Abstract
The title structure, C5H6ClN2 +·NO3 −, is held together by extensive hydrogen bonding between the NO3 − ions and 2-amino-5-chloropyridinium H atoms. The cation–anion N—H⋯O hydrogen bonds link the ions into a zigzag- chain which develops parallel to the b axis. The structure may be compared with that of the related 2-amino-5-cyanopyridinium nitrate.
Related literature
For metal-organic frameworks involving amine derivatives, see: Manzur et al. (2007 ▶); Ismayilov et al. (2007 ▶); Austria et al. (2007 ▶). For related structures, see: Pourayoubi et al. (2007 ▶); Rademeyer (2005 ▶, 2007 ▶); Dai (2008 ▶).
Experimental
Crystal data
C5H6ClN2 +·NO3 −
M r = 191.58
Monoclinic,
a = 4.788 (4) Å
b = 13.029 (3) Å
c = 12.779 (2) Å
β = 101.445 (18)°
V = 781.3 (7) Å3
Z = 4
Mo Kα radiation
μ = 0.46 mm−1
T = 299 K
0.40 × 0.40 × 0.20 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.838, T max = 0.914
2057 measured reflections
1691 independent reflections
1312 reflections with I > 2σ(I)
R int = 0.017
2 standard reflections frequency: 120 min intensity decay: none
Refinement
R[F 2 > 2σ(F 2)] = 0.037
wR(F 2) = 0.106
S = 1.02
1691 reflections
109 parameters
H-atom parameters constrained
Δρmax = 0.19 e Å−3
Δρmin = −0.25 e Å−3
Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 ▶); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: WinGX (Farrugia, 1999 ▶).
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904149X/dn2495sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680904149X/dn2495Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| N2—H2A⋯O3 | 0.86 | 2.05 | 2.900 (2) | 169 |
| N2—H2B⋯O1i | 0.86 | 2.06 | 2.912 (2) | 174 |
| N3—H3⋯O2 | 0.86 | 1.94 | 2.800 (2) | 179 |
Symmetry code: (i)
.
supplementary crystallographic information
Comment
Derivatives of the aminoacid are of considerable interest in biological activities and there has been an increased interest in the chemistry of amine derivatives because of the construction of novel metal-organic frameworks (Manzur et al., 2007; Ismayilov et al., 2007; Austria et al., 2007). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007) and their 2-Amino-5-cyanopyridinium nitrate (Dai, 2008) and 2-Aminopyridinium nitrate (Rademeyer, 2007) have been reported in literature. In this paper, we present the X-ray single-crystal structure of 2- Amino-5-chloropyridinium nitrate (I).
The title compound (I) contains an organic cation and a (NO3)- anion (Fig1). The cation is roughly planar with the largest deviation from the mean plane being 0.0553 (9)Å. The NO3 anion is slightly twisted with respect to the pyridinium ring making a dihedral angle of 17.2 (1)°
The monoprotonated chloropyridinium cation (C5H6ClN2)+ and the nitrate anion (NO3)- are linked by N-H···O which forms a zig-zag like chain parallel to the b axis (Table 1, Fig 2).
The crystal structure of 2-Amino-5-cyanopyridinium nitrate (II) (Dai, 2008) was recently published. The title compound (I) and this related compound (II) are isostructural. In both molecules, the asymmetric unit contains an organic cation 2-Amino-5-Xpyridinium (X: chloride (I), C≡N nitrile (II)) and a nitrate anion. They have the same space group (P21/c) and they are characterized by two-dimensional hydrogen-bonded networks.
The distances and angles of the present 2-amino-5-chloropyridinium nitrate molecule are consistent with the values reported in the literature of 2-aminopyridinium nitrate and 4-aminopyridinium nitrate molecules (Rademeyer 2005;2007).
Experimental
2-Amino-5-chloropridine was dissolved in the solution of methanol and nitric acid (0.5 ml). Yellow crystals were obtained after a month on slow evaporation.
Refinement
All H atoms attached to C atoms and N atoms were fixed geometrically and treated as riding with C—H = 0.93Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C or N).
Figures
Fig. 1.
Representation of the asymetric unit of 2-amino-5-chloropyridinium nitrate with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines.
Fig. 2.
Partial packing view showing the formation of the zigzag chain parallel to the b axis. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry code: (i) -x-1, y+1/2, -z+3/2].
Crystal data
| C5H6ClN2+·NO3− | F(000) = 392.0 |
| Mr = 191.58 | Dx = 1.620 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 25 reflections |
| a = 4.788 (4) Å | θ = 10–15° |
| b = 13.029 (3) Å | µ = 0.46 mm−1 |
| c = 12.779 (2) Å | T = 299 K |
| β = 101.445 (18)° | Prism, yellow |
| V = 781.3 (7) Å3 | 0.40 × 0.40 × 0.20 mm |
| Z = 4 |
Data collection
| Enraf–Nonius CAD-4 diffractometer | 1312 reflections with I > 2σ(I) |
| Radiation source: fine-focus sealed tube | Rint = 0.017 |
| graphite | θmax = 27.0°, θmin = 2.3° |
| Nonprofiled ω/2θ scans | h = −1→6 |
| Absorption correction: ψ scan (North et al., 1968) | k = −16→1 |
| Tmin = 0.838, Tmax = 0.914 | l = −16→15 |
| 2057 measured reflections | 2 standard reflections every 120 min |
| 1691 independent reflections | intensity decay: none |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.106 | H-atom parameters constrained |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0566P)2 + 0.1965P] where P = (Fo2 + 2Fc2)/3 |
| 1691 reflections | (Δ/σ)max < 0.001 |
| 109 parameters | Δρmax = 0.19 e Å−3 |
| 0 restraints | Δρmin = −0.25 e Å−3 |
Special details
| Experimental. Number of psi-scan sets used was 3 Theta correction was applied. Averaged transmission function was used. No Fourier smoothing was applied (North et al., 1968). |
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 0.35469 (12) | 0.37026 (4) | 0.42068 (4) | 0.0558 (2) | |
| N1 | −0.4403 (4) | −0.03452 (11) | 0.63887 (12) | 0.0404 (4) | |
| N2 | −0.2955 (4) | 0.22776 (13) | 0.73365 (13) | 0.0484 (4) | |
| H2A | −0.3487 | 0.1646 | 0.7301 | 0.058* | |
| H2B | −0.3440 | 0.2679 | 0.7804 | 0.058* | |
| N3 | −0.0639 (3) | 0.19881 (11) | 0.59367 (12) | 0.0373 (3) | |
| H3 | −0.1153 | 0.1356 | 0.5943 | 0.045* | |
| C1 | −0.1377 (4) | 0.26344 (13) | 0.66666 (13) | 0.0349 (4) | |
| C2 | −0.0428 (4) | 0.36615 (14) | 0.66731 (15) | 0.0399 (4) | |
| H2 | −0.0854 | 0.4122 | 0.7175 | 0.048* | |
| C3 | 0.1112 (4) | 0.39778 (15) | 0.59430 (15) | 0.0411 (4) | |
| H3A | 0.1751 | 0.4652 | 0.5950 | 0.049* | |
| C4 | 0.1737 (4) | 0.32811 (14) | 0.51762 (14) | 0.0373 (4) | |
| C5 | 0.0878 (4) | 0.22883 (14) | 0.51921 (14) | 0.0383 (4) | |
| H5 | 0.1318 | 0.1819 | 0.4701 | 0.046* | |
| O1 | −0.5381 (3) | −0.12309 (10) | 0.62043 (12) | 0.0545 (4) | |
| O2 | −0.2376 (3) | −0.00614 (11) | 0.59683 (13) | 0.0523 (4) | |
| O3 | −0.5384 (4) | 0.02366 (12) | 0.70018 (14) | 0.0635 (4) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0681 (4) | 0.0477 (3) | 0.0615 (3) | −0.0101 (2) | 0.0366 (3) | −0.0017 (2) |
| N1 | 0.0517 (9) | 0.0326 (8) | 0.0380 (8) | −0.0009 (7) | 0.0115 (7) | 0.0026 (6) |
| N2 | 0.0649 (10) | 0.0414 (9) | 0.0454 (9) | −0.0019 (8) | 0.0269 (8) | −0.0030 (7) |
| N3 | 0.0455 (8) | 0.0264 (7) | 0.0427 (8) | −0.0034 (6) | 0.0156 (7) | −0.0047 (6) |
| C1 | 0.0387 (9) | 0.0339 (8) | 0.0324 (8) | 0.0019 (7) | 0.0081 (7) | −0.0013 (7) |
| C2 | 0.0495 (10) | 0.0318 (9) | 0.0389 (9) | 0.0003 (7) | 0.0098 (8) | −0.0077 (7) |
| C3 | 0.0495 (10) | 0.0290 (8) | 0.0445 (10) | −0.0039 (7) | 0.0088 (8) | −0.0051 (7) |
| C4 | 0.0384 (9) | 0.0362 (9) | 0.0396 (9) | −0.0013 (7) | 0.0136 (7) | −0.0006 (7) |
| C5 | 0.0444 (9) | 0.0333 (9) | 0.0406 (9) | −0.0005 (7) | 0.0171 (8) | −0.0082 (7) |
| O1 | 0.0784 (10) | 0.0347 (7) | 0.0552 (8) | −0.0152 (7) | 0.0251 (8) | −0.0006 (6) |
| O2 | 0.0590 (9) | 0.0369 (7) | 0.0685 (9) | −0.0069 (6) | 0.0308 (8) | −0.0010 (6) |
| O3 | 0.0788 (11) | 0.0513 (9) | 0.0708 (10) | −0.0089 (8) | 0.0403 (9) | −0.0158 (8) |
Geometric parameters (Å, °)
| Cl1—C4 | 1.7358 (19) | N3—H3 | 0.8600 |
| N1—O3 | 1.247 (2) | C1—C2 | 1.413 (3) |
| N1—O1 | 1.250 (2) | C2—C3 | 1.363 (3) |
| N1—O2 | 1.255 (2) | C2—H2 | 0.9300 |
| N2—C1 | 1.333 (2) | C3—C4 | 1.411 (3) |
| N2—H2A | 0.8600 | C3—H3A | 0.9300 |
| N2—H2B | 0.8600 | C4—C5 | 1.359 (3) |
| N3—C1 | 1.355 (2) | C5—H5 | 0.9300 |
| N3—C5 | 1.364 (2) | ||
| O3—N1—O1 | 120.41 (17) | C3—C2—C1 | 119.96 (16) |
| O3—N1—O2 | 120.64 (16) | C3—C2—H2 | 120.0 |
| O1—N1—O2 | 118.93 (16) | C1—C2—H2 | 120.0 |
| C1—N2—H2A | 120.0 | C2—C3—C4 | 119.95 (17) |
| C1—N2—H2B | 120.0 | C2—C3—H3A | 120.0 |
| H2A—N2—H2B | 120.0 | C4—C3—H3A | 120.0 |
| C1—N3—C5 | 123.36 (15) | C5—C4—C3 | 119.70 (17) |
| C1—N3—H3 | 118.3 | C5—C4—Cl1 | 120.49 (14) |
| C5—N3—H3 | 118.3 | C3—C4—Cl1 | 119.80 (14) |
| N2—C1—N3 | 118.95 (16) | C4—C5—N3 | 119.23 (16) |
| N2—C1—C2 | 123.31 (16) | C4—C5—H5 | 120.4 |
| N3—C1—C2 | 117.74 (15) | N3—C5—H5 | 120.4 |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N2—H2A···O3 | 0.86 | 2.05 | 2.900 (2) | 169 |
| N2—H2B···O1i | 0.86 | 2.06 | 2.912 (2) | 174 |
| N3—H3···O2 | 0.86 | 1.94 | 2.800 (2) | 179 |
Symmetry codes: (i) −x−1, y+1/2, −z+3/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2495).
References
- Austria, C., Zhang, J. & Valle, H. (2007). Inorg. Chem.46, 6283–6290. [DOI] [PMC free article] [PubMed]
- Dai, J. (2008). Acta Cryst. E64, o1899. [DOI] [PMC free article] [PubMed]
- Enraf–Nonius (1994). CAD-4 EXPRESS Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
- Harms, K. & Wocadlo, S. (1995). XCAD4 Université de Marburg, Germany.
- Ismayilov, R. H., Wang, W. Z. & Lee, G. H. (2007). Dalton Trans pp. 2898–2907. [DOI] [PubMed]
- Manzur, J., Vega, A. & Garcia, A. M. (2007). Eur. J. Inorg. Chem.35, 5500–5510.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631. [DOI] [PMC free article] [PubMed]
- Rademeyer, M. (2005). Acta Cryst. E61, o2496–o2498.
- Rademeyer, M. (2007). Acta Cryst. E63, o545–o546.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680904149X/dn2495sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S160053680904149X/dn2495Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report


