Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 7;65(Pt 11):m1316. doi: 10.1107/S1600536809040045

Hexaaqua­cobalt(II) bis­{[N-(4-meth­oxy-2-oxidobenzyl­idene)glycyl­glycinato]copper(II)} hexa­hydrate

Gan-Bing Yao a,*, Jia-Xun Jiang a, Li-Min Yuan a, Xiao-Ming Ren b
PMCID: PMC2971010  PMID: 21578079

Abstract

In the crystal structure of the title compound, [Co(H2O)6][Cu(C12H11N2O5)]2·6H2O, the CoII atom is located on an inversion center and coordinated by six water mol­ecules in a slightly distorted octa­hedral geometry. The CuII atom is chelated by the Schiff base ligand in a distorted CuN2O2 square-planar geometry. An extensive O—H⋯O hydrogen-bonding network is present in the crystal structure.

Related literature

For the magnetic properties of Schiff base complexes, see: Ion et al. (2009); Wu et al. (2007); Costes et al. (2006) and for their optical properties, see: Akine et al. (2008). graphic file with name e-65-m1316-scheme1.jpg

Experimental

Crystal data

  • [Co(H2O)6][Cu(C12H11N2O5)]2·6H2O

  • M r = 928.66

  • Triclinic, Inline graphic

  • a = 7.834 (2) Å

  • b = 10.835 (3) Å

  • c = 11.474 (3) Å

  • α = 76.705 (4)°

  • β = 76.616 (5)°

  • γ = 81.085 (4)°

  • V = 916.7 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.69 mm−1

  • T = 296 K

  • 0.35 × 0.30 × 0.25 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.561, T max = 0.658

  • 4773 measured reflections

  • 3345 independent reflections

  • 2801 reflections with I > 2σ(I)

  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.105

  • S = 1.01

  • 3345 reflections

  • 242 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.73 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040045/xu2621sup1.cif

e-65-m1316-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040045/xu2621Isup2.hkl

e-65-m1316-Isup2.hkl (164KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O6—H6A⋯O11 0.83 1.94 2.771 (4) 174
O6—H6B⋯O3i 0.84 1.93 2.765 (3) 169
O7—H7A⋯O9ii 0.83 1.95 2.757 (3) 165
O7—H7B⋯O10 0.81 1.94 2.723 (3) 162
O8—H8C⋯O2iii 0.85 2.31 2.812 (3) 118
O9—H9A⋯O10 0.85 1.99 2.769 (4) 152
O9—H9B⋯O1 0.85 1.96 2.798 (3) 172
O10—H10C⋯O2iv 0.85 2.02 2.783 (3) 149
O10—H10D⋯O4i 0.85 2.00 2.844 (4) 173
O11—H11A⋯O2v 0.85 2.09 2.916 (3) 164
O11—H11B⋯O9 0.85 2.00 2.844 (4) 176

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

This work was supported by Foundation of Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, China.

supplementary crystallographic information

Comment

In recent years, the design and synthesis of Schiff base complexes caused an increasing interest in coordination chemistry because they were potential optical, magnetic materials (Ion et al., 2009; Wu et al., 2007; Costes et al., 2006; Akine et al., 2008). Now, we present the synthesis and structure analysis of the title Schiff base complex derived from 4-methoxy-salicylaldehyde and glycylglycine.

The complex (I) crystallizes in the triclinic space group P1. The asymmetric unit consists of one [CuL]- anion (L is a Schiff base derived from glycylglycine and 4-methoxy-salicylaldehyde), half Co(H2O)62+ cation [Co(1), O(6), O(7), O(8)] and three uncoordinated aqua molecules [O(9), O(10), O(11)] in the complex (I) (Fig. 1). The deprotonated Schiff base is a triple negatively charged tetradentate chelate ligand, coordinating to the Cu(II) atom by one phenolate O atom [O(1)], one imine N atom [N(1)], one deprotonated amide N atom [N(2)] and one carboxylato O atom [O(3)]. [CuL]- has approximately square-planar structure. The Cu(II) atom is in a slightly distorted square-planar environment with four donor atoms deviating from their mean plane by -0.0503 Å (N(1)), +0.0621 Å (N(2)), +0.0509 Å (O(1)) and -0.0494 Å (O(3)) (observed bond angles vary from 83.4 (1)° and 96.6 (1)°). The benzene ring [C(1)–C(6)] and the [O(1), C(1), C(6), C(7), N(1), Cu(1)] chelate ring are almost coplanar with a small dihedral angle of 0.1 (1)°, suggesting a large π-electron delocalization. The Co(II) atom lies on an inversion center and the coordination by six aqua ligands is slightly distorted octahedral. The six Co—O bonds in the structure are in the range of 2.075 (2) - 2.081 (2) Å. In the crystal structure, the [CuL]- anions and [Co(H2O)6]2+ cations form well separated columns along the a-axis, which are further formed a three-dimensional network by hydrogen bonds (Table 1).

Experimental

Glycylglycine (5 mmol), 4-methoxy-salicylaldehyde (5 mmol) and LiOH (10 mmol) were dissolved in MeOH/H2O (30 ml, v:v = 1:1) and refluxed for 30 min. Then Cu(ClO4)2.6H2O (5 mmol) was added to the solution and the resulting solution was adjusted to 9–11 by 5 M NaOH solution. After stirring at room temperature for 1 h, CoCl2.6H2O (2.5 mmol) was added. A violet precipitate was obtained immediately. After stirring for another 30 min and then filtrated, the precipitate was recrystallized from water. The violet crystals suitable for X-ray diffraction were obtained after one week (yield 30% based on Cu(ClO4)2.6H2O).

Refinement

The water H atoms in (I) were located in a difference Fourier map and refined with a distance restraint of O—H = 0.83–0.85 Å and Uiso(H) =1.5Ueq(O). Other H atoms were positioned geometrically and constrained as riding atoms, with C—H distances of 0.93–0.97 Å and Uiso(H) set to 1.2 or 1.5Ueq(C) of the parent atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 50% probability displacement ellipsoids.

Crystal data

[Co(H2O)6][Cu(C12H11N2O5)]2·6H2O Z = 1
Mr = 928.66 F(000) = 479
Triclinic, P1 Dx = 1.682 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.834 (2) Å Cell parameters from 2213 reflections
b = 10.835 (3) Å θ = 2.9–27.3°
c = 11.474 (3) Å µ = 1.69 mm1
α = 76.705 (4)° T = 296 K
β = 76.616 (5)° Block, violet
γ = 81.085 (4)° 0.35 × 0.30 × 0.25 mm
V = 916.7 (4) Å3

Data collection

Bruker SMART APEX CCD diffractometer 3345 independent reflections
Radiation source: fine-focus sealed tube 2801 reflections with I > 2σ(I)
graphite Rint = 0.072
φ and ω scans θmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −9→9
Tmin = 0.561, Tmax = 0.658 k = −11→13
4773 measured reflections l = −7→13

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0518P)2] where P = (Fo2 + 2Fc2)/3
3345 reflections (Δ/σ)max < 0.001
242 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.73 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.03586 (5) 0.20388 (4) 0.98824 (3) 0.02809 (14)
C1 0.2956 (4) 0.0148 (3) 0.9002 (3) 0.0288 (7)
C2 0.4083 (4) −0.0331 (3) 0.8024 (3) 0.0311 (7)
H2 0.4107 0.0127 0.7229 0.037*
C3 0.5146 (4) −0.1458 (3) 0.8214 (3) 0.0341 (8)
C4 0.5171 (5) −0.2159 (3) 0.9394 (3) 0.0374 (8)
H4 0.5912 −0.2913 0.9524 0.045*
C5 0.4078 (5) −0.1707 (3) 1.0351 (3) 0.0349 (8)
H5 0.4084 −0.2174 1.1139 0.042*
C6 0.2944 (4) −0.0569 (3) 1.0203 (3) 0.0290 (7)
C7 0.1895 (4) −0.0188 (3) 1.1282 (3) 0.0315 (7)
H7 0.2013 −0.0715 1.2029 0.038*
C8 −0.0200 (4) 0.1156 (3) 1.2453 (3) 0.0355 (8)
H8A 0.0605 0.1224 1.2957 0.043*
H8B −0.0942 0.0491 1.2897 0.043*
C9 −0.1332 (4) 0.2406 (3) 1.2200 (3) 0.0300 (7)
C10 −0.2110 (5) 0.4100 (3) 1.0531 (3) 0.0319 (8)
H10A −0.1755 0.4809 1.0770 0.038*
H10B −0.3368 0.4073 1.0840 0.038*
C11 −0.1693 (4) 0.4271 (3) 0.9149 (3) 0.0311 (7)
C12 0.6253 (5) −0.1365 (4) 0.6071 (3) 0.0487 (10)
H12A 0.5082 −0.1290 0.5921 0.073*
H12B 0.7045 −0.1860 0.5535 0.073*
H12C 0.6631 −0.0531 0.5921 0.073*
N1 0.0808 (4) 0.0818 (3) 1.1303 (2) 0.0294 (6)
N2 −0.1159 (4) 0.2923 (3) 1.1028 (2) 0.0302 (6)
O1 0.1993 (3) 0.1241 (2) 0.87335 (19) 0.0314 (5)
O2 −0.2285 (3) 0.2879 (2) 1.30684 (19) 0.0365 (6)
O3 −0.0524 (3) 0.3465 (2) 0.86770 (18) 0.0337 (5)
O4 −0.2476 (3) 0.5175 (2) 0.8547 (2) 0.0425 (6)
O5 0.6258 (3) −0.1980 (2) 0.7310 (2) 0.0436 (6)
Co1 1.0000 0.5000 0.5000 0.02696 (17)
O6 0.9561 (3) 0.3322 (2) 0.6289 (2) 0.0422 (6)
H6A 0.8856 0.2887 0.6164 0.063*
H6B 0.9396 0.3336 0.7039 0.063*
O7 0.7348 (3) 0.5271 (2) 0.4914 (2) 0.0393 (6)
H7A 0.7050 0.5904 0.4409 0.059*
H7B 0.6609 0.5097 0.5534 0.059*
O8 0.9612 (3) 0.6042 (2) 0.63661 (19) 0.0357 (6)
H8D 0.9732 0.6820 0.6039 0.054*
H8C 1.0367 0.5755 0.6815 0.054*
O9 0.3966 (3) 0.2928 (2) 0.6876 (2) 0.0478 (7)
H9A 0.4091 0.3533 0.7196 0.072*
H9B 0.3299 0.2420 0.7389 0.072*
O10 0.5032 (3) 0.5168 (3) 0.7098 (2) 0.0452 (6)
H10C 0.4526 0.5916 0.6909 0.068*
H10D 0.5707 0.5161 0.7582 0.068*
O11 0.7326 (4) 0.1922 (3) 0.5697 (2) 0.0491 (7)
H11A 0.7595 0.2283 0.4950 0.074*
H11B 0.6310 0.2231 0.6018 0.074*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0315 (2) 0.0310 (2) 0.0209 (2) 0.00299 (17) −0.00540 (16) −0.00771 (16)
C1 0.0265 (16) 0.0292 (18) 0.0336 (18) −0.0023 (14) −0.0083 (14) −0.0106 (14)
C2 0.0335 (18) 0.0302 (18) 0.0312 (18) −0.0003 (14) −0.0098 (14) −0.0084 (14)
C3 0.0295 (17) 0.0325 (18) 0.046 (2) −0.0015 (14) −0.0095 (15) −0.0177 (15)
C4 0.0353 (19) 0.0305 (19) 0.051 (2) 0.0035 (15) −0.0192 (17) −0.0109 (16)
C5 0.0366 (19) 0.0319 (19) 0.0382 (19) −0.0023 (15) −0.0156 (16) −0.0042 (15)
C6 0.0278 (17) 0.0296 (18) 0.0322 (17) −0.0018 (14) −0.0112 (14) −0.0072 (14)
C7 0.0341 (18) 0.0321 (19) 0.0291 (17) −0.0062 (15) −0.0118 (14) −0.0004 (14)
C8 0.0344 (19) 0.051 (2) 0.0214 (17) −0.0016 (16) −0.0083 (14) −0.0062 (15)
C9 0.0267 (17) 0.043 (2) 0.0249 (17) −0.0097 (14) −0.0056 (13) −0.0117 (14)
C10 0.0396 (19) 0.0333 (19) 0.0216 (16) 0.0021 (15) −0.0027 (14) −0.0107 (13)
C11 0.0351 (18) 0.0315 (18) 0.0262 (17) −0.0017 (15) −0.0039 (14) −0.0089 (14)
C12 0.051 (2) 0.051 (2) 0.043 (2) 0.0067 (19) −0.0047 (18) −0.0211 (19)
N1 0.0312 (15) 0.0335 (15) 0.0240 (14) −0.0003 (12) −0.0086 (11) −0.0059 (11)
N2 0.0368 (15) 0.0339 (15) 0.0209 (14) 0.0019 (12) −0.0071 (12) −0.0104 (11)
O1 0.0336 (12) 0.0337 (13) 0.0241 (11) 0.0067 (10) −0.0051 (9) −0.0077 (9)
O2 0.0381 (13) 0.0494 (15) 0.0235 (12) −0.0015 (11) −0.0046 (10) −0.0143 (10)
O3 0.0432 (14) 0.0339 (13) 0.0193 (11) 0.0092 (11) −0.0040 (10) −0.0068 (9)
O4 0.0522 (16) 0.0382 (15) 0.0287 (13) 0.0167 (12) −0.0068 (11) −0.0055 (11)
O5 0.0431 (15) 0.0411 (15) 0.0464 (15) 0.0105 (12) −0.0076 (12) −0.0198 (12)
Co1 0.0287 (3) 0.0336 (4) 0.0202 (3) −0.0038 (3) −0.0041 (2) −0.0092 (2)
O6 0.0604 (17) 0.0434 (15) 0.0260 (12) −0.0160 (13) −0.0119 (12) −0.0036 (11)
O7 0.0298 (13) 0.0549 (16) 0.0304 (13) −0.0001 (11) −0.0061 (10) −0.0061 (11)
O8 0.0415 (14) 0.0399 (14) 0.0288 (12) −0.0091 (11) −0.0055 (10) −0.0117 (10)
O9 0.0488 (16) 0.0482 (16) 0.0418 (15) −0.0069 (13) −0.0050 (12) −0.0029 (12)
O10 0.0388 (15) 0.0585 (17) 0.0375 (14) 0.0058 (12) −0.0061 (11) −0.0168 (12)
O11 0.0525 (17) 0.0562 (17) 0.0404 (15) −0.0107 (13) −0.0101 (13) −0.0095 (13)

Geometric parameters (Å, °)

Cu1—O1 1.877 (2) C10—H10A 0.9700
Cu1—N2 1.887 (3) C10—H10B 0.9700
Cu1—N1 1.913 (3) C11—O4 1.229 (4)
Cu1—O3 1.977 (2) C11—O3 1.278 (4)
C1—O1 1.315 (4) C12—O5 1.426 (4)
C1—C2 1.406 (4) C12—H12A 0.9600
C1—C6 1.416 (4) C12—H12B 0.9600
C2—C3 1.371 (5) C12—H12C 0.9600
C2—H2 0.9300 Co1—O7 2.075 (2)
C3—O5 1.361 (4) Co1—O7i 2.075 (2)
C3—C4 1.394 (5) Co1—O8i 2.076 (2)
C4—C5 1.364 (5) Co1—O8 2.076 (2)
C4—H4 0.9300 Co1—O6 2.081 (2)
C5—C6 1.404 (4) Co1—O6i 2.081 (2)
C5—H5 0.9300 O6—H6A 0.8345
C6—C7 1.427 (4) O6—H6B 0.8434
C7—N1 1.276 (4) O7—H7A 0.8307
C7—H7 0.9300 O7—H7B 0.8112
C8—N1 1.465 (4) O8—H8D 0.8503
C8—C9 1.508 (5) O8—H8C 0.8499
C8—H8A 0.9700 O9—H9A 0.8497
C8—H8B 0.9700 O9—H9B 0.8485
C9—O2 1.258 (4) O10—H10C 0.8493
C9—N2 1.317 (4) O10—H10D 0.8488
C10—N2 1.440 (4) O11—H11A 0.8484
C10—C11 1.516 (4) O11—H11B 0.8481
O1—Cu1—N2 175.78 (11) O3—C11—C10 117.5 (3)
O1—Cu1—N1 96.59 (10) O5—C12—H12A 109.5
N2—Cu1—N1 84.11 (11) O5—C12—H12B 109.5
O1—Cu1—O3 96.05 (9) H12A—C12—H12B 109.5
N2—Cu1—O3 83.37 (10) O5—C12—H12C 109.5
N1—Cu1—O3 167.30 (10) H12A—C12—H12C 109.5
O1—C1—C2 117.3 (3) H12B—C12—H12C 109.5
O1—C1—C6 124.7 (3) C7—N1—C8 122.0 (3)
C2—C1—C6 118.1 (3) C7—N1—Cu1 124.6 (2)
C3—C2—C1 121.5 (3) C8—N1—Cu1 113.4 (2)
C3—C2—H2 119.2 C9—N2—C10 125.0 (3)
C1—C2—H2 119.2 C9—N2—Cu1 118.7 (2)
O5—C3—C2 124.6 (3) C10—N2—Cu1 116.28 (19)
O5—C3—C4 114.6 (3) C1—O1—Cu1 124.7 (2)
C2—C3—C4 120.9 (3) C11—O3—Cu1 114.35 (19)
C5—C4—C3 118.2 (3) C3—O5—C12 118.5 (3)
C5—C4—H4 120.9 O7—Co1—O7i 179.998 (1)
C3—C4—H4 120.9 O7—Co1—O8i 86.87 (9)
C4—C5—C6 123.1 (3) O7i—Co1—O8i 93.13 (9)
C4—C5—H5 118.4 O7—Co1—O8 93.13 (9)
C6—C5—H5 118.4 O7i—Co1—O8 86.87 (9)
C5—C6—C1 118.2 (3) O8i—Co1—O8 179.999 (1)
C5—C6—C7 117.6 (3) O7—Co1—O6 89.45 (10)
C1—C6—C7 124.2 (3) O7i—Co1—O6 90.55 (10)
N1—C7—C6 125.2 (3) O8i—Co1—O6 88.61 (9)
N1—C7—H7 117.4 O8—Co1—O6 91.39 (9)
C6—C7—H7 117.4 O7—Co1—O6i 90.55 (10)
N1—C8—C9 110.3 (3) O7i—Co1—O6i 89.45 (10)
N1—C8—H8A 109.6 O8i—Co1—O6i 91.39 (9)
C9—C8—H8A 109.6 O8—Co1—O6i 88.61 (9)
N1—C8—H8B 109.6 O6—Co1—O6i 179.999 (1)
C9—C8—H8B 109.6 Co1—O6—H6A 115.2
H8A—C8—H8B 108.1 Co1—O6—H6B 119.2
O2—C9—N2 126.1 (3) H6A—O6—H6B 110.8
O2—C9—C8 120.4 (3) Co1—O7—H7A 115.5
N2—C9—C8 113.5 (3) Co1—O7—H7B 119.8
N2—C10—C11 108.2 (3) H7A—O7—H7B 114.9
N2—C10—H10A 110.1 Co1—O8—H8D 109.1
C11—C10—H10A 110.1 Co1—O8—H8C 109.7
N2—C10—H10B 110.1 H8D—O8—H8C 109.4
C11—C10—H10B 110.1 H9A—O9—H9B 109.9
H10A—C10—H10B 108.4 H10C—O10—H10D 109.7
O4—C11—O3 123.8 (3) H11A—O11—H11B 110.0
O4—C11—C10 118.7 (3)

Symmetry codes: (i) −x+2, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O6—H6A···O11 0.83 1.94 2.771 (4) 174
O6—H6B···O3ii 0.84 1.93 2.765 (3) 169
O7—H7A···O9iii 0.83 1.95 2.757 (3) 165
O7—H7B···O10 0.81 1.94 2.723 (3) 162
O8—H8C···O2iv 0.85 2.31 2.812 (3) 118
O9—H9A···O10 0.85 1.99 2.769 (4) 152
O9—H9B···O1 0.85 1.96 2.798 (3) 172
O10—H10C···O2v 0.85 2.02 2.783 (3) 149
O10—H10D···O4ii 0.85 2.00 2.844 (4) 173
O11—H11A···O2vi 0.85 2.09 2.916 (3) 164
O11—H11B···O9 0.85 2.00 2.844 (4) 176

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, −y+1, −z+1; (iv) −x+1, −y+1, −z+2; (v) −x, −y+1, −z+2; (vi) x+1, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2621).

References

  1. Akine, S., Taniguchi, T. & Nabeshima, T. (2008). Inorg. Chem.47, 3255–3264. [DOI] [PubMed]
  2. Bruker (2001). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2002). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2003). SAINT-Plus Bruker AXS Inc, Madison, Wisconsin, USA.
  5. Costes, J. P., Dahan, F. & Wernsdorfer, W. (2006). Inorg. Chem.45, 5–7. [DOI] [PubMed]
  6. Ion, A. E., Spielberg, E. T., Sorace, L., Buchholz, A. & Plass, W. (2009). Solid State Sci.11, 766–771.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wu, G., Hewitt, I. J., Mameri, S., Lan, Y. H., Clérac, R., Anson, C. E., Qiu, S. L. & Powell, A. K. (2007). Inorg. Chem.46, 7229–7231. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040045/xu2621sup1.cif

e-65-m1316-sup1.cif (19.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040045/xu2621Isup2.hkl

e-65-m1316-Isup2.hkl (164KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES