Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 7;65(Pt 11):m1323–m1324. doi: 10.1107/S160053680903712X

Poly[bis(phenethyl­ammonium) [di­bromido­plumbate(II)]-di-μ-bromido]]

Kengo Shibuya a,b,*, Masanori Koshimizu b,c, Fumihiko Nishikido b,d, Haruo Saito a,b, Shunji Kishimoto b,e
PMCID: PMC2970995  PMID: 21578085

Abstract

Crystals of the title compound, {(C6H5C2H4NH3)2[PbBr4]}n, were grown at room temperature from a solution in N,N-dimethyl­formamide (DMF) using nitro­methane as the poor solvent. This perovskite-type organic–inorganic hybrid compound consists of well ordered sheets of corner-sharing disordered PbBr6 octa­hedra separated by bilayers of phenethyl­ammonium cations. The octa­hedra are rotated and tilted due to N—H⋯Br hydrogen bonds with the ammonium groups, generating a superstructure in the unit cell similar to that of the tetra­chloridoplumbate (C6H5C2H4NH3)2[PbCl4].

Related literature

The title compound has been studied previously and the lattice parameters reported without the complete structure (Mitzi, 1999). The optical characteristics have been investigated using thin films, see: Cheng et al. (2005); Kitazawa & Watanabe (2005). Promising applications have been reported on electroluminescent devices and scintillators, see: Era et al. (1995); Kishimoto et al. (2008); van der Eijk et al. (2008). Structural data of some related materials have been published; for (C6H5C2H4NH3)2PbCl4, see: Mitzi (1999); for (C6H5C2H4NH3)2CuBr4, see: Willett (1990); for (C6H5C2H4NH3)2ZnBr4, see: Huh et al. (2006); for (C6H5C2H4NH3)PbBr3, see: Billing & Lemmerer (2003). For van der Waals radii, see: Bondi (1964). For halogen hydrogen bonding, see: Chapuis et al. (1976). graphic file with name e-65-m1323-scheme1.jpg

Experimental

Crystal data

  • (C8H12N)2[PbBr4]

  • M r = 771.20

  • Triclinic, Inline graphic

  • a = 11.6150 (4) Å

  • b = 11.6275 (5) Å

  • c = 17.5751 (6) Å

  • α = 99.5472 (12)°

  • β = 105.7245 (10)°

  • γ = 89.9770 (12)°

  • V = 2250.62 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 14.63 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.03 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: numerical (ABSCOR; Higashi, 1999) T min = 0.106, T max = 0.645

  • 20072 measured reflections

  • 10077 independent reflections

  • 7157 reflections with I > 2σ(I)

  • R int = 0.053

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.106

  • S = 0.97

  • 10077 reflections

  • 416 parameters

  • H-atom parameters constrained

  • Δρmax = 3.26 e Å−3

  • Δρmin = −2.53 e Å−3

Data collection: PROCESS-AUTO (Rigaku Corporation, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku Americas & Rigaku Corporation, 2008); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903712X/zq2004sup1.cif

e-65-m1323-sup1.cif (41.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903712X/zq2004Isup2.hkl

e-65-m1323-Isup2.hkl (492.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Pb1—Br3 2.8786 (8)
Pb1—Br4 2.9927 (7)
Pb1—Br1 2.9957 (7)
Pb1—Br6 3.0080 (7)
Pb1—Br5 3.0095 (7)
Pb1—Br2 3.1965 (8)
Pb2—Br8 2.8755 (8)
Pb2—Br5i 2.9935 (6)
Pb2—Br6 2.9957 (7)
Pb2—Br1ii 3.0082 (7)
Pb2—Br4iii 3.0110 (7)
Pb2—Br7 3.1982 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.89 3.18 3.508 (5) 104
N1—H3⋯Br2 0.89 2.54 3.411 (5) 165
N2—H13⋯Br6 0.89 3.17 3.509 (5) 105
N2—H14⋯Br7 0.89 2.54 3.416 (5) 167
N3—H26⋯Br7 0.89 2.71 3.448 (6) 142
N3—H27⋯Br2 0.89 2.62 3.486 (6) 164
N4—H37⋯Br4 0.89 2.68 3.465 (5) 148
N4—H39⋯Br2 0.89 2.73 3.462 (6) 140

Acknowledgments

This study was supported financially by CREST from the Japan Science and Technology Agency. The authors thank Professor H. Adachi of Osaka University and Sosho Inc. for careful advice on the refinement. We thank Dr Y. Takeoka of Sophia University for helpful advice on the synthesis.

supplementary crystallographic information

Comment

Recently, much attention has been paid to low-dimensional materials that often exhibit characteristic electronic properties considerably different from those of bulk ones. However, their crystallographic studies are limited because their anisotropic growth nature makes it difficult to obtain a good single crystal. Mitzi reported the structure of the tetrachloroplumbate, (C6H5C2H4NH3)2PbCl4, whose single crystals required approximately one year to be grown up. The present paper is the first report of the detailed structure of the tetrabromoplumbate, whose single crystals were grown up in approximately two months; in order to compare with some related materials: see the tetrachloroplumbate, the tetrabromozincate, (C6H5C2H4NH3)2ZnBr4 (Huh et al., 2006), and the tribromoplumbate, (C6H5C2H4NH3)PbBr3 (Billing & Lemmerer, 2003).

Fig. 1 shows the packing diagram of (C6H5C2H4NH3)2PbBr4, viewed approximately along the c axis. The sheets of corner-sharing PbBr6 octahedra are separated by bilayers of phenethylammonium cations. The corner-sharing PbBr6 octahedra are the common structure among bis-(phenethylammonium) tetrahaloplumbates, (C6H5C2H4NH3)2PbX4 (X = Cl, Br, and I), regardless of the halogen, but are different from face-sharing PbBr6 octahedra of the tribromoplumbate, (C6H5C2H4NH3)PbBr3, and from isolated tetrahedral ZnBr4 of the tetrabromozincate, (C6H5C2H4NH3)2ZnBr4. As the structure of halometalate is notably controlled by surrounding organic molecules, hydrogen bondings between them are discussed later.

Dashed line in Fig. 1 displays the triclinic unit cell, which is similar to the triclinic unit cell of the tetrachloroplumbate, (C6H5C2H4NH3)2PbCl4, but different from the monoclinic unit cell of the tetraiodoplumbate, (C6H5C2H4NH3)2PbI4. The present tetrabromoplumbate possesses two independent but similar Pb atoms with distorted octahedral coordination. The Pb—Br bond lengths range from 2.8755 (8) to 3.1982 (8) Å (average: 3.0136 (7) Å) and Br—Pb—Br bond angles range from 83.44 (2)° to 96.67 (2)° and from 170.97 (2)° to 179.36 (2)°. These angles are somewhat different from those of the perfect octahedron, i.e., 90.0° and 180°, respectively. Furthermore, the bridging Pb—Br—Pb bond angles significantly differ from 180° and range from 150.77 (3)° to 152.15 (3)°. This indicates that adjacent PbBr6 are rotated relative to each other.

Fig. 2 shows the relative rotation of PbBr6 in the sheet and the hydrogen bondings between the octahedra and ammonium groups. Each ammonium group interacts with three halogen anions through N—H···Br hydrogen bonding in "terminal halogen configuration" involving two terminal halogen anions and one bridging halogen anion (Chapuis et al., 1976). The average hydrogen-bonding distance is 2.630 (2) Å, which is considerably shorter than the sum of the van der Waals radii for H (1.20–1.45 Å) and Br (1.95 Å) (Bondi, 1964). As a result, the opposite sides of the quadrangle, defined by one set of four PbBr6 octahedra, are "pinched-in" or "pushed-out" as shown in Fig. 2. In addition, there are four independent phenethylammonium depicted as PE1, PE2, PE3, and PE4, having similar bond lengths and bond angles. Therefore, two sides of the unit cell along with a and b axes are about twice length of a PbBr6 to have a superstructure in it.

There is no significant π-π interaction found in the organic bilayers because the adjacent aromatic rings are considerably separated by centroid-to-centroid distance of 5.748 (9) Å between PE1 and PE4, and 5.787 (9) Å between PE2 and PE3, respectively. The van der Waals radius for aromatic carbon atoms is about 1.77 Å (Bondi, 1964).

Experimental

Single crystals were obtained in the following three steps. First, phenethylamine bromide, C6H5C2H2NH3Br, as the precursor was synthesized at 10 C° from stoichiometric amount of hydrobromic acid, HBr, and phenethylamine, C6H5C2H2NH2, by their acid-base reaction in a flask. After evaporating the solvent, water, at 70 C°, the white deposition was washed by diethyl ether to remove unreacted reagents and dried in vacuum. Second, the objective compound was synthesized at 25 C° in dry nitrogen atmosphere from stoichiometric amount of the precursor and lead bromide (II), PbBr2, using dehydrated N,N'-dimethylformamide (DMF) as a good solvent. The purity of PbBr2 powder was 4 N, and it was used as delivered from Kojundo Chemical Laboratory Co., Japan. Third, the solution was filtered and contained in a glass bottle for the crystal growth. The bottle was contained in a shaded desiccator where another bottle with nitromethane as a poor solvent was also contained. Then, the vapor of the poor solvent was gradually diffused into the solution to reduce the solubility. Settling it two months grew colorless transparent crystals at the bottom of the former bottle. The crystal size was typically 8 mm × 6 mm × 1 mm, and the one used for the crystallographic study was 0.25 mm × 0.20 mm × 0.03 mm.

Refinement

The structure was solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement on F2 was based on 10107 observed reflections and 416 variable parameters and converged (largest parameter shift was 0.00 times its e.s.d.) with unweighted and weighted agreement factors of R1 = 0.0460 and wR2 = 0.1483. The standard deviation of an observation of unit weight was 1.06. Unit weights were used. The maximum and minimum peaks on the final difference Fourier map corresponded to 3.95 and -2.77 e-3, respectively.

Figures

Fig. 1.

Fig. 1.

Packing diagram of (C6H5C2H4NH3)2PbBr4, approximately viewed down (a) the a axis and (b) the b axis. Dashed line shows the outline of two triclinic unit cells along with the c axis. For clarity, the atoms are represented as spheres with each uniform size for the PbBr6 octahedra and the phenethylammonium, respectively. Hydrogen atoms are omitted.

Fig. 2.

Fig. 2.

The relative rotation of PbBr6 due to hydrogen bonding (dashed lines) between the octahedra and ammonium groups. The structure is approximately viewed down (a) the b axis and (b) the a axis. The thermal ellipsoids are drawn at 50% probability for nitrogen, bromine, and lead atoms. The hydrogen atoms of nothing to do with hydrogen bonding are omitted.

Crystal data

(C8H12N)2[PbBr4] Z = 4
Mr = 771.20 F(000) = 1424.00
Triclinic, P1 Dx = 2.276 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 11.6150 (4) Å Cell parameters from 15239 reflections
b = 11.6275 (5) Å θ = 3.2–27.5°
c = 17.5751 (6) Å µ = 14.63 mm1
α = 99.5472 (12)° T = 296 K
β = 105.7245 (10)° Platelet, colourless
γ = 89.9770 (12)° 0.25 × 0.20 × 0.03 mm
V = 2250.62 (15) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 7157 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1 Rint = 0.053
ω scans θmax = 27.5°
Absorption correction: numerical see: Higashi (1999) h = −15→12
Tmin = 0.106, Tmax = 0.645 k = −15→15
20072 measured reflections l = −22→22
10077 independent reflections

Refinement

Refinement on F2 0 restraints
R[F2 > 2σ(F2)] = 0.042 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0442P)2] where P = (Fo2 + 2Fc2)/3
S = 0.97 (Δ/σ)max < 0.001
10077 reflections Δρmax = 3.26 e Å3
416 parameters Δρmin = −2.53 e Å3

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.24494 (2) 0.239633 (18) −0.011473 (16) 0.03270 (15)
Pb2 0.74492 (2) 0.254601 (18) −0.011604 (16) 0.03274 (15)
Br1 −0.00101 (6) 0.18802 (6) 0.00154 (5) 0.04426 (17)
Br2 0.31464 (7) 0.27662 (6) 0.18009 (5) 0.04282 (16)
Br3 0.18198 (7) 0.20941 (6) −0.18389 (5) 0.04710 (18)
Br4 0.18722 (7) 0.49165 (5) −0.00100 (5) 0.04628 (18)
Br5 0.31258 (7) −0.00779 (5) 0.00106 (5) 0.04622 (18)
Br6 0.49894 (6) 0.31257 (6) 0.00149 (5) 0.04407 (18)
Br7 0.81414 (7) 0.31351 (6) 0.18005 (5) 0.04330 (17)
Br8 0.68260 (7) 0.19889 (6) −0.18383 (5) 0.04685 (17)
N1 0.1391 (5) 0.0296 (4) 0.1519 (3) 0.0467 (14)
N2 0.6387 (5) 0.5470 (4) 0.1515 (3) 0.0488 (15)
N3 0.5666 (5) 0.1314 (4) 0.1523 (3) 0.0452 (14)
N4 0.0652 (5) 0.4444 (4) 0.1512 (3) 0.0488 (15)
C1 0.0360 (7) 0.0491 (7) 0.1886 (5) 0.057 (2)
C2 0.0764 (7) 0.1128 (6) 0.2729 (5) 0.057 (2)
C3 0.1601 (7) 0.0445 (6) 0.3284 (4) 0.0496 (19)
C4 0.2817 (8) 0.0695 (7) 0.3537 (5) 0.061 (2)
C5 0.3586 (10) 0.0075 (9) 0.4031 (6) 0.083 (3)
C6 0.3178 (12) −0.0828 (9) 0.4286 (5) 0.092 (3)
C7 0.1951 (13) −0.1109 (8) 0.4068 (6) 0.093 (3)
C8 0.1187 (9) −0.0466 (7) 0.3569 (5) 0.069 (2)
C9 0.5357 (7) 0.5449 (7) 0.1881 (5) 0.056 (2)
C10 0.5782 (7) 0.5256 (6) 0.2735 (4) 0.055 (2)
C11 0.6609 (8) 0.6222 (6) 0.3296 (4) 0.052 (2)
C12 0.6160 (9) 0.7258 (7) 0.3569 (5) 0.068 (2)
C13 0.6902 (13) 0.8155 (8) 0.4068 (6) 0.090 (3)
C14 0.8131 (12) 0.8005 (9) 0.4275 (5) 0.092 (3)
C15 0.8591 (10) 0.6986 (9) 0.4008 (5) 0.080 (3)
C16 0.7830 (9) 0.6098 (8) 0.3539 (5) 0.064 (2)
C17 0.5851 (7) 0.0204 (6) 0.1850 (4) 0.057 (2)
C18 0.5733 (8) 0.0381 (6) 0.2699 (4) 0.058 (2)
C19 0.6595 (7) 0.1290 (6) 0.3289 (4) 0.0483 (19)
C20 0.6198 (8) 0.2342 (7) 0.3589 (5) 0.063 (2)
C21 0.6982 (12) 0.3185 (8) 0.4121 (6) 0.084 (3)
C22 0.8178 (11) 0.2988 (9) 0.4339 (5) 0.085 (3)
C23 0.8600 (9) 0.1948 (9) 0.4045 (5) 0.079 (2)
C24 0.7809 (8) 0.1109 (8) 0.3529 (5) 0.063 (2)
C25 0.0873 (7) 0.5722 (5) 0.1864 (5) 0.055 (2)
C26 0.0736 (8) 0.5965 (6) 0.2690 (5) 0.061 (2)
C27 0.1587 (8) 0.5336 (6) 0.3276 (4) 0.053 (2)
C28 0.2787 (8) 0.5620 (8) 0.3514 (5) 0.067 (2)
C29 0.3581 (9) 0.5032 (9) 0.4037 (6) 0.083 (3)
C30 0.3166 (12) 0.4151 (9) 0.4318 (5) 0.094 (3)
C31 0.1934 (12) 0.3866 (8) 0.4114 (6) 0.088 (3)
C32 0.1190 (9) 0.4465 (7) 0.3589 (5) 0.071 (2)
H1 0.1122 −0.0084 0.1017 0.056*
H2 0.1928 −0.0124 0.1804 0.056*
H3 0.1730 0.0983 0.1519 0.056*
H4 −0.0232 0.0936 0.1568 0.069*
H5 −0.0017 −0.0257 0.1878 0.069*
H6 0.0068 0.1303 0.2925 0.068*
H7 0.1164 0.1863 0.2737 0.068*
H8 0.3126 0.1310 0.3363 0.073*
H9 0.4401 0.0280 0.4193 0.100*
H10 0.3710 −0.1266 0.4606 0.110*
H11 0.1653 −0.1716 0.4255 0.111*
H12 0.0369 −0.0653 0.3419 0.082*
H13 0.6115 0.5585 0.1010 0.059*
H14 0.6741 0.4792 0.1523 0.059*
H15 0.6913 0.6046 0.1795 0.059*
H16 0.4964 0.6184 0.1865 0.068*
H17 0.4778 0.4830 0.1570 0.068*
H18 0.6194 0.4531 0.2745 0.066*
H19 0.5090 0.5168 0.2932 0.066*
H20 0.5339 0.7351 0.3414 0.082*
H21 0.6592 0.8845 0.4262 0.108*
H22 0.8648 0.8611 0.4602 0.111*
H23 0.9414 0.6899 0.4145 0.096*
H24 0.8139 0.5390 0.3377 0.077*
H25 0.5738 0.1194 0.1024 0.054*
H26 0.6213 0.1856 0.1829 0.054*
H27 0.4938 0.1555 0.1519 0.054*
H28 0.6641 −0.0065 0.1848 0.068*
H29 0.5263 −0.0390 0.1512 0.068*
H30 0.4923 0.0601 0.2687 0.070*
H31 0.5849 −0.0357 0.2891 0.070*
H32 0.5387 0.2485 0.3430 0.075*
H33 0.6700 0.3882 0.4331 0.101*
H34 0.8713 0.3562 0.4688 0.102*
H35 0.9414 0.1816 0.4196 0.094*
H36 0.8092 0.0403 0.3336 0.076*
H37 0.0738 0.4324 0.1018 0.059*
H38 −0.0089 0.4220 0.1496 0.059*
H39 0.1175 0.4033 0.1816 0.059*
H40 0.1676 0.5967 0.1874 0.066*
H41 0.0312 0.6171 0.1526 0.066*
H42 −0.0078 0.5744 0.2670 0.073*
H43 0.0858 0.6798 0.2886 0.073*
H44 0.3076 0.6224 0.3321 0.080*
H45 0.4395 0.5242 0.4194 0.099*
H46 0.3702 0.3729 0.4649 0.113*
H47 0.1636 0.3291 0.4329 0.105*
H48 0.0373 0.4270 0.3438 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.027 (12) 0.02690 (13) 0.04648 (18) 0.00509 (10) 0.01243 (12) 0.01035 (11)
Pb2 0.027 (12) 0.02591 (13) 0.04690 (18) 0.00448 (10) 0.01214 (12) 0.00715 (11)
Br1 0.0289 (3) 0.0460 (4) 0.0576 (5) 0.0041 (2) 0.0130 (3) 0.0062 (3)
Br2 0.0381 (4) 0.0421 (3) 0.0472 (4) 0.0046 (3) 0.0104 (3) 0.0071 (3)
Br3 0.0522 (4) 0.0434 (4) 0.0430 (4) −0.0007 (3) 0.0087 (3) 0.0074 (3)
Br4 0.0558 (4) 0.0270 (3) 0.0602 (4) 0.0065 (3) 0.0206 (4) 0.0115 (3)
Br5 0.0557 (4) 0.0268 (3) 0.0604 (4) 0.0064 (3) 0.0212 (4) 0.0105 (3)
Br6 0.0276 (3) 0.0502 (4) 0.0577 (5) 0.0072 (3) 0.0131 (3) 0.0163 (3)
Br7 0.0384 (4) 0.0435 (3) 0.0482 (4) 0.0037 (3) 0.0105 (3) 0.0109 (3)
Br8 0.0509 (4) 0.0438 (4) 0.0432 (4) 0.0082 (3) 0.0077 (3) 0.0086 (3)
N1 0.053 (4) 0.043 (3) 0.041 (3) 0.010 (2) 0.006 (3) 0.007 (2)
N2 0.052 (4) 0.043 (3) 0.050 (4) 0.003 (2) 0.009 (3) 0.012 (2)
N3 0.036 (3) 0.053 (3) 0.048 (3) −0.001 (2) 0.015 (3) 0.008 (2)
N4 0.044 (3) 0.051 (3) 0.054 (4) 0.009 (2) 0.016 (3) 0.011 (3)
C1 0.046 (4) 0.067 (5) 0.063 (5) 0.010 (4) 0.014 (4) 0.024 (4)
C2 0.060 (5) 0.062 (5) 0.056 (5) 0.013 (4) 0.027 (4) 0.012 (4)
C3 0.060 (5) 0.049 (4) 0.041 (4) 0.006 (3) 0.020 (4) 0.001 (3)
C4 0.068 (6) 0.064 (5) 0.051 (5) 0.000 (4) 0.016 (4) 0.009 (4)
C5 0.072 (7) 0.108 (8) 0.058 (6) 0.003 (6) 0.000 (5) 0.014 (5)
C6 0.118 (11) 0.090 (8) 0.042 (5) 0.026 (7) −0.016 (6) 0.004 (5)
C7 0.163 (13) 0.055 (6) 0.056 (6) −0.003 (6) 0.019 (7) 0.019 (4)
C8 0.085 (7) 0.067 (5) 0.055 (5) −0.010 (4) 0.020 (5) 0.011 (4)
C9 0.040 (4) 0.061 (5) 0.060 (5) 0.005 (3) 0.008 (4) −0.003 (4)
C10 0.052 (5) 0.066 (5) 0.050 (5) −0.004 (4) 0.021 (4) 0.005 (4)
C11 0.064 (5) 0.054 (4) 0.047 (5) 0.010 (4) 0.024 (4) 0.018 (3)
C12 0.076 (7) 0.074 (6) 0.059 (6) 0.019 (5) 0.022 (5) 0.018 (4)
C13 0.145 (11) 0.058 (6) 0.062 (7) 0.020 (6) 0.023 (7) 0.005 (5)
C14 0.129 (12) 0.079 (7) 0.045 (5) −0.028 (7) −0.009 (6) −0.002 (5)
C15 0.081 (8) 0.106 (8) 0.049 (6) −0.006 (6) 0.016 (5) 0.011 (5)
C16 0.075 (7) 0.073 (6) 0.051 (5) 0.020 (5) 0.026 (5) 0.011 (4)
C17 0.066 (5) 0.041 (4) 0.060 (5) 0.013 (3) 0.007 (4) 0.015 (3)
C18 0.068 (6) 0.059 (5) 0.050 (5) −0.003 (4) 0.011 (4) 0.024 (4)
C19 0.057 (5) 0.052 (4) 0.039 (4) 0.002 (3) 0.012 (4) 0.018 (3)
C20 0.066 (6) 0.070 (5) 0.054 (5) 0.014 (4) 0.017 (4) 0.017 (4)
C21 0.138 (11) 0.057 (6) 0.054 (6) 0.011 (6) 0.024 (7) 0.003 (4)
C22 0.108 (10) 0.087 (7) 0.043 (5) −0.021 (6) −0.006 (6) 0.006 (5)
C23 0.055 (6) 0.113 (8) 0.060 (6) −0.007 (6) 0.007 (5) 0.007 (6)
C24 0.062 (6) 0.077 (6) 0.049 (5) 0.014 (4) 0.014 (4) 0.009 (4)
C25 0.057 (5) 0.037 (4) 0.064 (5) −0.002 (3) 0.008 (4) 0.003 (3)
C26 0.067 (6) 0.048 (4) 0.061 (5) 0.017 (4) 0.012 (4) −0.005 (4)
C27 0.068 (6) 0.047 (4) 0.048 (5) 0.005 (3) 0.029 (4) 0.000 (3)
C28 0.061 (6) 0.086 (6) 0.058 (5) 0.004 (4) 0.019 (5) 0.020 (4)
C29 0.065 (7) 0.113 (8) 0.059 (6) 0.003 (6) 0.007 (5) 0.003 (6)
C30 0.135 (11) 0.083 (7) 0.045 (6) 0.043 (7) −0.002 (7) 0.004 (5)
C31 0.136 (11) 0.063 (6) 0.057 (6) −0.005 (6) 0.014 (7) 0.011 (5)
C32 0.077 (7) 0.069 (6) 0.064 (6) −0.012 (5) 0.017 (5) 0.004 (4)

Geometric parameters (Å, °)

Pb1—Br3 2.8786 (8) C31—C32 1.365 (14)
Pb1—Br4 2.9927 (7) N1—H1 0.890
Pb1—Br1 2.9957 (7) N1—H2 0.890
Pb1—Br6 3.0080 (7) N1—H3 0.890
Pb1—Br5 3.0095 (7) N2—H13 0.890
Pb1—Br2 3.1965 (8) N2—H14 0.890
Pb2—Br8 2.8755 (8) N2—H15 0.890
Pb2—Br5i 2.9935 (6) N3—H25 0.890
Pb2—Br6 2.9957 (7) N3—H26 0.890
Pb2—Br1ii 3.0082 (7) N3—H27 0.890
Pb2—Br4iii 3.0110 (7) N4—H37 0.890
Pb2—Br7 3.1982 (8) N4—H38 0.890
Br1—Pb2iv 3.0082 (7) N4—H39 0.890
Br4—Pb2iii 3.0110 (7) C1—H4 0.970
Br5—Pb2i 2.9935 (6) C1—H5 0.970
N1—C1 1.507 (9) C2—H6 0.970
N2—C9 1.505 (9) C2—H7 0.970
N3—C17 1.491 (8) C4—H8 0.930
N4—C25 1.505 (8) C5—H9 0.930
C1—C2 1.491 (11) C6—H10 0.930
C2—C3 1.506 (11) C7—H11 0.930
C3—C4 1.377 (12) C8—H12 0.930
C3—C8 1.383 (10) C9—H16 0.970
C4—C5 1.364 (13) C9—H17 0.970
C5—C6 1.342 (13) C10—H18 0.970
C6—C7 1.395 (15) C10—H19 0.970
C7—C8 1.382 (14) C12—H20 0.930
C9—C10 1.502 (11) C13—H21 0.930
C10—C11 1.509 (11) C14—H22 0.930
C11—C12 1.377 (11) C15—H23 0.930
C11—C16 1.381 (12) C16—H24 0.930
C12—C13 1.374 (14) C17—H28 0.970
C13—C14 1.393 (16) C17—H29 0.970
C14—C15 1.364 (14) C18—H30 0.970
C15—C16 1.361 (13) C18—H31 0.970
C17—C18 1.516 (11) C20—H32 0.930
C18—C19 1.506 (11) C21—H33 0.930
C19—C20 1.380 (11) C22—H34 0.930
C19—C24 1.385 (12) C23—H35 0.930
C20—C21 1.379 (13) C24—H36 0.930
C21—C22 1.368 (15) C25—H40 0.970
C22—C23 1.378 (13) C25—H41 0.970
C23—C24 1.369 (12) C26—H42 0.970
C25—C26 1.483 (11) C26—H43 0.970
C26—C27 1.507 (12) C28—H44 0.930
C27—C28 1.366 (12) C29—H45 0.930
C27—C32 1.365 (10) C30—H46 0.930
C28—C29 1.382 (13) C31—H47 0.930
C29—C30 1.350 (13) C32—H48 0.930
C30—C31 1.403 (15)
Br1···N1 3.507 (5) H10···H44ix 3.328
Br1···N1v 3.412 (5) H11···C21vii 3.569
Br1···N4 3.564 (5) H11···C22vii 3.047
Br2···N1 3.411 (5) H11···C23vii 3.135
Br2···N3 3.486 (6) H11···C26ix 3.454
Br2···N4 3.462 (5) H11···C27ix 3.563
Br3···N2iii 3.393 (5) H11···C28ix 3.551
Br4···N4 3.466 (7) H11···H23xii 3.005
Br4···N4vi 3.546 (5) H11···H34vii 3.161
Br5···N3 3.566 (5) H11···H35vii 3.301
Br5···N3i 3.473 (6) H11···H43ix 2.654
Br6···N2 3.510 (5) H11···H44ix 3.366
Br6···N2iii 3.402 (6) H12···Br3v 3.408
Br6···N3 3.577 (6) H12···H22xii 3.448
Br7···N2 3.416 (5) H12···H23xii 3.596
Br7···N3 3.448 (5) H12···H35iv 3.295
Br7···N4ii 3.483 (6) H12···H36iv 2.893
Br8···N1i 3.395 (5) H12···H43ix 3.057
N1···Br1 3.507 (5) H13···Br3iii 3.459
N1···Br1v 3.412 (5) H13···Br4iii 3.284
N1···Br2 3.411 (5) H13···Br6 3.171
N1···Br8i 3.395 (5) H13···Br6iii 2.604
N2···Br3iii 3.393 (5) H14···Br4iii 3.522
N2···Br6 3.510 (5) H14···Br6 3.209
N2···Br6iii 3.402 (6) H14···Br7 2.544
N2···Br7 3.416 (5) H15···Br3iii 2.596
N3···Br2 3.486 (6) H15···H42ii 3.459
N3···Br5 3.566 (5) H16···Br6iii 3.540
N3···Br5i 3.473 (6) H16···Br8iii 2.968
N3···Br6 3.577 (6) H17···Br2 3.203
N3···Br7 3.448 (5) H17···Br6 3.166
N4···Br1 3.564 (5) H18···Br7 3.412
N4···Br2 3.462 (5) H18···C20 3.150
N4···Br4 3.466 (7) H18···C21 3.031
N4···Br4vi 3.546 (5) H18···H26 3.259
N4···Br7iv 3.483 (6) H18···H32 3.090
Br1···H1 3.181 H18···H33 2.914
Br1···H1v 2.608 H19···Br2 3.547
Br1···H3 3.189 H19···C28 3.128
Br1···H4 3.177 H19···C29 2.968
Br1···H5v 3.550 H19···H32 3.371
Br1···H37 3.073 H19···H33 3.240
Br1···H38 3.459 H19···H44 2.833
Br2···H3 2.544 H19···H45 2.545
Br2···H7 3.426 H20···Br8iii 3.392
Br2···H8 3.462 H20···H10x 3.403
Br2···H17 3.203 H20···H31x 3.066
Br2···H19 3.547 H20···H44 2.889
Br2···H27 2.623 H20···H45 3.321
Br2···H30 3.547 H21···C5viii 3.116
Br2···H32 3.368 H21···C6viii 3.096
Br2···H37 3.426 H21···C18x 3.445
Br2···H39 2.726 H21···C19x 3.553
Br3···H5v 2.971 H21···C24x 3.564
Br3···H12v 3.408 H21···H9x 3.028
Br3···H13iii 3.459 H21···H9viii 3.243
Br3···H15iii 2.596 H21···H10x 3.564
Br3···H28i 2.961 H21···H10viii 3.244
Br3···H41vi 3.296 H21···H31x 2.649
Br3···H42vi 3.486 H21···H36x 3.389
Br3···H43vi 3.521 H22···C8viii 3.521
Br4···H13iii 3.284 H22···C23xi 3.562
Br4···H14iii 3.522 H22···H12xiii 3.448
Br4···H37 2.679 H22···H35xi 2.747
Br4···H37vi 3.273 H22···H36x 3.236
Br4···H38vi 3.171 H22···H47viii 3.200
Br4···H40 3.403 H23···C22xi 3.283
Br4···H41vi 3.218 H23···C23xi 3.442
Br5···H1 3.283 H23···C26ii 3.360
Br5···H3 3.524 H23···H11xiii 3.005
Br5···H25 3.281 H23···H12xiii 3.596
Br5···H25i 2.693 H23···H34xi 2.678
Br5···H27 3.221 H23···H35xi 2.998
Br5···H28i 3.380 H23···H42ii 2.924
Br5···H29 3.166 H23···H43ii 3.107
Br6···H13 3.171 H23···H47viii 3.269
Br6···H13iii 2.604 H23···H48ii 3.409
Br6···H14 3.209 H24···Br7 3.485
Br6···H16iii 3.540 H24···C21 3.486
Br6···H17 3.166 H24···C22 3.490
Br6···H25 3.071 H24···H33 3.342
Br6···H27 3.466 H24···H34 3.326
Br7···H4ii 3.216 H24···H42ii 2.751
Br7···H6ii 3.529 H24···H48ii 2.887
Br7···H14 2.544 H25···Br5 3.281
Br7···H18 3.412 H25···Br5i 2.693
Br7···H24 3.485 H25···Br6 3.071
Br7···H25 3.416 H25···Br7 3.416
Br7···H26 2.706 H26···Br7 2.706
Br7···H38ii 2.632 H26···H18 3.259
Br7···H42ii 3.545 H27···Br2 2.623
Br7···H48ii 3.382 H27···Br5 3.221
Br8···H1i 3.444 H27···Br6 3.466
Br8···H2i 2.606 H28···Br3i 2.961
Br8···H16iii 2.968 H28···Br5i 3.380
Br8···H20iii 3.392 H29···Br5 3.166
Br8···H29i 3.284 H29···Br8i 3.284
Br8···H30i 3.506 H30···Br2 3.547
Br8···H31i 3.521 H30···Br8i 3.506
Br8···H40iii 2.965 H30···C4 3.185
C2···H35iv 3.354 H30···C5 3.291
C2···H47 3.372 H30···H2 3.444
C3···H35iv 3.594 H30···H8 2.732
C3···H47 3.502 H30···H9 2.951
C4···H30 3.185 H31···Br8i 3.521
C4···H47 3.545 H31···C12ix 3.178
C5···H9vii 3.442 H31···C13ix 2.928
C5···H10vii 3.513 H31···H9 3.184
C5···H21viii 3.116 H31···H20ix 3.066
C5···H30 3.291 H31···H21ix 2.649
C6···H9vii 3.290 H32···Br2 3.368
C6···H21viii 3.096 H32···H8 2.925
C6···H44ix 3.550 H32···H9 3.415
C7···H43ix 2.957 H32···H18 3.090
C7···H44ix 3.554 H32···H19 3.371
C8···H22viii 3.521 H32···H45 3.580
C8···H35iv 3.572 H32···H46 3.429
C8···H43ix 3.192 H33···C10 3.380
C10···H33 3.380 H33···C11 3.501
C10···H45 3.380 H33···C16 3.533
C11···H33 3.501 H33···C29viii 3.039
C12···H31x 3.178 H33···C30viii 2.982
C12···H46viii 3.473 H33···C31viii 3.481
C13···H31x 2.928 H33···H18 2.914
C13···H36x 3.533 H33···H19 3.240
C13···H46viii 3.588 H33···H24 3.342
C13···H47viii 3.553 H33···H45 3.082
C14···H35xi 3.325 H33···H45viii 3.208
C14···H36x 3.463 H33···H46viii 3.154
C14···H47viii 3.037 H34···C15xi 3.472
C15···H34xi 3.472 H34···C31viii 3.564
C15···H35xi 3.443 H34···C32viii 3.457
C15···H42ii 3.294 H34···H11vii 3.161
C15···H47viii 3.072 H34···H23xi 2.678
C16···H33 3.533 H34···H24 3.326
C16···H42ii 3.195 H34···H48ii 3.483
C16···H47viii 3.576 H35···C2ii 3.354
C18···H9 3.407 H35···C3ii 3.594
C18···H21ix 3.445 H35···C8ii 3.572
C19···H21ix 3.553 H35···C14xi 3.325
C20···H10vii 3.574 H35···C15xi 3.443
C20···H18 3.150 H35···H6ii 2.529
C21···H11vii 3.569 H35···H11vii 3.301
C21···H18 3.031 H35···H12ii 3.295
C21···H24 3.486 H35···H22xi 2.747
C22···H11vii 3.047 H35···H23xi 2.998
C22···H23xi 3.283 H35···H47ii 3.033
C22···H24 3.490 H36···C13ix 3.533
C23···H6ii 2.944 H36···C14ix 3.463
C23···H11vii 3.135 H36···H6ii 2.833
C23···H22xi 3.562 H36···H12ii 2.893
C23···H23xi 3.442 H36···H21ix 3.389
C24···H6ii 3.106 H36···H22ix 3.236
C24···H21ix 3.564 H37···Br1 3.073
C26···H11x 3.454 H37···Br2 3.426
C26···H23iv 3.360 H37···Br4 2.679
C27···H11x 3.563 H37···Br4vi 3.273
C28···H11x 3.551 H38···Br1 3.459
C28···H19 3.128 H38···Br4vi 3.171
C29···H19 2.968 H38···Br7iv 2.632
C29···H33viii 3.039 H39···Br2 2.726
C29···H45viii 3.416 H39···H3 3.582
C29···H46viii 3.509 H39···H7 3.217
C30···H8 3.442 H40···Br4 3.403
C30···H33viii 2.982 H40···Br8iii 2.965
C30···H45viii 3.277 H41···Br3vi 3.296
C31···H7 3.007 H41···Br4vi 3.218
C31···H8 3.489 H42···Br3vi 3.486
C31···H33viii 3.481 H42···Br7iv 3.545
C31···H34viii 3.564 H42···C15iv 3.294
C32···H7 3.142 H42···C16iv 3.195
C32···H34viii 3.457 H42···H15iv 3.459
H1···Br1 3.181 H42···H23iv 2.924
H1···Br1v 2.608 H42···H24iv 2.751
H1···Br5 3.283 H43···Br3vi 3.521
H1···Br8i 3.444 H43···C7x 2.957
H2···Br8i 2.606 H43···C8x 3.192
H2···H30 3.444 H43···H11x 2.654
H3···Br1 3.189 H43···H12x 3.057
H3···Br2 2.544 H43···H23iv 3.107
H3···Br5 3.524 H44···C6x 3.550
H3···H39 3.582 H44···C7x 3.554
H4···Br1 3.177 H44···H10x 3.328
H4···Br7iv 3.216 H44···H11x 3.366
H5···Br1v 3.550 H44···H19 2.833
H5···Br3v 2.971 H44···H20 2.889
H6···Br7iv 3.529 H45···C10 3.380
H6···C23iv 2.944 H45···C29viii 3.416
H6···C24iv 3.106 H45···C30viii 3.277
H6···H35iv 2.529 H45···H19 2.545
H6···H36iv 2.833 H45···H20 3.321
H6···H47 3.229 H45···H32 3.580
H6···H48 3.411 H45···H33 3.082
H7···Br2 3.426 H45···H33viii 3.208
H7···C31 3.007 H45···H45viii 2.949
H7···C32 3.142 H45···H46viii 2.686
H7···H39 3.217 H46···C12viii 3.473
H7···H47 2.919 H46···C13viii 3.588
H7···H48 3.108 H46···C29viii 3.509
H8···Br2 3.462 H46···H8 3.246
H8···C30 3.442 H46···H32 3.429
H8···C31 3.489 H46···H33viii 3.154
H8···H30 2.732 H46···H45viii 2.686
H8···H32 2.925 H47···C2 3.372
H8···H46 3.246 H47···C3 3.502
H8···H47 3.387 H47···C4 3.545
H9···C5vii 3.442 H47···C13viii 3.553
H9···C6vii 3.290 H47···C14viii 3.037
H9···C18 3.407 H47···C15viii 3.072
H9···H9vii 2.979 H47···C16viii 3.576
H9···H10vii 2.696 H47···H6 3.229
H9···H21ix 3.028 H47···H7 2.919
H9···H21viii 3.243 H47···H8 3.387
H9···H30 2.951 H47···H22viii 3.200
H9···H31 3.184 H47···H23viii 3.269
H9···H32 3.415 H47···H35iv 3.033
H10···C5vii 3.513 H48···Br7iv 3.382
H10···C20vii 3.574 H48···H6 3.411
H10···H9vii 2.696 H48···H7 3.108
H10···H20ix 3.403 H48···H23iv 3.409
H10···H21ix 3.564 H48···H24iv 2.887
H10···H21viii 3.244 H48···H34iv 3.483
Br3—Pb1—Br4 90.86 (2) C17—N3—H27 109.5
Br3—Pb1—Br1 96.54 (2) H25—N3—H27 109.5
Br4—Pb1—Br1 88.17 (2) H26—N3—H27 109.5
Br3—Pb1—Br6 91.58 (2) C25—N4—H37 109.5
Br4—Pb1—Br6 88.03 (2) C25—N4—H38 109.5
Br1—Pb1—Br6 171.08 (2) H37—N4—H38 109.5
Br3—Pb1—Br5 96.46 (2) C25—N4—H39 109.5
Br4—Pb1—Br5 172.68 (2) H37—N4—H39 109.5
Br1—Pb1—Br5 91.34 (2) H38—N4—H39 109.5
Br6—Pb1—Br5 91.41 (2) C2—C1—H4 109.3
Br3—Pb1—Br2 179.289 (18) N1—C1—H4 109.3
Br4—Pb1—Br2 88.44 (2) C2—C1—H5 109.3
Br1—Pb1—Br2 83.56 (2) N1—C1—H5 109.3
Br6—Pb1—Br2 88.28 (2) H4—C1—H5 108.0
Br5—Pb1—Br2 84.24 (2) C1—C2—H6 109.0
Br8—Pb2—Br5i 91.00 (2) C3—C2—H6 109.0
Br8—Pb2—Br6 96.67 (2) C1—C2—H7 109.0
Br5i—Pb2—Br6 88.12 (2) C3—C2—H7 109.0
Br8—Pb2—Br1ii 91.54 (2) H6—C2—H7 107.8
Br5i—Pb2—Br1ii 87.98 (2) C5—C4—H8 118.7
Br6—Pb2—Br1ii 170.97 (2) C3—C4—H8 118.7
Br8—Pb2—Br4iii 96.35 (2) C6—C5—H9 119.7
Br5i—Pb2—Br4iii 172.63 (2) C4—C5—H9 119.7
Br6—Pb2—Br4iii 91.46 (2) C5—C6—H10 120.1
Br1ii—Pb2—Br4iii 91.36 (2) C7—C6—H10 120.1
Br8—Pb2—Br7 179.356 (18) C8—C7—H11 120.6
Br5i—Pb2—Br7 88.37 (2) C6—C7—H11 120.6
Br6—Pb2—Br7 83.44 (2) C7—C8—H12 119.0
Br1ii—Pb2—Br7 88.31 (2) C3—C8—H12 119.0
Br4iii—Pb2—Br7 84.28 (2) C10—C9—H16 109.4
Pb1—Br1—Pb2iv 150.77 (3) N2—C9—H16 109.4
Pb1—Br4—Pb2iii 152.07 (3) C10—C9—H17 109.4
Pb2i—Br5—Pb1 152.15 (3) N2—C9—H17 109.4
Pb2—Br6—Pb1 150.86 (3) H16—C9—H17 108.0
C2—C1—N1 111.6 (7) C9—C10—H18 108.7
C1—C2—C3 112.9 (7) C11—C10—H18 108.7
C4—C3—C8 116.4 (8) C9—C10—H19 108.7
C4—C3—C2 121.9 (7) C11—C10—H19 108.7
C8—C3—C2 121.7 (8) H18—C10—H19 107.6
C5—C4—C3 122.5 (9) C13—C12—H20 119.4
C6—C5—C4 120.6 (11) C11—C12—H20 119.4
C5—C6—C7 119.8 (10) C12—C13—H21 120.9
C8—C7—C6 118.7 (9) C14—C13—H21 120.9
C7—C8—C3 122.0 (10) C15—C14—H22 119.4
C10—C9—N2 111.0 (7) C13—C14—H22 119.4
C9—C10—C11 114.4 (6) C16—C15—H23 120.4
C12—C11—C16 118.4 (9) C14—C15—H23 120.4
C12—C11—C10 120.5 (9) C15—C16—H24 119.2
C16—C11—C10 121.1 (8) C11—C16—H24 119.2
C13—C12—C11 121.3 (10) N3—C17—H28 109.5
C12—C13—C14 118.3 (10) C18—C17—H28 109.5
C15—C14—C13 121.2 (10) N3—C17—H29 109.5
C16—C15—C14 119.1 (11) C18—C17—H29 109.5
C15—C16—C11 121.6 (9) H28—C17—H29 108.1
N3—C17—C18 110.7 (6) C19—C18—H30 108.5
C19—C18—C17 114.9 (6) C17—C18—H30 108.5
C20—C19—C24 118.1 (8) C19—C18—H31 108.5
C20—C19—C18 120.7 (8) C17—C18—H31 108.5
C24—C19—C18 121.1 (8) H30—C18—H31 107.5
C21—C20—C19 121.1 (10) C21—C20—H32 119.4
C22—C21—C20 119.4 (10) C19—C20—H32 119.4
C21—C22—C23 120.6 (10) C22—C21—H33 120.3
C24—C23—C22 119.4 (10) C20—C21—H33 120.3
C23—C24—C19 121.3 (9) C21—C22—H34 119.7
C26—C25—N4 111.4 (6) C23—C22—H34 119.7
C25—C26—C27 114.2 (7) C24—C23—H35 120.3
C28—C27—C32 117.6 (9) C22—C23—H35 120.3
C28—C27—C26 121.0 (7) C23—C24—H36 119.3
C32—C27—C26 121.5 (8) C19—C24—H36 119.3
C27—C28—C29 121.6 (9) C26—C25—H40 109.4
C30—C29—C28 119.4 (11) N4—C25—H40 109.4
C29—C30—C31 120.6 (10) C26—C25—H41 109.4
C32—C31—C30 117.5 (10) N4—C25—H41 109.4
C27—C32—C31 123.1 (10) H40—C25—H41 108.0
C1—N1—H1 109.5 C25—C26—H42 108.7
C1—N1—H2 109.5 C27—C26—H42 108.7
H1—N1—H2 109.5 C25—C26—H43 108.7
C1—N1—H3 109.5 C27—C26—H43 108.7
H1—N1—H3 109.5 H42—C26—H43 107.6
H2—N1—H3 109.5 C27—C28—H44 119.2
C9—N2—H13 109.5 C29—C28—H44 119.2
C9—N2—H14 109.5 C30—C29—H45 120.3
H13—N2—H14 109.5 C28—C29—H45 120.3
C9—N2—H15 109.5 C29—C30—H46 119.7
H13—N2—H15 109.5 C31—C30—H46 119.7
H14—N2—H15 109.5 C32—C31—H47 121.2
C17—N3—H25 109.5 C30—C31—H47 121.2
C17—N3—H26 109.5 C27—C32—H48 118.4
H25—N3—H26 109.5 C31—C32—H48 118.4
Br3—Pb1—Br1—Pb2iv −71.22 (6) C9—C10—C11—C12 76.7 (9)
Br4—Pb1—Br1—Pb2iv 19.43 (6) C9—C10—C11—C16 −102.4 (9)
Br5—Pb1—Br1—Pb2iv −167.88 (6) C16—C11—C12—C13 0.5 (13)
Br2—Pb1—Br1—Pb2iv 108.07 (6) C10—C11—C12—C13 −178.7 (8)
Br3—Pb1—Br4—Pb2iii −89.77 (6) C11—C12—C13—C14 1.7 (14)
Br1—Pb1—Br4—Pb2iii 173.72 (6) C12—C13—C14—C15 −1.5 (16)
Br6—Pb1—Br4—Pb2iii 1.78 (6) C13—C14—C15—C16 −0.8 (15)
Br2—Pb1—Br4—Pb2iii 90.11 (6) C14—C15—C16—C11 3.0 (14)
Br3—Pb1—Br5—Pb2i −92.15 (6) C12—C11—C16—C15 −2.9 (13)
Br1—Pb1—Br5—Pb2i 4.58 (7) C10—C11—C16—C15 176.3 (7)
Br6—Pb1—Br5—Pb2i 176.10 (6) N3—C17—C18—C19 −58.9 (9)
Br2—Pb1—Br5—Pb2i 87.97 (6) C17—C18—C19—C20 109.3 (9)
Br8—Pb2—Br6—Pb1 71.35 (6) C17—C18—C19—C24 −69.1 (9)
Br5i—Pb2—Br6—Pb1 −19.43 (6) C24—C19—C20—C21 −0.8 (12)
Br4iii—Pb2—Br6—Pb1 167.92 (6) C18—C19—C20—C21 −179.2 (7)
Br7—Pb2—Br6—Pb1 −108.01 (6) C19—C20—C21—C22 1.8 (13)
Br3—Pb1—Br6—Pb2 −76.20 (6) C20—C21—C22—C23 −1.5 (15)
Br4—Pb1—Br6—Pb2 −167.00 (6) C21—C22—C23—C24 0.2 (15)
Br5—Pb1—Br6—Pb2 20.30 (6) C22—C23—C24—C19 0.8 (14)
Br2—Pb1—Br6—Pb2 104.50 (6) C20—C19—C24—C23 −0.5 (12)
N1—C1—C2—C3 −64.3 (9) C18—C19—C24—C23 177.9 (7)
C1—C2—C3—C4 103.1 (9) N4—C25—C26—C27 60.4 (10)
C1—C2—C3—C8 −77.0 (10) C25—C26—C27—C28 68.7 (11)
C8—C3—C4—C5 0.9 (13) C25—C26—C27—C32 −111.4 (9)
C2—C3—C4—C5 −179.2 (9) C32—C27—C28—C29 1.7 (14)
C3—C4—C5—C6 0.9 (16) C26—C27—C28—C29 −178.4 (9)
C4—C5—C6—C7 −2.5 (17) C27—C28—C29—C30 0.3 (16)
C5—C6—C7—C8 2.2 (17) C28—C29—C30—C31 −3.0 (17)
C6—C7—C8—C3 −0.4 (16) C29—C30—C31—C32 3.7 (16)
C4—C3—C8—C7 −1.1 (13) C28—C27—C32—C31 −0.9 (14)
C2—C3—C8—C7 179.0 (9) C26—C27—C32—C31 179.2 (9)
N2—C9—C10—C11 64.1 (9) C30—C31—C32—C27 −1.8 (16)

Symmetry codes: (i) −x+1, −y, −z; (ii) x+1, y, z; (iii) −x+1, −y+1, −z; (iv) x−1, y, z; (v) −x, −y, −z; (vi) −x, −y+1, −z; (vii) −x+1, −y, −z+1; (viii) −x+1, −y+1, −z+1; (ix) x, y−1, z; (x) x, y+1, z; (xi) −x+2, −y+1, −z+1; (xii) x−1, y−1, z; (xiii) x+1, y+1, z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···Br1 0.89 3.18 3.508 (5) 104
N1—H3···Br2 0.89 2.54 3.411 (5) 165
N2—H13···Br6 0.89 3.17 3.509 (5) 105
N2—H14···Br7 0.89 2.54 3.416 (5) 167
N3—H26···Br7 0.89 2.71 3.448 (6) 142
N3—H27···Br2 0.89 2.62 3.486 (6) 164
N4—H37···Br4 0.89 2.68 3.465 (5) 148
N4—H39···Br2 0.89 2.73 3.462 (6) 140

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZQ2004).

References

  1. Billing, D. G. & Lemmerer, A. (2003). Acta Cryst. E59, m381–m383.
  2. Bondi, A. (1964). J. Phys. Chem.68, 441–451.
  3. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G. & Spagna, R. (2003). J. Appl. Cryst.36, 1103.
  4. Chapuis, G., Kind, R. & Arend, H. (1976). Phys. Status Solidi A36, 285–295.
  5. Cheng, Z. Y., Wang, H. F., Quan, Z. W., Lin, C. K., Lin, J. & Han, Y. C. (2005). J. Cryst. Growth285, 352–357.
  6. Eijk, C. W. E. van der, de Haas, J. T. M., Rodnyi, P. A., Khodyuk, I. V., Shibuya, K., Nishikido, F. & Koshimizu, M. (2008). Conf. Rec. IEEE 2008 Nucl. Sci. Symp. Med. Img. Conf., Dresden, Germany, Oct. 19–25, N69-3.
  7. Era, M., Morimoto, S., Tsutsui, T. & Saito, S. (1995). Synth. Met.71, 2013–2014.
  8. Higashi, T. (1999). ABSCOR Rigaku Corporation, Japan.
  9. Huh, Y.-D., Kim, J.-H., Kweon, S. S., Kuk, W.-K., Hwang, C.-S., Hyun, J.-W., Kim, Y.-J. & Park, Y.-B. (2006). Curr. Appl. Phys.6, 219–223.
  10. Kishimoto, S., Shibuya, K., Nishikido, F., Koshimizu, M., Haruki, R. & Yoda, Y. (2008). Appl. Phys. Lett.93, 261901 1–3.
  11. Kitazawa, N. & Watanabe, Y. (2005). Surf. Coat. Technol.198, 9–13.
  12. Mitzi, D. B. (1999). J. Solid State Chem.145, 694–704.
  13. Palmer, D. (2009). CrystalMaker CrystalMaker Software Ltd, Yarnton, Oxfordshire, England.
  14. Rigaku Americas & Rigaku Corporation (2008). CrystalStructure Rigaku Americas, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  15. Rigaku Corporation (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Westrip, S. P. (2009). publCIF In preparation.
  18. Willett, R. D. (1990). Acta Cryst. C46, 565–568.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680903712X/zq2004sup1.cif

e-65-m1323-sup1.cif (41.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903712X/zq2004Isup2.hkl

e-65-m1323-Isup2.hkl (492.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES