Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 10;65(Pt 11):o2706. doi: 10.1107/S1600536809040938

3,5,7-Trimeth­oxy-2-(4-methoxy­phen­yl)-4H-1-benzopyran-4-one

Thammarat Aree a,*, Pattara Sawasdee a
PMCID: PMC2971014  PMID: 21578306

Abstract

In the title compound, C19H18O6, also known as 3,4′,5,7-tetra­methoxy­flavone, the dihedral angle between the benzopyran-4-one group and the attached benzene ring is 11.23 (8)°. An intra­molecular C—H⋯O hydrogen bond generates an S(6) ring motif. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (0Inline graphic1) by inter­molecular C—H⋯O hydrogen bonds, which generate R 4 4(20), R 4 4(12) and R 2 2(14) ring motifs. Adjacent networks interact by π–π inter­actions between the pyran ring and its methoxy­phenyl substituent [centroid–centroid distance = 3.5267 (8) Å].

Related literature

For related structures, see: Aree et al. (2009) and the Cambridge Structural Database [Allen (2002); Bruno et al. (2002)]. For the graph-set description of hydrogen-bond patterns, see: Bernstein et al. (1995).graphic file with name e-65-o2706-scheme1.jpg

Experimental

Crystal data

  • C19H18O6

  • M r = 342.33

  • Triclinic, Inline graphic

  • a = 8.7854 (3) Å

  • b = 9.2743 (4) Å

  • c = 10.6950 (4) Å

  • α = 70.749 (1)°

  • β = 81.448 (1)°

  • γ = 83.078 (1)°

  • V = 811.15 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.18 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.839, T max = 0.946

  • 5901 measured reflections

  • 3930 independent reflections

  • 2827 reflections with I > 2σ(I)

  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.131

  • S = 1.06

  • 3930 reflections

  • 230 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al. 2006).; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040938/ci2932sup1.cif

e-65-o2706-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040938/ci2932Isup2.hkl

e-65-o2706-Isup2.hkl (192.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯O5 0.93 2.23 2.8690 (18) 126
C17—H17B⋯O2i 0.96 2.48 3.2674 (19) 139
C17—H17B⋯O3i 0.96 2.61 3.458 (2) 148
C18—H18B⋯O6ii 0.96 2.57 3.530 (2) 173
C19—H19C⋯O5iii 0.96 2.51 3.457 (2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Department of Chemistry and Research Funds from the Faculty of Science, Chulalongkorn University to TA and by the Thailand Research Fund and the Commission on Higher Education (grant No. MRG4980018) to PS.

supplementary crystallographic information

Comment

The title compound, (I), (3,5,7-trimethoxy-2-(4-methoxyphenyl)-4H- 1-benzopyran-4-one or 3,4',5,7-tetramethoxyflavone), (Fig.1), is a secondary metabolite that was isolated from a Thai medicinal plant, Kaempferia parviflora. Several flavones have also been isolated from this plant and their crystal structures have been reported, for example see Aree et al. (2009) and references cited therein. Here, we report the crystal structure of another flavone in an anhydrous form having no strong hydrogen bond donor. Weak C—H···O hydrogen bonds play a key role in stabilizing the crystal lattice.

The molecular structure of (I) deviates from a planar geometry; the interplanar angle between the benzopyran-4-one group and the attached phenyl group is 11.23 (8)° (Fig. 1). A search in the Cambridge Structural Database [Version 1.11 (Allen, 2002); CONQUEST (Bruno et al., 2002)] indicate that this feature is frequently observed . The three methoxy C16, C17 and C19 atoms slightly deviate from the mean planes of the attached benzopyran or phenyl rings by 0.288 (3), -0.119 (3) and 0.355 (3) Å whereas atom C18 deviates from the benzopyran plane by -0.933 (3) Å. The corresponding values of torsion angles are C16—O4—C3—C2 = 3.0 (2)°, C17—O3—C5—C4 = 0.4 (2)°, C19—O6—C13—C12 = -15.9 (2)° and C18—O5—C8—C9 = 111.09 (17)°. The flavone molecule is stabilized by an intramolecular C15—H···O5 hydrogen bond that generates an S(6) ring motif (Bernstein et al., 1995).

In the crystal, molecules are linked to form a ribbon-like structure by intermolecular C18—H18B···O6ii and C19—H19C···.O5iii hydrogen bonds, generating R22(20) and R44(12) ring motifs (Bernstein et al., 1995) (Fig. 2). The adjacent inversion-related ribbons are cross-linked into a two-dimensional network parallel to the (011) by intermolecular C17—H17B···O2i and C17—H17B···O3i hydrogen bonds, generating R22(14) ring motifs (Bernstein et al., 1995) (Fig. 3). The crystal structure is further stabilized by π–π interactions (Fig. 4) between O1/C1/C6-C9 and C10-C15 rings of the molecules in adjacent networks, with a centroid-to-centroid distance of 3.5267 (8) Å.

Experimental

The title compound, (I), was extracted from Kaempferia parviflora, a medicinal plant from the north-east of Thailand. Single crystals of (I) were obtained by slow evaporation of a methanol–water (1:1, v/v) solution at room temperature.

Refinement

All H atoms were located in a difference map and then refined using a riding model, with C-H = 0.93 Å (aromatic) and Uiso(H) = 1.2Ueq(C), and C-H = 0.96 Å (methyl) and Uiso(H) = 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom numbering and 50% probability displacement ellipsoids. An intramolecular C—H···O hydrogen bond forming an S(6) motif is shown as a dashed line.

Fig. 2.

Fig. 2.

Part of a ribbon formed by intermolecular C—H···O hydrogen bonds, with R44(20) and R44(12) ring motifs. Hydrogen bonds are shown as dashed lines.

Fig. 3.

Fig. 3.

A view of R22(14) ring motifs which connect adjacent ribbons. Hydrogen bonds are shown as dashed lines.

Fig. 4.

Fig. 4.

Part of the crystal structure of (I), showing the stacking of pyran and 4-methoxyphenyl rings. Hydrogen bonds are shown as dashed lines.

Crystal data

C19H18O6 Z = 2
Mr = 342.33 F(000) = 360
Triclinic, P1 Dx = 1.402 Mg m3
Hall symbol: -P 1 Melting point: not measured K
a = 8.7854 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.2743 (4) Å Cell parameters from 2649 reflections
c = 10.6950 (4) Å θ = 2.9–29.0°
α = 70.749 (1)° µ = 0.11 mm1
β = 81.448 (1)° T = 298 K
γ = 83.078 (1)° Block, colourless
V = 811.15 (5) Å3 0.40 × 0.22 × 0.18 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3930 independent reflections
Radiation source: fine-focus sealed tube 2827 reflections with I > 2σ(I)
graphite Rint = 0.023
φ and ω scans θmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −11→11
Tmin = 0.839, Tmax = 0.946 k = −12→12
5901 measured reflections l = −10→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0642P)2 + 0.0796P] where P = (Fo2 + 2Fc2)/3
3930 reflections (Δ/σ)max = 0.001
230 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.09284 (11) −0.00853 (11) 0.77045 (10) 0.0384 (2)
O2 −0.35336 (13) 0.11019 (15) 0.69876 (14) 0.0627 (4)
O3 −0.31863 (12) −0.09508 (12) 0.56603 (11) 0.0472 (3)
O4 0.14430 (12) −0.41488 (12) 0.58844 (11) 0.0491 (3)
O5 −0.22549 (11) 0.24963 (11) 0.83872 (10) 0.0417 (3)
O6 0.37277 (13) 0.34385 (13) 1.08046 (12) 0.0554 (3)
C1 0.02711 (15) −0.08612 (15) 0.70567 (13) 0.0334 (3)
C2 0.12382 (16) −0.20556 (15) 0.67915 (14) 0.0370 (3)
H2 0.2237 −0.2266 0.7030 0.044*
C3 0.06590 (16) −0.29116 (15) 0.61632 (13) 0.0363 (3)
C4 −0.08153 (16) −0.25525 (16) 0.57554 (14) 0.0377 (3)
H4 −0.1168 −0.3118 0.5298 0.045*
C5 −0.17492 (16) −0.13643 (16) 0.60281 (13) 0.0358 (3)
C6 −0.12267 (15) −0.04848 (15) 0.67302 (13) 0.0337 (3)
C7 −0.21732 (16) 0.07127 (16) 0.71647 (14) 0.0381 (3)
C8 −0.13869 (16) 0.14406 (16) 0.78818 (13) 0.0343 (3)
C9 0.01016 (15) 0.10572 (15) 0.81213 (13) 0.0329 (3)
C10 0.10563 (15) 0.16951 (15) 0.88037 (13) 0.0334 (3)
C11 0.26309 (17) 0.12727 (17) 0.87961 (14) 0.0397 (3)
H11 0.3069 0.0596 0.8342 0.048*
C12 0.35723 (17) 0.18231 (17) 0.94411 (15) 0.0415 (3)
H12 0.4622 0.1522 0.9415 0.050*
C13 0.29333 (17) 0.28240 (16) 1.01227 (14) 0.0383 (3)
C14 0.13743 (18) 0.32664 (18) 1.01423 (16) 0.0464 (4)
H14 0.0944 0.3944 1.0597 0.056*
C15 0.04512 (17) 0.27193 (18) 0.94994 (16) 0.0446 (4)
H15 −0.0596 0.3034 0.9526 0.054*
C16 0.2918 (2) −0.4624 (2) 0.6324 (2) 0.0593 (5)
H16A 0.3609 −0.3837 0.5873 0.089*
H16B 0.3308 −0.5549 0.6130 0.089*
H16C 0.2838 −0.4808 0.7268 0.089*
C17 −0.3753 (2) −0.1803 (2) 0.49641 (19) 0.0556 (4)
H17A −0.3085 −0.1736 0.4153 0.083*
H17B −0.4775 −0.1393 0.4756 0.083*
H17C −0.3781 −0.2856 0.5512 0.083*
C18 −0.2656 (3) 0.3918 (2) 0.74252 (19) 0.0718 (6)
H18A −0.1763 0.4263 0.6807 0.108*
H18B −0.3027 0.4663 0.7866 0.108*
H18C −0.3449 0.3787 0.6952 0.108*
C19 0.5210 (2) 0.2757 (2) 1.11183 (18) 0.0582 (5)
H19A 0.5135 0.1701 1.1643 0.087*
H19B 0.5620 0.3284 1.1615 0.087*
H19C 0.5882 0.2825 1.0309 0.087*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0329 (5) 0.0393 (5) 0.0537 (6) 0.0034 (4) −0.0130 (4) −0.0279 (5)
O2 0.0377 (6) 0.0752 (8) 0.0972 (9) 0.0149 (6) −0.0282 (6) −0.0546 (7)
O3 0.0394 (6) 0.0499 (6) 0.0641 (7) 0.0004 (5) −0.0220 (5) −0.0281 (5)
O4 0.0479 (6) 0.0465 (6) 0.0663 (7) 0.0043 (5) −0.0132 (5) −0.0356 (5)
O5 0.0376 (5) 0.0459 (6) 0.0466 (5) 0.0098 (4) −0.0091 (4) −0.0241 (5)
O6 0.0479 (6) 0.0617 (7) 0.0775 (8) 0.0096 (5) −0.0264 (6) −0.0467 (6)
C1 0.0337 (7) 0.0329 (7) 0.0381 (6) −0.0042 (5) −0.0073 (5) −0.0154 (5)
C2 0.0345 (7) 0.0358 (7) 0.0451 (7) 0.0007 (6) −0.0100 (6) −0.0178 (6)
C3 0.0394 (8) 0.0324 (7) 0.0391 (7) −0.0028 (6) −0.0032 (6) −0.0147 (6)
C4 0.0409 (8) 0.0375 (7) 0.0406 (7) −0.0085 (6) −0.0080 (6) −0.0169 (6)
C5 0.0341 (7) 0.0367 (7) 0.0384 (7) −0.0062 (6) −0.0086 (6) −0.0111 (6)
C6 0.0337 (7) 0.0315 (7) 0.0378 (7) −0.0034 (5) −0.0075 (5) −0.0117 (5)
C7 0.0331 (7) 0.0391 (7) 0.0454 (7) 0.0000 (6) −0.0095 (6) −0.0167 (6)
C8 0.0334 (7) 0.0351 (7) 0.0366 (6) 0.0014 (5) −0.0048 (5) −0.0155 (5)
C9 0.0329 (7) 0.0318 (7) 0.0364 (6) 0.0004 (5) −0.0048 (5) −0.0148 (5)
C10 0.0351 (7) 0.0327 (7) 0.0351 (6) −0.0007 (5) −0.0075 (5) −0.0136 (5)
C11 0.0393 (8) 0.0406 (8) 0.0473 (7) 0.0071 (6) −0.0112 (6) −0.0257 (6)
C12 0.0337 (7) 0.0463 (8) 0.0521 (8) 0.0076 (6) −0.0135 (6) −0.0256 (7)
C13 0.0408 (8) 0.0378 (7) 0.0427 (7) 0.0007 (6) −0.0137 (6) −0.0188 (6)
C14 0.0447 (9) 0.0502 (9) 0.0562 (9) 0.0083 (7) −0.0116 (7) −0.0347 (7)
C15 0.0339 (7) 0.0543 (9) 0.0563 (9) 0.0069 (7) −0.0111 (6) −0.0329 (7)
C16 0.0516 (10) 0.0537 (10) 0.0871 (13) 0.0130 (8) −0.0179 (9) −0.0436 (9)
C17 0.0490 (10) 0.0620 (10) 0.0707 (11) −0.0037 (8) −0.0254 (8) −0.0333 (9)
C18 0.1032 (16) 0.0453 (10) 0.0648 (11) 0.0232 (10) −0.0173 (11) −0.0217 (9)
C19 0.0463 (9) 0.0770 (12) 0.0683 (11) 0.0066 (9) −0.0231 (8) −0.0427 (10)

Geometric parameters (Å, °)

O1—C9 1.3707 (15) C10—C11 1.3912 (19)
O1—C1 1.3708 (15) C10—C15 1.4018 (19)
O2—C7 1.2300 (17) C11—C12 1.3871 (19)
O3—C5 1.3517 (16) C11—H11 0.93
O3—C17 1.4212 (17) C12—C13 1.381 (2)
O4—C3 1.3616 (16) C12—H12 0.93
O4—C16 1.4150 (19) C13—C14 1.381 (2)
O5—C8 1.3707 (16) C14—C15 1.372 (2)
O5—C18 1.422 (2) C14—H14 0.93
O6—C13 1.3657 (16) C15—H15 0.93
O6—C19 1.4141 (19) C16—H16A 0.96
C1—C6 1.3860 (18) C16—H16B 0.96
C1—C2 1.3921 (18) C16—H16C 0.96
C2—C3 1.3753 (18) C17—H17A 0.96
C2—H2 0.93 C17—H17B 0.96
C3—C4 1.395 (2) C17—H17C 0.96
C4—C5 1.377 (2) C18—H18A 0.96
C4—H4 0.93 C18—H18B 0.96
C5—C6 1.4270 (18) C18—H18C 0.96
C6—C7 1.4641 (19) C19—H19A 0.96
C7—C8 1.4603 (19) C19—H19B 0.96
C8—C9 1.3526 (18) C19—H19C 0.96
C9—C10 1.4740 (18)
C9—O1—C1 121.22 (10) C10—C11—H11 118.8
C5—O3—C17 117.68 (12) C13—C12—C11 119.26 (13)
C3—O4—C16 117.79 (11) C13—C12—H12 120.4
C8—O5—C18 115.26 (12) C11—C12—H12 120.4
C13—O6—C19 118.35 (12) O6—C13—C14 115.45 (12)
O1—C1—C6 122.08 (12) O6—C13—C12 125.06 (13)
O1—C1—C2 113.58 (11) C14—C13—C12 119.50 (12)
C6—C1—C2 124.33 (12) C15—C14—C13 120.90 (13)
C3—C2—C1 117.38 (12) C15—C14—H14 119.6
C3—C2—H2 121.3 C13—C14—H14 119.6
C1—C2—H2 121.3 C14—C15—C10 121.25 (13)
O4—C3—C2 124.15 (13) C14—C15—H15 119.4
O4—C3—C4 114.65 (12) C10—C15—H15 119.4
C2—C3—C4 121.20 (13) O4—C16—H16A 109.5
C5—C4—C3 120.26 (12) O4—C16—H16B 109.5
C5—C4—H4 119.9 H16A—C16—H16B 109.5
C3—C4—H4 119.9 O4—C16—H16C 109.5
O3—C5—C4 123.43 (12) H16A—C16—H16C 109.5
O3—C5—C6 115.93 (12) H16B—C16—H16C 109.5
C4—C5—C6 120.63 (12) O3—C17—H17A 109.5
C1—C6—C5 116.09 (12) O3—C17—H17B 109.5
C1—C6—C7 119.08 (12) H17A—C17—H17B 109.5
C5—C6—C7 124.77 (12) O3—C17—H17C 109.5
O2—C7—C8 120.11 (13) H17A—C17—H17C 109.5
O2—C7—C6 125.17 (13) H17B—C17—H17C 109.5
C8—C7—C6 114.71 (11) O5—C18—H18A 109.5
C9—C8—O5 119.91 (11) O5—C18—H18B 109.5
C9—C8—C7 123.11 (12) H18A—C18—H18B 109.5
O5—C8—C7 116.87 (11) O5—C18—H18C 109.5
C8—C9—O1 119.68 (11) H18A—C18—H18C 109.5
C8—C9—C10 129.53 (12) H18B—C18—H18C 109.5
O1—C9—C10 110.79 (10) O6—C19—H19A 109.5
C11—C10—C15 116.66 (12) O6—C19—H19B 109.5
C11—C10—C9 120.31 (12) H19A—C19—H19B 109.5
C15—C10—C9 123.02 (12) O6—C19—H19C 109.5
C12—C11—C10 122.43 (13) H19A—C19—H19C 109.5
C12—C11—H11 118.8 H19B—C19—H19C 109.5
C9—O1—C1—C6 3.33 (19) C18—O5—C8—C7 −72.50 (18)
C9—O1—C1—C2 −175.58 (12) O2—C7—C8—C9 179.37 (14)
O1—C1—C2—C3 178.92 (12) C6—C7—C8—C9 0.6 (2)
C6—C1—C2—C3 0.0 (2) O2—C7—C8—O5 3.1 (2)
C16—O4—C3—C2 3.0 (2) C6—C7—C8—O5 −175.74 (11)
C16—O4—C3—C4 −177.12 (14) O5—C8—C9—O1 174.86 (11)
C1—C2—C3—O4 −177.39 (13) C7—C8—C9—O1 −1.3 (2)
C1—C2—C3—C4 2.8 (2) O5—C8—C9—C10 −4.9 (2)
O4—C3—C4—C5 177.35 (12) C7—C8—C9—C10 178.90 (13)
C2—C3—C4—C5 −2.8 (2) C1—O1—C9—C8 −0.58 (19)
C17—O3—C5—C4 0.4 (2) C1—O1—C9—C10 179.24 (11)
C17—O3—C5—C6 −179.72 (13) C8—C9—C10—C11 −171.67 (14)
C3—C4—C5—O3 179.81 (12) O1—C9—C10—C11 8.53 (18)
C3—C4—C5—C6 0.0 (2) C8—C9—C10—C15 9.3 (2)
O1—C1—C6—C5 178.53 (12) O1—C9—C10—C15 −170.51 (13)
C2—C1—C6—C5 −2.7 (2) C15—C10—C11—C12 0.1 (2)
O1—C1—C6—C7 −4.0 (2) C9—C10—C11—C12 −178.98 (13)
C2—C1—C6—C7 174.78 (13) C10—C11—C12—C13 0.2 (2)
O3—C5—C6—C1 −177.23 (12) C19—O6—C13—C14 164.09 (15)
C4—C5—C6—C1 2.63 (19) C19—O6—C13—C12 −15.9 (2)
O3—C5—C6—C7 5.5 (2) C11—C12—C13—O6 179.50 (14)
C4—C5—C6—C7 −174.66 (13) C11—C12—C13—C14 −0.4 (2)
C1—C6—C7—O2 −176.71 (14) O6—C13—C14—C15 −179.64 (14)
C5—C6—C7—O2 0.5 (2) C12—C13—C14—C15 0.3 (2)
C1—C6—C7—C8 2.05 (19) C13—C14—C15—C10 0.0 (3)
C5—C6—C7—C8 179.26 (12) C11—C10—C15—C14 −0.3 (2)
C18—O5—C8—C9 111.09 (17) C9—C10—C15—C14 178.81 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C15—H15···O5 0.93 2.23 2.8690 (18) 126
C17—H17B···O2i 0.96 2.48 3.2674 (19) 139
C17—H17B···O3i 0.96 2.61 3.458 (2) 148
C18—H18B···O6ii 0.96 2.57 3.530 (2) 173
C19—H19C···O5iii 0.96 2.51 3.457 (2) 170

Symmetry codes: (i) −x−1, −y, −z+1; (ii) −x, −y+1, −z+2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2932).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Aree, T., Sabphon, C. & Sawasdee, P. (2009). Acta Cryst. E65, o2693. [DOI] [PMC free article] [PubMed]
  3. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  4. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [DOI] [PubMed]
  6. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  7. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809040938/ci2932sup1.cif

e-65-o2706-sup1.cif (20.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040938/ci2932Isup2.hkl

e-65-o2706-Isup2.hkl (192.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES