Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 13;65(Pt 11):o2726–o2727. doi: 10.1107/S160053680904094X

(1R,2R)-1,2-Diphenyl-1,2-bis­(1H-tetra­zol-1-yl)ethane

Franz Werner a,*,, Kurt Mereiter b, Kenji Tokuno a, Yuki Inagaki a, Miki Hasegawa a,*
PMCID: PMC2970974  PMID: 21578323

Abstract

The title compound, C16H14N8, is a new chiral ligand designed for applications in supra­molecular chemistry and Fe2+ spin-crossover complexes. The crystal structure shows a herring-bone arrangement of the mol­ecules, which are mutually linked via inter­molecular C—H⋯N inter­actions mainly donated by the alkyl and tetra­zole H atoms.

Related literature

For the general synthetic procedure, see: Kamiya & Saito (1973). For the crystal structure of the chiral starting material, see: Jones et al. (2003). For studies on the crystal structures and packing of di-tetra­zolylalkanes, see: Grunert et al. (2005); Absmeier et al. (2006). For supra­molecular compounds made up of di-tetra­zolylalkanes, see: Liu et al. (2008, 2009); Yu et al. (2008). For Fe2+ spin-crossover complexes based on di-tetra­zolylalkanes, see: Grunert et al. (2004); Quesada et al. (2007); Bialonska et al. (2008). The absolute structure of the title compound could not be determined from the diffraction data but was known from the chiral precursor compound (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine, see: Jones et al. (2003).graphic file with name e-65-o2726-scheme1.jpg

Experimental

Crystal data

  • C16H14N8

  • M r = 318.35

  • Orthorhombic, Inline graphic

  • a = 8.3088 (4) Å

  • b = 11.2802 (6) Å

  • c = 16.5187 (9) Å

  • V = 1548.21 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.65 × 0.55 × 0.46 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.86, T max = 0.96

  • 17102 measured reflections

  • 2551 independent reflections

  • 2475 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.092

  • S = 1.10

  • 2551 reflections

  • 217 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904094X/su2147sup1.cif

e-65-o2726-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904094X/su2147Isup2.hkl

e-65-o2726-Isup2.hkl (125.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯N7i 0.95 2.70 3.430 (2) 134
C2—H2⋯N7i 1.00 2.55 3.392 (2) 142
C2—H2⋯N8i 1.00 2.53 3.506 (2) 165
C3—H3⋯N3ii 1.00 2.46 3.351 (2) 149
C4—H4⋯N3ii 0.95 2.63 3.315 (2) 130
C4—H4⋯N4ii 0.95 2.67 3.543 (2) 154
C6—H6⋯N2 0.95 2.62 3.256 (2) 124
C7—H7⋯N6iii 0.95 2.63 3.339 (2) 132
C12—H12⋯N2ii 0.95 2.71 3.655 (2) 171
C13—H13⋯N7iv 0.95 2.74 3.379 (2) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

FW is grateful to the Japan Society for the Promotion of Science for financial support through a fellowship. MH acknowledges support from a Grant-in-Aid for Young Scientists A (No. 20685011) and a High-Tech Research Center project for private universities with the matching fund subsidy of MEXT in Japan.

supplementary crystallographic information

Comment

Bifunctional molecules containing two 1H-tetrazol-1-yl groups at both ends of suitable spacer moieties like flexible alkanes or stiff arenes are of growing interest in supramolecular chemistry (Liu et al., 2008, 2009; Yu et al., 2008) and in the construction of new Fe2+-based spin-crossover complexes (Grunert et al., 2004; Quesada et al., 2007; Bialonska et al., 2008). In continuation of a previous study on the crystal structures and packing of α-ω-bis(tetrazol-1-yl)-alkanes (Grunert et al., 2005; Absmeier et al., 2006) the title compound, (1R,2R)-1,2-diphenyl-1,2-di-(1H-tetrazol-1-yl)ethane, became of interest as an example for a chiral bis-tetrazolyl ligand. It was obtained by a standard reaction (Kamiya & Saito, 1973) from the chiral starting material (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine (cf. experimental).

The title compound crystallizes in the orthorhombic chiral space group P212121, with one molecule in the asymmetric unit (Fig. 1). Bond lengths and bond angles in the molecule are normal. The two tetrazole rings are attached to the central ethane group in a (-)-synclinal geometry [N1—C2—C3—N5 = -53.3 (1)°], the two phenyl rings in a (+)-synclinal geometry [N1—C2—C3—N5 = 60.6 (1)°]. The point group symmetry of the free molecule is C2. In the solid state state it deviates significantly from this symmetry by intermolecular forces, as can be seen particularly from the distinctly differing torsion angles angles [C2—C3—N5—C4 = 114.3 (1)° and C3—C2—N1—C1 = 157.8 (1)°] involving the tetrazolyl groups. The corresponding angles involving the phenyl rings differ less [C3—C2—C5—C6 = 76.0 (1)° and C2—C3—C11—C16 = 52.6 (2)°].

In the crystal the molecules are stacked in a typical herring-bone manner (Fig. 2). π-π-stacking is absent but adjacent molecules are linked by weak intermolecular C—H···N interactions (Table 1) between mainly the alkyl CH groups and the tetrazole nitrogen atoms. These are accompanied by somewhat longer C—H···N interactions of the tetrazole CH groups and some phenyl CH groups (Table 1).

Experimental

The title compound was prepared according to the general procedure given by (Kamiya & Saito, 1973). A solution of 2.0 g of (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine (9.42 mmol, Kanto Chemical), 1.41 g of sodium azide (21.7 mmol, Wako, min. 98.0%) and 4.19 g of triethyl orthoformate (28.3 mmol, Sigma-Aldrich, 98%) in 120 ml of glacial acetic acid (Kanto Chemical, 99.5%), was stirred for 2 h at a temperature of 343 - 353 K. After cooling down to rt the solvent was distilled off and 20 ml of distilled water were added, whereupon a yellow solid precipitated. The suspension was stored in the refrigerator overnight, then the product was obtained by suction filtration and was washed with distilled water. Drying under vacuum yielded 0.291 g (9.7%) of the title compound as a colourless microcrystalline powder. Crystals suitable for X-ray difraction were obtained by recrystallization from methanol. Elemental analysis (Micro Corder JM10, J-Science Lab): C (calculated 60.37%/found 59.96%), H (4.43/4.56), N (35.20/34.80). NMR (Bruker DPX-200): 1H (DMSO-d6): δ 7.26–7.37 (m, 3 H, Ph—H), 7.50 (s, 1 H, CH), 7.66–7.70 (m, 2 H, Ph—H), 9.55 (s, 1 H, tetrazole). 13C (DMSO-d6): δ 63.8 (CH); 128.5, 129.1, 129.5, 134.0 (Ph); 143.7 (tetrazole).

Refinement

The absolute structure of the title compound could not be determined from the diffraction data but was known from the chiral precursor compound (1R,2R)-(+)-1,2-diphenyl-1,2-ethanediamine. In the final cycles of refinement, in the absence of significant anomalous scattering effects, Friedel pairs were merged and Δf " set to zero. All the H-atoms were placed in calculated positions and treated as riding: C- H = 0.95 - 1.0 Å, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view, along the a-axis, of the crystal packing of the title compound. The shortest hydrogen bonds (C3—H3···N3) are represented by cyan dashed lines.

Crystal data

C16H14N8 F(000) = 664
Mr = 318.35 Dx = 1.366 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 6154 reflections
a = 8.3088 (4) Å θ = 2.5–30.0°
b = 11.2802 (6) Å µ = 0.09 mm1
c = 16.5187 (9) Å T = 100 K
V = 1548.21 (14) Å3 Prism, colourless
Z = 4 0.65 × 0.55 × 0.46 mm

Data collection

Bruker SMART APEX CCD diffractometer 2551 independent reflections
Radiation source: fine-focus sealed tube 2475 reflections with I > 2σ(I)
graphite Rint = 0.018
ω and φ scans θmax = 30.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −11→11
Tmin = 0.86, Tmax = 0.96 k = −15→14
17102 measured reflections l = −23→23

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0636P)2 + 0.1943P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
2551 reflections Δρmax = 0.33 e Å3
217 parameters Δρmin = −0.30 e Å3
0 restraints Absolute structure: known from the chirality of the precursor used; Friedel pairs merged
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.98462 (13) 0.55207 (9) 0.07313 (6) 0.01376 (19)
N2 1.00108 (15) 0.64765 (10) 0.02443 (7) 0.0189 (2)
N3 1.14022 (15) 0.63675 (11) −0.01065 (7) 0.0210 (2)
N4 1.21530 (15) 0.53546 (11) 0.01269 (7) 0.0220 (2)
N5 0.85774 (13) 0.73023 (9) 0.18013 (6) 0.0135 (2)
N6 0.90650 (14) 0.71246 (10) 0.25717 (6) 0.0176 (2)
N7 0.99083 (15) 0.80496 (10) 0.27687 (7) 0.0192 (2)
N8 0.99906 (15) 0.88385 (10) 0.21407 (7) 0.0200 (2)
C1 1.11653 (16) 0.48451 (12) 0.06448 (8) 0.0189 (2)
H1 1.1356 0.4115 0.0915 0.023*
C2 0.83462 (14) 0.52879 (10) 0.11786 (7) 0.0125 (2)
H2 0.8613 0.4869 0.1695 0.015*
C3 0.74954 (14) 0.64654 (10) 0.13802 (7) 0.0123 (2)
H3 0.7171 0.6840 0.0856 0.015*
C4 0.91482 (17) 0.83523 (11) 0.15502 (8) 0.0173 (2)
H4 0.8974 0.8691 0.1031 0.021*
C5 0.72240 (15) 0.45132 (11) 0.06816 (7) 0.0141 (2)
C6 0.69622 (17) 0.47520 (12) −0.01377 (7) 0.0175 (2)
H6 0.7531 0.5380 −0.0393 0.021*
C7 0.58752 (18) 0.40772 (13) −0.05813 (8) 0.0214 (3)
H7 0.5714 0.4236 −0.1140 0.026*
C8 0.50251 (19) 0.31696 (12) −0.02063 (9) 0.0237 (3)
H8 0.4270 0.2715 −0.0507 0.028*
C9 0.52807 (18) 0.29277 (12) 0.06099 (9) 0.0239 (3)
H9 0.4699 0.2308 0.0867 0.029*
C10 0.63881 (17) 0.35930 (11) 0.10515 (8) 0.0193 (2)
H10 0.6572 0.3417 0.1606 0.023*
C11 0.59769 (15) 0.62608 (11) 0.18692 (7) 0.0144 (2)
C12 0.45409 (17) 0.67425 (12) 0.15886 (8) 0.0188 (3)
H12 0.4529 0.7189 0.1101 0.023*
C13 0.31198 (17) 0.65725 (13) 0.20212 (9) 0.0240 (3)
H13 0.2144 0.6909 0.1830 0.029*
C14 0.31241 (18) 0.59140 (14) 0.27300 (9) 0.0257 (3)
H14 0.2155 0.5804 0.3026 0.031*
C15 0.45537 (19) 0.54143 (13) 0.30064 (9) 0.0249 (3)
H15 0.4555 0.4953 0.3487 0.030*
C16 0.59844 (17) 0.55868 (12) 0.25815 (8) 0.0198 (3)
H16 0.6959 0.5249 0.2774 0.024*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0135 (4) 0.0139 (4) 0.0139 (4) −0.0001 (4) 0.0009 (4) 0.0007 (3)
N2 0.0194 (5) 0.0180 (5) 0.0192 (5) −0.0002 (4) 0.0040 (4) 0.0050 (4)
N3 0.0196 (5) 0.0222 (5) 0.0214 (5) −0.0008 (4) 0.0051 (4) 0.0015 (4)
N4 0.0176 (5) 0.0245 (6) 0.0238 (5) 0.0014 (4) 0.0047 (4) 0.0003 (4)
N5 0.0126 (4) 0.0143 (4) 0.0134 (4) −0.0007 (4) −0.0011 (4) −0.0005 (3)
N6 0.0184 (5) 0.0212 (5) 0.0132 (4) −0.0027 (4) −0.0027 (4) −0.0006 (4)
N7 0.0191 (5) 0.0201 (5) 0.0186 (4) −0.0014 (4) −0.0019 (4) −0.0035 (4)
N8 0.0196 (5) 0.0168 (5) 0.0235 (5) −0.0016 (4) −0.0041 (4) −0.0014 (4)
C1 0.0155 (5) 0.0192 (6) 0.0219 (6) 0.0029 (5) 0.0017 (5) 0.0008 (5)
C2 0.0111 (5) 0.0139 (5) 0.0124 (4) −0.0007 (4) 0.0011 (4) 0.0006 (4)
C3 0.0110 (5) 0.0135 (5) 0.0124 (4) −0.0006 (4) −0.0006 (4) −0.0006 (4)
C4 0.0172 (6) 0.0143 (5) 0.0204 (5) −0.0016 (4) −0.0030 (4) 0.0013 (4)
C5 0.0129 (5) 0.0135 (5) 0.0157 (5) −0.0004 (4) −0.0002 (4) −0.0017 (4)
C6 0.0183 (6) 0.0188 (5) 0.0155 (5) −0.0001 (5) 0.0003 (4) −0.0011 (4)
C7 0.0228 (6) 0.0226 (6) 0.0189 (5) 0.0018 (5) −0.0037 (5) −0.0057 (5)
C8 0.0221 (6) 0.0177 (6) 0.0314 (7) 0.0001 (5) −0.0072 (6) −0.0067 (5)
C9 0.0233 (6) 0.0169 (6) 0.0315 (7) −0.0056 (5) −0.0027 (5) 0.0007 (5)
C10 0.0206 (6) 0.0160 (5) 0.0213 (5) −0.0029 (5) −0.0018 (5) 0.0019 (5)
C11 0.0130 (5) 0.0152 (5) 0.0151 (5) −0.0016 (4) 0.0019 (4) −0.0031 (4)
C12 0.0146 (6) 0.0195 (6) 0.0223 (6) −0.0002 (4) 0.0003 (4) −0.0018 (5)
C13 0.0133 (6) 0.0265 (7) 0.0324 (7) −0.0001 (5) 0.0035 (5) −0.0054 (6)
C14 0.0197 (6) 0.0262 (7) 0.0310 (7) −0.0059 (5) 0.0106 (5) −0.0075 (6)
C15 0.0264 (7) 0.0262 (7) 0.0222 (6) −0.0056 (5) 0.0090 (5) 0.0002 (5)
C16 0.0190 (6) 0.0222 (6) 0.0183 (5) −0.0013 (5) 0.0025 (5) 0.0006 (5)

Geometric parameters (Å, °)

N1—C1 1.3425 (16) C6—C7 1.3900 (18)
N1—N2 1.3521 (14) C6—H6 0.9500
N1—C2 1.4725 (15) C7—C8 1.389 (2)
N2—N3 1.2991 (16) C7—H7 0.9500
N3—N4 1.3577 (17) C8—C9 1.392 (2)
N4—C1 1.3176 (17) C8—H8 0.9500
N5—C4 1.3416 (16) C9—C10 1.3935 (18)
N5—N6 1.3504 (14) C9—H9 0.9500
N5—C3 1.4777 (15) C10—H10 0.9500
N6—N7 1.2984 (16) C11—C12 1.3906 (18)
N7—N8 1.3685 (15) C11—C16 1.4008 (17)
N8—C4 1.3199 (17) C12—C13 1.3934 (19)
C1—H1 0.9500 C12—H12 0.9500
C2—C5 1.5188 (16) C13—C14 1.387 (2)
C2—C3 1.5410 (16) C13—H13 0.9500
C2—H2 1.0000 C14—C15 1.392 (2)
C3—C11 1.5158 (17) C14—H14 0.9500
C3—H3 1.0000 C15—C16 1.3941 (19)
C4—H4 0.9500 C15—H15 0.9500
C5—C10 1.3903 (17) C16—H16 0.9500
C5—C6 1.3971 (16)
C1—N1—N2 107.87 (11) C7—C6—C5 120.41 (12)
C1—N1—C2 130.02 (10) C7—C6—H6 119.8
N2—N1—C2 121.76 (10) C5—C6—H6 119.8
N3—N2—N1 106.26 (11) C8—C7—C6 119.93 (12)
N2—N3—N4 111.21 (11) C8—C7—H7 120.0
C1—N4—N3 105.39 (11) C6—C7—H7 120.0
C4—N5—N6 108.45 (10) C7—C8—C9 119.91 (13)
C4—N5—C3 129.31 (10) C7—C8—H8 120.0
N6—N5—C3 122.09 (10) C9—C8—H8 120.0
N7—N6—N5 106.19 (10) C8—C9—C10 120.14 (13)
N6—N7—N8 111.07 (10) C8—C9—H9 119.9
C4—N8—N7 105.28 (10) C10—C9—H9 119.9
N4—C1—N1 109.26 (11) C5—C10—C9 120.13 (12)
N4—C1—H1 125.4 C5—C10—H10 119.9
N1—C1—H1 125.4 C9—C10—H10 119.9
N1—C2—C5 110.55 (9) C12—C11—C16 119.73 (12)
N1—C2—C3 110.06 (9) C12—C11—C3 118.49 (11)
C5—C2—C3 109.34 (9) C16—C11—C3 121.77 (11)
N1—C2—H2 109.0 C11—C12—C13 120.15 (13)
C5—C2—H2 109.0 C11—C12—H12 119.9
C3—C2—H2 109.0 C13—C12—H12 119.9
N5—C3—C11 110.66 (9) C14—C13—C12 120.31 (13)
N5—C3—C2 111.92 (9) C14—C13—H13 119.8
C11—C3—C2 111.46 (10) C12—C13—H13 119.8
N5—C3—H3 107.5 C13—C14—C15 119.75 (12)
C11—C3—H3 107.5 C13—C14—H14 120.1
C2—C3—H3 107.5 C15—C14—H14 120.1
N8—C4—N5 109.01 (11) C14—C15—C16 120.40 (13)
N8—C4—H4 125.5 C14—C15—H15 119.8
N5—C4—H4 125.5 C16—C15—H15 119.8
C10—C5—C6 119.47 (12) C15—C16—C11 119.65 (13)
C10—C5—C2 119.92 (10) C15—C16—H16 120.2
C6—C5—C2 120.55 (11) C11—C16—H16 120.2
C1—N1—N2—N3 −0.94 (14) C3—N5—C4—N8 175.92 (12)
C2—N1—N2—N3 −174.78 (10) N1—C2—C5—C10 137.82 (11)
N1—N2—N3—N4 0.90 (14) C3—C2—C5—C10 −100.87 (13)
N2—N3—N4—C1 −0.50 (15) N1—C2—C5—C6 −45.31 (15)
C4—N5—N6—N7 −0.14 (14) C3—C2—C5—C6 76.01 (13)
C3—N5—N6—N7 −176.11 (11) C10—C5—C6—C7 0.03 (19)
N5—N6—N7—N8 −0.09 (14) C2—C5—C6—C7 −176.86 (12)
N6—N7—N8—C4 0.30 (14) C5—C6—C7—C8 0.9 (2)
N3—N4—C1—N1 −0.11 (15) C6—C7—C8—C9 −0.9 (2)
N2—N1—C1—N4 0.66 (15) C7—C8—C9—C10 −0.1 (2)
C2—N1—C1—N4 173.81 (12) C6—C5—C10—C9 −0.98 (19)
C1—N1—C2—C5 −81.28 (15) C2—C5—C10—C9 175.93 (12)
N2—N1—C2—C5 91.05 (13) C8—C9—C10—C5 1.0 (2)
C1—N1—C2—C3 157.83 (12) N5—C3—C11—C12 108.50 (12)
N2—N1—C2—C3 −29.83 (14) C2—C3—C11—C12 −126.26 (12)
C4—N5—C3—C11 −120.73 (14) N5—C3—C11—C16 −72.66 (14)
N6—N5—C3—C11 54.32 (14) C2—C3—C11—C16 52.57 (15)
C4—N5—C3—C2 114.30 (13) C16—C11—C12—C13 1.08 (19)
N6—N5—C3—C2 −70.65 (13) C3—C11—C12—C13 179.94 (12)
N1—C2—C3—N5 −53.30 (12) C11—C12—C13—C14 −0.6 (2)
C5—C2—C3—N5 −174.92 (9) C12—C13—C14—C15 −0.5 (2)
N1—C2—C3—C11 −177.83 (9) C13—C14—C15—C16 1.0 (2)
C5—C2—C3—C11 60.56 (12) C14—C15—C16—C11 −0.4 (2)
N7—N8—C4—N5 −0.38 (15) C12—C11—C16—C15 −0.58 (19)
N6—N5—C4—N8 0.34 (15) C3—C11—C16—C15 −179.40 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1···N7i 0.95 2.70 3.430 (2) 134
C2—H2···N7i 1.00 2.55 3.392 (2) 142
C2—H2···N8i 1.00 2.53 3.506 (2) 165
C3—H3···N3ii 1.00 2.46 3.351 (2) 149
C4—H4···N3ii 0.95 2.63 3.315 (2) 130
C4—H4···N4ii 0.95 2.67 3.543 (2) 154
C6—H6···N2 0.95 2.62 3.256 (2) 124
C7—H7···N6iii 0.95 2.63 3.339 (2) 132
C12—H12···N2ii 0.95 2.71 3.655 (2) 171
C13—H13···N7iv 0.95 2.74 3.379 (2) 125

Symmetry codes: (i) −x+2, y−1/2, −z+1/2; (ii) x−1/2, −y+3/2, −z; (iii) −x+3/2, −y+1, z−1/2; (iv) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2147).

References

  1. Absmeier, A., Bartel, M., Carbonera, C., Jameson, G. N. L., Weinberger, P., Caneschi, A., Mereiter, K., Letard, J.-F. & Linert, W. (2006). Chem. Eur. J.12, 2235–2243. [DOI] [PubMed]
  2. Bialonska, A., Bronisz, R. & Weselski, M. (2008). Inorg. Chem.47, 4436–4438. [DOI] [PubMed]
  3. Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Grunert, M., Schweifer, J., Weinberger, P., Linert, W., Mereiter, K., Hilscher, G., Müller, M., Wiesinger, G. & van Koningsbruggen, P. J. (2004). Inorg. Chem.43, 155–165. [DOI] [PubMed]
  5. Grunert, C. M., Weinberger, P., Schweifer, J., Hampel, C., Stassen, A. F., Mereiter, K. & Linert, W. (2005). J. Mol. Struct.733, 41–52.
  6. Jones, M. D., Almeida Paz, F. A., Davies, J. E. & Johnson, B. F. G. (2003). Acta Cryst. E59, o455–o457.
  7. Kamiya, T. & Saito, Y. (1973). Offenlegungsschrift 2147023 (Patent).
  8. Liu, P.-P., Cheng, A.-L., Yue, Q., Liu, N., Sun, W.-W. & Gao, E.-Q. (2008). Cryst. Growth Des.8, 1668–1674.
  9. Liu, P.-P., Wang, Y.-Q., Tian, C.-Y., Peng, H.-Q. & Gao, E.-Q. (2009). J. Mol. Struct.920, 459–465.
  10. Quesada, M., Kooijman, H., Gamez, P., Sanchez Costa, J., van Koningsbruggen, P. J., Weinberger, P., Reissner, M., Spek, A. L., Haasnoot, J. G. & Reedijk, J. (2007). Dalton Trans. pp. 5434–5440. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  12. Yu, J.-H., Mereiter, K., Hassan, N., Feldgitscher, C. & Linert, W. (2008). Cryst. Growth Des.8, 1535–1540.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680904094X/su2147sup1.cif

e-65-o2726-sup1.cif (20.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680904094X/su2147Isup2.hkl

e-65-o2726-Isup2.hkl (125.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES