Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 7;65(Pt 11):m1325. doi: 10.1107/S1600536809040136

Dimeth­yl(2,2′:6′,2′′-terpyridine-κ3 N,N′,N′′)zinc(II)

Tamila Shalumova a, Joseph M Tanski a,*
PMCID: PMC2971104  PMID: 21578086

Abstract

The title compound, [Zn(CH3)2(C15H11N3)], was synthesized by the addition of dimethyl­zinc to 2,2′:6′,2′′-terpyridine and was crystallized by the slow evaporation of THF. The penta­coordinate ZnII atom, lying on a twofold rotation axis, displays a distorted trigonal-bipyramidal geometry, with two terminal N atoms at the axial positions and the central N atom and two methyl C atoms at the equatorial positions.

Related literature

For the crystal structures of terpyridine dichlorido­zinc(II) compounds, see: Corbridge & Cox (1956); Einstein & Penfold (1966); Vlasse et al. (1983). For examples of other substituted terpyridine zinc(II) compounds, see: Harrison et al. (1986); Hou et al. (2004). The structure of a bipyridine dimethyl­zinc(II) compound was reported by Wissing et al. (1994).graphic file with name e-65-m1325-scheme1.jpg

Experimental

Crystal data

  • [Zn(CH3)2(C15H11N3)]

  • M r = 328.71

  • Monoclinic, Inline graphic

  • a = 17.4250 (11) Å

  • b = 9.1083 (6) Å

  • c = 11.7595 (14) Å

  • β = 127.193 (1)°

  • V = 1486.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.65 mm−1

  • T = 125 K

  • 0.23 × 0.13 × 0.06 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.703, T max = 0.908

  • 9483 measured reflections

  • 1837 independent reflections

  • 1710 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.022

  • wR(F 2) = 0.061

  • S = 1.09

  • 1837 reflections

  • 98 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040136/hy2233sup1.cif

e-65-m1325-sup1.cif (13.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040136/hy2233Isup2.hkl

e-65-m1325-Isup2.hkl (90.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn—C1 2.0282 (15)
Zn—N1 2.3381 (12)
Zn—N2 2.2603 (16)

Acknowledgments

This work was supported by Vassar College. X-ray facilities were provided by the US National Science Foundation (grant No. 0521237 to JMT).

supplementary crystallographic information

Comment

The chelating ligand 2,2':6',2''-terpyridine coordinates to a variety of first-row transition metal Lewis acids. Specifically, it can coordinate to disubstituted zinc compounds, allowing for the formation of trigonal bipyramidal zinc(II) complexes (Harrison et al., 1986). The structure of terpyridine dichlorozinc(II) has been reported a number of times with different results (Corbridge & Cox, 1956; Einstein & Penfold, 1966; Vlasse et al., 1983). In addition to substituents on the zinc(II) center, substituents on the terpyridine are also known (Hou et al., 2004). The structure presented here is the first known structure in a class of terpyridine zinc(II) compounds with two alkyl groups bound directly to the metal center.

The title compound (Fig. 1) was obtained by the reaction of dimethylzinc with 2,2':6',2''-terpyridine. It exhibits a distorted trigonal bipyramidal geometry about the metal center and has the two terminal N atoms in the axial positions, with a bond length of 2.3381 (12) Å (Table 1). The central N atom, coordinated to the zinc via the equatorial position, has a slightly smaller bond length, 2.2603 (16) Å, due to the size of the ligand, which is not able to wrap around the metal 180°. The N1—Zn—N1i bond angle is 140.52 (6)° [symmetry code: (i) -x, y, 1/2-z], illustrating the degree to which the compound is distorted from a perfectly trigonal bipyramid. The Zn—C bond length is 2.0282 (15) Å, and the C1—Zn—C1i bond angle is 133.21 (9)°: slightly greater than the expected 120° between equatorial atoms. Interestingly, the Zn—N bond lengths shown here are about 0.2 Å longer than those reported for similar terpyridine zinc(II) complexes, while the Zn—C length is expectedly shorter than the Zn—Cl and Zn—S lengths (Harrison et al., 1986; Hou et al., 2004; Vlasse et al., 1983). However, the Zn—C bond length is similar to that reported for a bipyridine dimethylzinc(II) complex, characterized by Wessing et al. (1994). The terpyridyl N1—Zn—N1i and N1—Zn—N2 bond angles are in agreement with those reported in the literature (Harrison et al., 1986; Hou et al., 2004; Vlasse et al., 1983).

Experimental

Under a nitrogen atmosphere, dimethylzinc (2 M in toluene, 1.07 ml, 2.14 mmol) was added to a stirring solution of terpyridine (0.511 g, 2.19 mmol) in toluene (3.5 ml). The resulting orange precipitate, which is extremely sensitive to hydrolysis, was filtered and dried in vacuo (yield 65%, 0.46 g). Crystallization was achieved by slow evaporation of THF in a nitrogen filled glovebox, which yielded yellow plates within five days. Analysis, calculated for C17H17N3Zn: C 62.11, H 5.21, N 12.78%; found: C 59.18, H 5.09, N 12.12%. 1H NMR (300 MHz, C6D6): δ -0.529 (s, 6H, –CH3).

Refinement

A suitable crystal was mounted in a nylon loop with Paratone-N cryoprotectant oil and data was collected on a Bruker APEXII CCD platform diffractometer. H atoms were included in calculated positions and were refined using a riding model, with C—H = 0.95 (aromatic) and 0.98 (methyl) Å and with Uiso(H) = 1.2(1.5 for methyl)Ueq(C).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with displacement ellipsoids shown at the 50% probability level. [Symmetry code: (i) -x, y, 1/2-z.]

Crystal data

[Zn(CH3)2(C15H11N3)] F(000) = 680
Mr = 328.71 Dx = 1.469 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6987 reflections
a = 17.4250 (11) Å θ = 2.7–28.3°
b = 9.1083 (6) Å µ = 1.65 mm1
c = 11.7595 (14) Å T = 125 K
β = 127.193 (1)° Plate, yellow
V = 1486.8 (2) Å3 0.23 × 0.13 × 0.06 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 1837 independent reflections
Radiation source: fine-focus sealed tube 1710 reflections with I > 2σ(I)
graphite Rint = 0.025
φ and ω scans θmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −23→23
Tmin = 0.703, Tmax = 0.908 k = −12→12
9483 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0347P)2 + 0.7204P] where P = (Fo2 + 2Fc2)/3
1837 reflections (Δ/σ)max < 0.001
98 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.27 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn 0.0000 0.27994 (2) 0.2500 0.02138 (9)
N1 0.09270 (8) 0.19322 (13) 0.18122 (12) 0.0217 (2)
N2 0.0000 0.03178 (17) 0.2500 0.0181 (3)
C1 0.11086 (11) 0.36835 (17) 0.43838 (16) 0.0282 (3)
H1A 0.1292 0.4625 0.4207 0.042*
H1B 0.1660 0.3013 0.4858 0.042*
H1C 0.0909 0.3840 0.4996 0.042*
C2 0.13813 (11) 0.28148 (17) 0.14866 (16) 0.0260 (3)
H2A 0.1337 0.3846 0.1557 0.031*
C3 0.19141 (11) 0.22995 (19) 0.10513 (17) 0.0291 (3)
H3A 0.2237 0.2959 0.0845 0.035*
C4 0.19631 (10) 0.0801 (2) 0.09259 (16) 0.0298 (3)
H4A 0.2317 0.0413 0.0621 0.036*
C5 0.14921 (10) −0.01296 (17) 0.12488 (15) 0.0261 (3)
H5A 0.1513 −0.1163 0.1160 0.031*
C6 0.09862 (9) 0.04762 (15) 0.17079 (13) 0.0197 (3)
C7 0.04737 (9) −0.04323 (15) 0.21108 (13) 0.0188 (3)
C8 0.04827 (10) −0.19665 (15) 0.20904 (15) 0.0239 (3)
H8A 0.0814 −0.2475 0.1801 0.029*
C9 0.0000 −0.2732 (2) 0.2500 0.0260 (4)
H9A 0.0000 −0.3775 0.2500 0.031*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn 0.02557 (13) 0.01758 (13) 0.02424 (13) 0.000 0.01676 (11) 0.000
N1 0.0219 (5) 0.0236 (6) 0.0222 (6) −0.0008 (4) 0.0147 (5) −0.0004 (4)
N2 0.0182 (7) 0.0178 (7) 0.0176 (7) 0.000 0.0105 (6) 0.000
C1 0.0330 (7) 0.0234 (7) 0.0303 (7) −0.0055 (6) 0.0202 (7) −0.0032 (6)
C2 0.0259 (7) 0.0279 (7) 0.0261 (7) −0.0032 (6) 0.0167 (6) 0.0009 (6)
C3 0.0230 (7) 0.0420 (9) 0.0243 (7) −0.0018 (6) 0.0154 (6) 0.0048 (6)
C4 0.0236 (7) 0.0461 (9) 0.0247 (7) 0.0082 (6) 0.0173 (6) 0.0050 (6)
C5 0.0252 (7) 0.0299 (8) 0.0253 (7) 0.0066 (6) 0.0164 (6) 0.0020 (6)
C6 0.0172 (6) 0.0242 (7) 0.0161 (6) 0.0021 (5) 0.0093 (5) 0.0006 (5)
C7 0.0177 (6) 0.0195 (6) 0.0167 (6) 0.0016 (5) 0.0091 (5) −0.0005 (5)
C8 0.0230 (7) 0.0208 (7) 0.0237 (7) 0.0031 (5) 0.0119 (6) −0.0023 (5)
C9 0.0262 (10) 0.0171 (9) 0.0276 (10) 0.000 0.0126 (9) 0.000

Geometric parameters (Å, °)

Zn—C1i 2.0282 (15) C2—H2A 0.9500
Zn—C1 2.0282 (15) C3—C4 1.381 (2)
Zn—N1 2.3381 (12) C3—H3A 0.9500
Zn—N2 2.2603 (16) C4—C5 1.383 (2)
Zn—N1i 2.3382 (12) C4—H4A 0.9500
N1—C2 1.3364 (19) C5—C6 1.3958 (18)
N1—C6 1.3416 (18) C5—H5A 0.9500
N2—C7i 1.3470 (15) C6—C7 1.4893 (18)
N2—C7 1.3470 (15) C7—C8 1.3979 (19)
C1—H1A 0.9800 C8—C9 1.3838 (18)
C1—H1B 0.9800 C8—H8A 0.9500
C1—H1C 0.9800 C9—C8i 1.3838 (18)
C2—C3 1.385 (2) C9—H9A 0.9500
C1i—Zn—C1 133.21 (9) N1—C2—H2A 118.4
C1i—Zn—N2 113.39 (5) C3—C2—H2A 118.4
C1—Zn—N2 113.39 (5) C4—C3—C2 118.22 (14)
C1i—Zn—N1 99.05 (5) C4—C3—H3A 120.9
C1—Zn—N1 96.37 (5) C2—C3—H3A 120.9
N2—Zn—N1 70.26 (3) C3—C4—C5 119.41 (14)
C1i—Zn—N1i 96.37 (5) C3—C4—H4A 120.3
C1—Zn—N1i 99.05 (5) C5—C4—H4A 120.3
N2—Zn—N1i 70.26 (3) C4—C5—C6 118.83 (14)
N1—Zn—N1i 140.52 (6) C4—C5—H5A 120.6
C2—N1—C6 118.48 (12) C6—C5—H5A 120.6
C2—N1—Zn 123.28 (10) N1—C6—C5 121.84 (13)
C6—N1—Zn 118.22 (9) N1—C6—C7 115.22 (11)
C7i—N2—C7 119.05 (16) C5—C6—C7 122.93 (13)
C7i—N2—Zn 120.48 (8) N2—C7—C8 121.89 (13)
C7—N2—Zn 120.47 (8) N2—C7—C6 115.77 (12)
Zn—C1—H1A 109.5 C8—C7—C6 122.34 (12)
Zn—C1—H1B 109.5 C9—C8—C7 118.82 (14)
H1A—C1—H1B 109.5 C9—C8—H8A 120.6
Zn—C1—H1C 109.5 C7—C8—H8A 120.6
H1A—C1—H1C 109.5 C8—C9—C8i 119.53 (19)
H1B—C1—H1C 109.5 C8—C9—H9A 120.2
N1—C2—C3 123.19 (14) C8i—C9—H9A 120.2
C1i—Zn—N1—C2 68.69 (12) C2—C3—C4—C5 −0.6 (2)
C1—Zn—N1—C2 −66.99 (12) C3—C4—C5—C6 −0.6 (2)
N2—Zn—N1—C2 −179.60 (12) C2—N1—C6—C5 −1.1 (2)
N1i—Zn—N1—C2 −179.60 (12) Zn—N1—C6—C5 177.37 (10)
C1i—Zn—N1—C6 −109.70 (11) C2—N1—C6—C7 179.08 (12)
C1—Zn—N1—C6 114.62 (11) Zn—N1—C6—C7 −2.45 (15)
N2—Zn—N1—C6 2.01 (9) C4—C5—C6—N1 1.5 (2)
N1i—Zn—N1—C6 2.01 (9) C4—C5—C6—C7 −178.65 (12)
C1i—Zn—N2—C7i −89.74 (8) C7i—N2—C7—C8 0.42 (9)
C1—Zn—N2—C7i 90.26 (8) Zn—N2—C7—C8 −179.58 (9)
N1—Zn—N2—C7i 178.72 (7) C7i—N2—C7—C6 −179.48 (12)
N1i—Zn—N2—C7i −1.28 (7) Zn—N2—C7—C6 0.52 (12)
C1i—Zn—N2—C7 90.26 (8) N1—C6—C7—N2 1.31 (16)
C1—Zn—N2—C7 −89.74 (8) C5—C6—C7—N2 −178.51 (11)
N1—Zn—N2—C7 −1.28 (7) N1—C6—C7—C8 −178.59 (13)
N1i—Zn—N2—C7 178.72 (7) C5—C6—C7—C8 1.6 (2)
C6—N1—C2—C3 −0.3 (2) N2—C7—C8—C9 −0.83 (19)
Zn—N1—C2—C3 −178.64 (11) C6—C7—C8—C9 179.07 (10)
N1—C2—C3—C4 1.1 (2) C7—C8—C9—C8i 0.39 (9)

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2233).

References

  1. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Corbridge, D. E. C. & Cox, E. G. (1956). J. Chem. Soc. pp. 594–603.
  3. Einstein, F. W. B. & Penfold, B. R. (1966). Acta Cryst.20, 924–926.
  4. Harrison, P. G., Begley, M. J., Kikabhai, T. & Killer, F. (1986). J. Chem. Soc. Dalton Trans. pp. 929–938.
  5. Hou, L., Li, D. & Ng, S. W. (2004). Acta Cryst. E60, m1734–m1735.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Vlasse, M., Rojo, T. & Beltran-Porter, D. (1983). Acta Cryst. C39, 560–563.
  9. Wissing, E., Kaupp, M., Boersma, J., Spek, A. L. & van Koten, G. (1994). Organometallics, 13, 2349–2356.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809040136/hy2233sup1.cif

e-65-m1325-sup1.cif (13.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809040136/hy2233Isup2.hkl

e-65-m1325-Isup2.hkl (90.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES