Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 7;65(Pt 11):o2667. doi: 10.1107/S1600536809039609

(3E,5E)-1-Benzyl-3,5-bis­(2-fluoro­benzyl­idene)piperidin-4-one

R S Rathore a,*, N S Karthikeyan b, K Sathiyanarayanan b, P G Aravindan c
PMCID: PMC2970975  PMID: 21578277

Abstract

The inversion-related mol­ecules of the title compound, C26H21F2NO, associate into closed dimeric subunits via co-operative C—H⋯π inter­actions. Two non-classical C—H⋯O and one C—H⋯N intra­molecular hydrogen bonds are also found in the crystal structure. The piperidin-4-one ring adopts a sofa conforamtion with the 1-benzyl group in the equatorial position, and the equiplanar fluoro­phenyl substituents in the 3- and 5-positions stretched out on either side. The 1-benzyl group is disposed towards the substituent in the 6th position of the piperidin-4-one ring. The 3,5-diene units possess E configurations.

Related literature

For the synthesis of and pharmaceutical studies on 3,5-diaryl­idene-4-piperidone compounds, see: Krapcho & Turk (1979); Das et al. (2007). For a related structure, see: Suresh et al. (2007). For ring conformations, see: Cremer & Pople (1975), Duax et al., (1976). For C—H⋯π inter­actions, see: Nishio et al. (2009).graphic file with name e-65-o2667-scheme1.jpg

Experimental

Crystal data

  • C26H21F2NO

  • M r = 401.44

  • Triclinic, Inline graphic

  • a = 6.7738 (4) Å

  • b = 12.5652 (7) Å

  • c = 12.8535 (7) Å

  • α = 71.051 (1)°

  • β = 88.057 (2)°

  • γ = 89.117 (2)°

  • V = 1034.12 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.19 × 0.18 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.966, T max = 0.984

  • 13326 measured reflections

  • 4281 independent reflections

  • 2531 reflections with I > 2σ(I)

  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.135

  • S = 1.12

  • 4281 reflections

  • 271 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039609/rk2161sup1.cif

e-65-o2667-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039609/rk2161Isup2.hkl

e-65-o2667-Isup2.hkl (205.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯O1 0.93 2.40 2.772 (2) 104
C21—H21⋯O1 0.93 2.39 2.768 (2) 104
C7—H7BCg2i 0.97 2.78 3.7315 (19) 168
C13—H13⋯N1 0.93 2.56 2.873 (3) 100

Symmetry code: (i) Inline graphic. Cg2 is the centroid of the C8–C13 ring.

Acknowledgments

RSR thanks the Council for Scientific and Industrial Research, New Delhi, for funding under the scientist’s pool scheme, and the Bioinformatics Infrastructure Facility of the University of Hyderabad, Hyderabad for computational resources.

supplementary crystallographic information

Comment

Derivatives of 3,5-diarylidene-4-piperidones (D4P) are pharmaceutically important compounds (Krapcho & Turk, 1979; Das et al., 2007). During our investigations on D4P, a series of compounds were prepared. The molecular and crystal structure of title compound (3E,5E)-1-benzyl-3,5-bis[(2-fluorophenyl)methylidene]piperidin-4-one, (I), is reported here.

The molecular structure of I with atom numbering scheme is shown in Fig. 1. The 3,5-diene moieties possess E-configuration. The 3,5-difluorophenyl substituents of the piperidinone ring are stretched out on either side with following values of torsion angles: C4–C3–C14–C15 = 175.34 (16)°, C3–C14–C15–C16 = 147.49 (19)°, C4–C5–C21–C22 = -172.85 (15)°, and C5–C21–C22–C23 = -151.13 (17)°. The dihedral angle of 3,5-difluorophenyl units is 3.29 (7)°. The dihedral angles between of benzene rings of 3- and 5-substitutens with respect to the corresponding ring of 1-benzyl substituent are 58.65 (7)° and 56.90 (7)°, respectively.

The sp2 hybridized C3, C4 and C5 atoms give rise to a sofa-conformation of the six-membered piperidinone ring as also observed in the structures of related compounds, namely, (R)-3,5-Bis[(E)-benzylidene]-1-(1-phenylethyl)piperidin-4-one, 3,5-bis[(E)-4-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one, and 3,5-bis[(E)-2-chlorobenzylidene]-1-[(R)-1-phenylethyl] piperidin-4-one (Suresh et al., 2007). In the sofa conformation, the N1 atom is -0.781 (1)Å shifted out of the base plane (C2/C3/C4/C5/C6). The deviation of the ring from ideal sofa-conformation, ΔC2 (Duax et al., 1976) is 3.4°. The Cremer and Pople (Cremer & Pople, 1975) puckering parameters, corresponding to the ring conformation are as follows: q2 = 0.5432 (16)Å, q3 = 0.2577 (17)Å, φ = 3.14 (18)°, θ = 64.62 (16)°, and total puckering amplitude Q = 0.6012 (16)Å. The benzyl substituent is in equatorial position of piperidinone ring and its conformation is described by the following torsion angles: C2–N1–C7–C8 = -162.82 (14)° and N1–C7–C8–C9 = -153.28 (15)°. The N1-benzyl group is disposed towards C6 substituent of the piperidin-4-one ring, a feature that varies among related structures.

The observed inter- and intra-molecular interactions are listed in Table 1. The adjacent H14 and H21 atoms participate in intra-molecular C14–H14···O1···H21–C21 interaction scheme. The crystal packing is characterized by C–H···π hydrogen-bonded dimers. The methylene and aromatic groups of the N1-benzyl substituent participate in the interaction forming C7–H7B···Cg2i with symmetry code: (i) -x+1, -y+2, -z+2. The Cg2 is the centroid of (C8-C13) ring. The observed geometry of C–H···π interaction in I is in the range, reported by the Nishio and coworkers (Nishio et al., 2009). Crystal packing is shown in Fig. 2.

Experimental

A mixture of 1-benzyl-4-piperidone (0.01 mol) and 2-fluorobenzaldehyde (0.02 mol) was added to a warm solution of ammonium acetate (0.01 mol) in absolute ethanol (15 ml). The mixture was gradually warmed on a water bath until the yellow color changed to orange. The mixture was kept aside overnight at room temperature. Reactions were monitored with TLC for completeness. The solid obtained was separated and the crude compound were purified using silica gel column chromatography with hexane and ethyl acetate as elutant. Final yields: 96.19%; m.p. 415 (2)K. Suitable single crystals for data collection were grown from ethanol, tetrahydrofurane and benzene in (1:1:1) ratio.

Refinement

Hydrogen atoms were placed in the geometrically expected positions and refined with the riding options. The distances with hydrogen atoms are: C(aromatic)–H = 0.93 Å, C(methylene)–H = 0.97 Å, and Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

A view of I with the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Molecular associations into closed dimers via cooperative C–H···π interactions (see Table 1 for symmetry code). Cg2 is the centroid of (C8-C13) ring.

Crystal data

C26H21F2NO Z = 2
Mr = 401.44 F(000) = 420
Triclinic, P1 Dx = 1.289 Mg m3
Hall symbol: -P 1 Melting point: 415(2) K
a = 6.7738 (4) Å Mo Kα radiation, λ = 0.71073 Å
b = 12.5652 (7) Å Cell parameters from 3075 reflections
c = 12.8535 (7) Å θ = 2.8–21.7°
α = 71.051 (1)° µ = 0.09 mm1
β = 88.057 (2)° T = 298 K
γ = 89.117 (2)° Block, colourless
V = 1034.12 (10) Å3 0.19 × 0.18 × 0.12 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 4281 independent reflections
Radiation source: fine-focus sealed tube 2531 reflections with I > 2σ(I)
graphite Rint = 0.029
φ and ω scans θmax = 26.9°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −6→8
Tmin = 0.966, Tmax = 0.984 k = −15→15
13326 measured reflections l = −14→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135 H-atom parameters constrained
S = 1.12 w = 1/[σ2(Fo2) + (0.0626P)2] where P = (Fo2 + 2Fc2)/3
4281 reflections (Δ/σ)max < 0.001
271 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.15 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.===========================================================================Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II–A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d Plane 1 m1 = 0.3436 (10) m2 = -0.8917 (5) m3 = -0.2946 (7) D = -14.293 (8) Atom d s d/s (d/s)**2 C2 * 0.0169 0.0018 9.390 88.168 C3 * -0.0140 0.0017 -8.219 67.556 C5 * 0.0135 0.0017 8.052 64.834 C6 * -0.0165 0.0018 -9.252 85.593 C4 -0.1534 0.0018 -84.823 7194.988 N1 -0.7455 0.0014 -534.558 285752.750 O1 -0.3305 0.0015 -221.129 48897.992 ============ Sum((d/s)**2) for starred atoms 306.151 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarity Plane 2 m1 = 0.3043 (8) m2 = -0.9090 (3) m3 = -0.2848 (7) D = -14.485 (7) Atom d s d/s (d/s)**2 C2 * -0.0011 0.0018 -0.607 0.368 C3 * 0.0338 0.0017 19.758 390.365 C5 * 0.0610 0.0017 36.177 1308.754 C6 * -0.0350 0.0018 -19.553 382.330 C4 * -0.0718 0.0018 -39.539 1563.307 N1 -0.7813 0.0014 -557.032 310284.906 O1 -0.1954 0.0015 -129.768 16839.834 ============ Sum((d/s)**2) for starred atoms 3645.124 Chi-squared at 95% for 2 degrees of freedom: 5.99 The group of atoms deviates significantly from planarity Plane 3 m1 = -0.3826 (9) m2 = -0.4121 (9) m3 = -0.8269 (6) D = -16.581 (12) Atom d s d/s (d/s)**2 C8 * -0.0025 0.0018 -1.437 2.066 C9 * 0.0039 0.0022 1.780 3.167 C10 * -0.0027 0.0028 -0.947 0.896 C11 * -0.0017 0.0033 -0.509 0.259 C12 * 0.0014 0.0030 0.464 0.215 C13 * 0.0014 0.0021 0.691 0.478 C7 -0.1040 0.0017 -60.838 3701.229 ============ Sum((d/s)**2) for starred atoms 7.082 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity Plane 4 m1 = -0.2708 (9) m2 = -0.9623 (2) m3 = -0.0242 (8) D = -12.113 (12) Atom d s d/s (d/s)**2 C15 * -0.0045 0.0019 -2.435 5.931 C16 * 0.0046 0.0022 2.062 4.253 C17 * 0.0018 0.0025 0.733 0.538 C18 * -0.0063 0.0024 -2.623 6.878 C19 * 0.0030 0.0021 1.381 1.908 C20 * 0.0019 0.0019 1.030 1.061 F1 0.0148 0.0017 8.905 79.302 C14 0.0542 0.0019 29.279 857.250 ============ Sum((d/s)**2) for starred atoms 20.569 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity Plane 5 m1 = -0.2350 (1) m2 = -0.9696 (2) m3 = -0.0685 (8) D = -12.925 (6) Atom d s d/s (d/s)**2 C22 * 0.0014 0.0018 0.732 0.536 C23 * -0.0006 0.0021 -0.301 0.091 C24 * -0.0019 0.0024 -0.785 0.616 C25 * 0.0034 0.0025 1.368 1.872 C26 * -0.0015 0.0024 -0.645 0.416 C27 * -0.0009 0.0021 -0.411 0.169 F1 0.0249 0.0017 14.969 224.077 C21 0.0995 0.0018 54.152 2932.435 ============ Sum((d/s)**2) for starred atoms 3.699 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 2.53 (7) 177.47 (7) 1 3 61.34 (7) 118.66 (7) 1 4 39.45 (7) 140.55 (7) 1 5 36.49 (8) 143.51 (8) 2 3 60.42 (7) 119.58 (7) 2 4 36.94 (7) 143.06 (7) 2 5 33.97 (7) 146.03 (7) 3 4 58.65 (7) 121.35 (7) 3 5 56.90 (7) 123.10 (7) 4 5 3.29 (7) 176.71 (7)===========================================================================
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.27851 (17) 0.81199 (11) 0.92961 (10) 0.0473 (4)
O1 −0.20803 (17) 0.63605 (12) 0.98723 (10) 0.0733 (4)
F1 −0.02954 (18) 0.50536 (13) 1.36027 (10) 0.1039 (5)
F2 −0.42414 (16) 0.85416 (12) 0.63705 (10) 0.1014 (5)
C2 0.3146 (2) 0.70072 (14) 1.00807 (14) 0.0513 (4)
H2A 0.3789 0.7077 1.0718 0.062*
H2B 0.4009 0.6580 0.9744 0.062*
C3 0.1218 (2) 0.64096 (13) 1.04272 (14) 0.0460 (4)
C4 −0.0404 (2) 0.67177 (14) 0.96139 (14) 0.0504 (4)
C5 0.0152 (2) 0.74206 (13) 0.84662 (13) 0.0450 (4)
C6 0.2136 (2) 0.79813 (14) 0.82805 (13) 0.0494 (4)
H6A 0.3090 0.7528 0.8029 0.059*
H6B 0.2050 0.8711 0.7715 0.059*
C7 0.4527 (2) 0.88369 (14) 0.91102 (14) 0.0531 (4)
H7A 0.5473 0.8608 0.8639 0.064*
H7B 0.5140 0.8729 0.9809 0.064*
C8 0.4052 (3) 1.00649 (15) 0.85878 (14) 0.0534 (5)
C9 0.5456 (3) 1.07860 (18) 0.79602 (17) 0.0773 (6)
H9 0.6674 1.0505 0.7812 0.093*
C10 0.5070 (6) 1.1944 (2) 0.7540 (2) 0.1077 (9)
H10 0.6032 1.2432 0.7120 0.129*
C11 0.3284 (7) 1.2350 (2) 0.7748 (2) 0.1146 (11)
H11 0.3019 1.3117 0.7469 0.138*
C12 0.1887 (4) 1.1639 (2) 0.8362 (2) 0.1007 (8)
H12 0.0666 1.1921 0.8501 0.121*
C13 0.2261 (3) 1.05075 (17) 0.87788 (17) 0.0713 (6)
H13 0.1285 1.0030 0.9198 0.086*
C14 0.0847 (2) 0.56488 (14) 1.14056 (15) 0.0548 (5)
H14 −0.0447 0.5392 1.1546 0.066*
C15 0.2232 (2) 0.51659 (14) 1.22897 (15) 0.0524 (4)
C16 0.1619 (3) 0.48556 (17) 1.33750 (17) 0.0663 (5)
C17 0.2810 (4) 0.43617 (19) 1.42435 (18) 0.0837 (6)
H17 0.2319 0.4170 1.4965 0.100*
C18 0.4741 (3) 0.41584 (18) 1.40188 (19) 0.0804 (6)
H18 0.5586 0.3832 1.4593 0.096*
C19 0.5436 (3) 0.44358 (16) 1.29479 (19) 0.0715 (6)
H19 0.6745 0.4287 1.2798 0.086*
C20 0.4199 (3) 0.49336 (14) 1.20967 (16) 0.0619 (5)
H20 0.4689 0.5119 1.1376 0.074*
C21 −0.1155 (2) 0.75128 (14) 0.76848 (14) 0.0498 (4)
H21 −0.2389 0.7199 0.7930 0.060*
C22 −0.0894 (2) 0.80438 (14) 0.64938 (14) 0.0509 (4)
C23 −0.2488 (3) 0.85146 (16) 0.58508 (16) 0.0650 (5)
C24 −0.2382 (4) 0.89583 (18) 0.47290 (19) 0.0832 (7)
H24 −0.3495 0.9267 0.4335 0.100*
C25 −0.0606 (4) 0.89395 (19) 0.41964 (18) 0.0851 (7)
H25 −0.0505 0.9232 0.3433 0.102*
C26 0.1030 (3) 0.84889 (18) 0.47902 (17) 0.0801 (6)
H26 0.2240 0.8482 0.4428 0.096*
C27 0.0879 (3) 0.80488 (16) 0.59185 (15) 0.0637 (5)
H27 0.2000 0.7745 0.6308 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0468 (7) 0.0487 (8) 0.0461 (8) −0.0052 (6) −0.0086 (6) −0.0143 (7)
O1 0.0423 (7) 0.1033 (11) 0.0658 (9) −0.0083 (7) −0.0004 (6) −0.0156 (8)
F1 0.0798 (8) 0.1567 (13) 0.0676 (8) 0.0106 (8) 0.0028 (6) −0.0270 (8)
F2 0.0582 (7) 0.1426 (12) 0.0905 (9) 0.0144 (7) −0.0214 (7) −0.0189 (8)
C2 0.0456 (9) 0.0543 (11) 0.0528 (10) −0.0003 (8) −0.0086 (8) −0.0152 (9)
C3 0.0440 (9) 0.0485 (10) 0.0473 (10) 0.0010 (7) −0.0008 (7) −0.0181 (8)
C4 0.0390 (9) 0.0567 (11) 0.0585 (12) 0.0004 (8) −0.0001 (8) −0.0231 (9)
C5 0.0413 (9) 0.0474 (10) 0.0502 (10) 0.0045 (7) −0.0034 (7) −0.0211 (8)
C6 0.0479 (9) 0.0542 (10) 0.0485 (10) −0.0024 (8) −0.0053 (7) −0.0197 (8)
C7 0.0497 (9) 0.0575 (11) 0.0553 (11) −0.0058 (8) −0.0064 (8) −0.0219 (9)
C8 0.0678 (12) 0.0523 (11) 0.0451 (10) −0.0096 (9) −0.0064 (9) −0.0218 (9)
C9 0.1022 (15) 0.0686 (15) 0.0628 (13) −0.0219 (12) 0.0098 (12) −0.0236 (11)
C10 0.180 (3) 0.073 (2) 0.0675 (16) −0.0447 (19) 0.0029 (18) −0.0176 (14)
C11 0.200 (3) 0.0581 (17) 0.093 (2) 0.012 (2) −0.059 (2) −0.0290 (16)
C12 0.124 (2) 0.0733 (18) 0.120 (2) 0.0261 (16) −0.0474 (18) −0.0501 (16)
C13 0.0785 (14) 0.0644 (14) 0.0801 (14) 0.0057 (10) −0.0166 (11) −0.0346 (11)
C14 0.0465 (9) 0.0569 (11) 0.0612 (12) −0.0039 (8) −0.0003 (8) −0.0196 (10)
C15 0.0543 (10) 0.0445 (10) 0.0564 (12) −0.0065 (8) −0.0046 (9) −0.0130 (8)
C16 0.0563 (11) 0.0777 (14) 0.0644 (14) −0.0013 (10) −0.0035 (10) −0.0220 (11)
C17 0.0973 (17) 0.0941 (17) 0.0563 (13) −0.0017 (13) −0.0136 (12) −0.0184 (12)
C18 0.0826 (16) 0.0731 (15) 0.0820 (17) 0.0041 (11) −0.0319 (13) −0.0175 (12)
C19 0.0643 (12) 0.0576 (13) 0.0844 (16) −0.0003 (9) −0.0135 (11) −0.0106 (11)
C20 0.0643 (12) 0.0464 (11) 0.0668 (12) 0.0001 (8) −0.0058 (10) −0.0067 (9)
C21 0.0422 (9) 0.0518 (10) 0.0590 (11) −0.0001 (7) −0.0071 (8) −0.0221 (9)
C22 0.0568 (10) 0.0476 (10) 0.0518 (11) −0.0031 (8) −0.0138 (8) −0.0196 (8)
C23 0.0550 (11) 0.0720 (13) 0.0673 (14) −0.0009 (9) −0.0164 (10) −0.0205 (11)
C24 0.0903 (16) 0.0865 (16) 0.0689 (16) 0.0013 (12) −0.0338 (13) −0.0166 (13)
C25 0.1170 (19) 0.0876 (16) 0.0518 (12) −0.0026 (14) −0.0164 (14) −0.0226 (11)
C26 0.0905 (15) 0.0952 (17) 0.0574 (14) 0.0033 (12) −0.0041 (11) −0.0286 (12)
C27 0.0699 (12) 0.0716 (13) 0.0551 (12) 0.0083 (9) −0.0100 (10) −0.0276 (10)

Geometric parameters (Å, °)

N1—C6 1.4551 (19) C12—C13 1.370 (3)
N1—C2 1.4567 (19) C12—H12 0.9300
N1—C7 1.4612 (19) C13—H13 0.9300
O1—C4 1.2223 (18) C14—C15 1.465 (2)
F1—C16 1.357 (2) C14—H14 0.9300
F2—C23 1.348 (2) C15—C16 1.372 (3)
C2—C3 1.497 (2) C15—C20 1.391 (2)
C2—H2A 0.9700 C16—C17 1.370 (3)
C2—H2B 0.9700 C17—C18 1.368 (3)
C3—C14 1.328 (2) C17—H17 0.9300
C3—C4 1.501 (2) C18—C19 1.374 (3)
C4—C5 1.491 (2) C18—H18 0.9300
C5—C21 1.337 (2) C19—C20 1.376 (2)
C5—C6 1.502 (2) C19—H19 0.9300
C6—H6A 0.9700 C20—H20 0.9300
C6—H6B 0.9700 C21—C22 1.463 (2)
C7—C8 1.504 (2) C21—H21 0.9300
C7—H7A 0.9700 C22—C23 1.386 (2)
C7—H7B 0.9700 C22—C27 1.388 (2)
C8—C9 1.370 (3) C23—C24 1.366 (3)
C8—C13 1.375 (3) C24—C25 1.367 (3)
C9—C10 1.402 (4) C24—H24 0.9300
C9—H9 0.9300 C25—C26 1.374 (3)
C10—C11 1.358 (4) C25—H25 0.9300
C10—H10 0.9300 C26—C27 1.375 (3)
C11—C12 1.353 (4) C26—H26 0.9300
C11—H11 0.9300 C27—H27 0.9300
C6—N1—C2 108.20 (13) C12—C13—C8 121.1 (2)
C6—N1—C7 111.83 (13) C12—C13—H13 119.4
C2—N1—C7 111.85 (12) C8—C13—H13 119.4
N1—C2—C3 109.17 (12) C3—C14—C15 127.77 (15)
N1—C2—H2A 109.8 C3—C14—H14 116.1
C3—C2—H2A 109.8 C15—C14—H14 116.1
N1—C2—H2B 109.8 C16—C15—C20 115.62 (16)
C3—C2—H2B 109.8 C16—C15—C14 121.18 (16)
H2A—C2—H2B 108.3 C20—C15—C14 123.11 (17)
C14—C3—C2 124.42 (14) F1—C16—C17 117.83 (19)
C14—C3—C4 118.45 (14) F1—C16—C15 117.70 (16)
C2—C3—C4 117.12 (14) C17—C16—C15 124.47 (19)
O1—C4—C5 121.80 (14) C18—C17—C16 118.1 (2)
O1—C4—C3 121.17 (16) C18—C17—H17 121.0
C5—C4—C3 116.93 (14) C16—C17—H17 121.0
C21—C5—C4 117.70 (14) C17—C18—C19 120.20 (19)
C21—C5—C6 125.03 (16) C17—C18—H18 119.9
C4—C5—C6 117.28 (13) C19—C18—H18 119.9
N1—C6—C5 110.11 (13) C18—C19—C20 120.09 (19)
N1—C6—H6A 109.6 C18—C19—H19 120.0
C5—C6—H6A 109.6 C20—C19—H19 120.0
N1—C6—H6B 109.6 C19—C20—C15 121.52 (19)
C5—C6—H6B 109.6 C19—C20—H20 119.2
H6A—C6—H6B 108.2 C15—C20—H20 119.2
N1—C7—C8 112.87 (13) C5—C21—C22 128.35 (16)
N1—C7—H7A 109.0 C5—C21—H21 115.8
C8—C7—H7A 109.0 C22—C21—H21 115.8
N1—C7—H7B 109.0 C23—C22—C27 115.28 (16)
C8—C7—H7B 109.0 C23—C22—C21 120.75 (17)
H7A—C7—H7B 107.8 C27—C22—C21 123.82 (15)
C9—C8—C13 118.18 (19) F2—C23—C24 118.37 (17)
C9—C8—C7 120.25 (18) F2—C23—C22 117.63 (17)
C13—C8—C7 121.45 (17) C24—C23—C22 124.0 (2)
C8—C9—C10 120.5 (2) C23—C24—C25 118.71 (19)
C8—C9—H9 119.8 C23—C24—H24 120.6
C10—C9—H9 119.8 C25—C24—H24 120.6
C11—C10—C9 119.6 (3) C24—C25—C26 120.0 (2)
C11—C10—H10 120.2 C24—C25—H25 120.0
C9—C10—H10 120.2 C26—C25—H25 120.0
C12—C11—C10 120.1 (3) C25—C26—C27 120.1 (2)
C12—C11—H11 119.9 C25—C26—H26 120.0
C10—C11—H11 119.9 C27—C26—H26 120.0
C11—C12—C13 120.5 (3) C26—C27—C22 121.99 (18)
C11—C12—H12 119.8 C26—C27—H27 119.0
C13—C12—H12 119.8 C22—C27—H27 119.0
C6—N1—C2—C3 −69.01 (16) C4—C3—C14—C15 175.34 (16)
C7—N1—C2—C3 167.39 (13) C3—C14—C15—C16 147.49 (19)
N1—C2—C3—C14 −149.89 (16) C3—C14—C15—C20 −36.2 (3)
N1—C2—C3—C4 28.8 (2) C20—C15—C16—F1 −179.24 (16)
C14—C3—C4—O1 6.7 (2) C14—C15—C16—F1 −2.6 (3)
C2—C3—C4—O1 −172.07 (15) C20—C15—C16—C17 0.9 (3)
C14—C3—C4—C5 −169.87 (14) C14—C15—C16—C17 177.48 (18)
C2—C3—C4—C5 11.4 (2) F1—C16—C17—C18 179.90 (19)
O1—C4—C5—C21 −9.8 (2) C15—C16—C17—C18 −0.2 (3)
C3—C4—C5—C21 166.67 (14) C16—C17—C18—C19 −0.7 (3)
O1—C4—C5—C6 169.55 (15) C17—C18—C19—C20 0.9 (3)
C3—C4—C5—C6 −13.9 (2) C18—C19—C20—C15 −0.2 (3)
C2—N1—C6—C5 66.60 (16) C16—C15—C20—C19 −0.7 (3)
C7—N1—C6—C5 −169.78 (12) C14—C15—C20—C19 −177.20 (17)
C21—C5—C6—N1 155.39 (15) C4—C5—C21—C22 −172.85 (15)
C4—C5—C6—N1 −23.94 (19) C6—C5—C21—C22 7.8 (3)
C6—N1—C7—C8 75.65 (17) C5—C21—C22—C23 −151.13 (17)
C2—N1—C7—C8 −162.82 (14) C5—C21—C22—C27 33.5 (3)
N1—C7—C8—C9 −153.28 (15) C27—C22—C23—F2 −179.31 (16)
N1—C7—C8—C13 30.8 (2) C21—C22—C23—F2 5.0 (3)
C13—C8—C9—C10 0.8 (3) C27—C22—C23—C24 0.1 (3)
C7—C8—C9—C10 −175.21 (17) C21—C22—C23—C24 −175.57 (17)
C8—C9—C10—C11 −0.7 (3) F2—C23—C24—C25 179.65 (19)
C9—C10—C11—C12 0.2 (4) C22—C23—C24—C25 0.2 (3)
C10—C11—C12—C13 0.1 (4) C23—C24—C25—C26 −0.5 (3)
C11—C12—C13—C8 0.1 (3) C24—C25—C26—C27 0.5 (3)
C9—C8—C13—C12 −0.5 (3) C25—C26—C27—C22 −0.2 (3)
C7—C8—C13—C12 175.46 (17) C23—C22—C27—C26 −0.2 (3)
C2—C3—C14—C15 −6.0 (3) C21—C22—C27—C26 175.40 (18)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C14—H14···O1 0.93 2.40 2.772 (2) 104
C21—H21···O1 0.93 2.39 2.768 (2) 104
C7—H7B···Cg2i 0.97 2.78 3.7315 (19) 168
C13—H13···N1 0.93 2.56 2.873 (3) 100

Symmetry codes: (i) −x+1, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2161).

References

  1. Bruker (2004). APEX2, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  3. Das, U., Alcorn, J., Shrivastav, A., Sharma, R. K., de Clercq, E., Balzarini, J. & Dimmock, J. R. (2007). Eur. J. Med. Chem.42, 71–80. [DOI] [PubMed]
  4. Duax, W. L., Weeks, C. M. & Rohrer, D. C. (1976). Topics in Stereochemistry, Vol. 9, edited by E. L. Eliel & N. Allinger, pp. 271–383. New Jersey: John Wiley.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Krapcho, J. & Turk, C. F. (1979). J. Med. Chem.22, 207–210. [DOI] [PubMed]
  7. Nishio, M., Umezawa, Y., Honda, K., Tsuboyama, S. & Suezawa, H. (2009). CrystEngComm, 11, 1757–1788.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Suresh, J., Suresh Kumar, R., Perumal, S. & Natarajan, S. (2007). Acta Cryst. C63, o315–o318. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039609/rk2161sup1.cif

e-65-o2667-sup1.cif (27.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039609/rk2161Isup2.hkl

e-65-o2667-Isup2.hkl (205.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES