A 122.8 (16)
C9—N3—C8 117.68 (15) Mg1—O6—H6B 125.8 (19)
C1—N2—C2 114.26 (15) H6A—O6—H6B 108 (2)
N1—C4—C3 119.79 (15) Mg1—O4—H4B 122.2 (15)
N1—C4—C5 116.42 (14) Mg1—O4—H4A 118.0 (19)
C3—C4—C5 123.79 (15) H4B—O4—H4A 114 (2)
N2—C1—N1 128.39 (16) Mg1—O5—H5A 122.9 (19)
N2—C1—S1 118.06 (13) Mg1—O5—H5B 116 (2)
N1—C1—S1 113.52 (12) H5A—O5—H5B 97 (3)
N3—C9—C5 123.75 (16) H8A—O8—H8B 114 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4A···O1ii 0.83 (2) 1.94 (2) 2.7650 (19) 180 (3)
O4—H4B···O2 0.86 (2) 1.89 (2) 2.7475 (19) 176 (2)
O5—H5B···O3ii 0.83 (2) 2.04 (2) 2.8705 (19) 177 (2)
O5—H5A···O8iii 0.86 (2) 1.91 (2) 2.755 (3) 167 (3)
O6—H6B···O3i 0.83 (2) 2.03 (3) 2.8601 (19) 178 (2)
O6—H6A···N3iv 0.85 (3) 1.92 (3) 2.763 (2) 173 (2)
O7—H7B···O3v 0.84 (3) 2.51 (3) 3.110 (2) 130 (3)
O7—H7B···N2v 0.84 (3) 2.21 (3) 2.984 (2) 154 (3)
O7—H7A···O2 0.84 (3) 2.12 (3) 2.923 (2) 161 (3)
O8—H8B···O1vi 0.85 (4) 2.43 (4) 3.064 (2) 132 (4)
O8—H8A···O7i 0.85 (3) 1.93 (3) 2.769 (3) 170 (3)

Symmetry codes: (ii) x+1, y, z; (iii) x+1/2, −y+3/2, z+1/2; (i) −x+1, −y+1, −z+1; (iv) x+1/2, −y+1/2, z−1/2; (v) −x+1/2, y−1/2, −z+3/2; (vi) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2632).

References

  1. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Fang, X. B., Dong, H. Z. & Tian, D. B. (2009). Chin. J. Inorg. Chem.25, 47–53.
  3. Kimura, K., Kimura, T., Kinoshita, I., Nakashima, N., Kitano, K., Nishioka, T. & Isobe, K. (1999). Chem. Commun. pp. 497–498.
  4. Lobana, T. S., Kinoshita, I., Kimura, K., Nishioka, T., Shiomi, D. & Isobe, K. (2004). Eur. J. Inorg. Chem. pp. 356–367.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Zhu, H. B., Dong, H. Z., Huang, W. & Gou, S. H. (2007). J. Mol. Struct.831, 55–60.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904344X/cv2632sup1.cif

e-65-m1436-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904344X/cv2632Isup2.hkl

e-65-m1436-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES