Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1967 Jul;46(7):1141–1150. doi: 10.1172/JCI105607

Pathways of Ammonia Metabolism in the Intact Functioning Kidney of the Dog*

William J Stone 1,, Robert F Pitts 1,
PMCID: PMC297113  PMID: 6027077

Abstract

Studies in which 15N-labeled precursors of urinary ammonia were infused into the artery of an intact functioning kidney of an acidotic dog have led to the following conclusions: Preformed ammonia and ammonia derived from the amide nitrogen of plasma glutamine are added directly to urine without significant incorporation into amino acid intermediates of renal tissue. Thus, reductive amination of α-ketoglutarate to form glutamate does not occur to an appreciable extent nor is there significant transfer of the amide nitrogen of glutamine to the corresponding keto acids to form glutamate, aspartate, alanine, or glycine. The enzyme system “glutaminase II” may participate to a significant extent in the metabolism of glutamine by forming aspartate and alanine by direct transamination of oxalacetate and pyruvate and liberating the amide nitrogen as ammonia. Renal alanine exists as a well mixed pool derived in roughly equal amounts from filtered and reabsorbed plasma alanine and newly synthesized alanine. The alanine pool of tubular cells does not equilibrate with the alanine of peritubular capillary blood. Transfer of the nitrogen of alanine to α-ketoglutarate and subsequent oxidative demination of the resulting glutamate can account for the ammonia formed from alanine. Glycine is not an important intermediate in renal nitrogen metabolism.

Full text

PDF
1141

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. DE DUVE C., WATTIAUX R., BAUDHUIN P. Distribution of enzymes between subcellular fractions in animal tissues. Adv Enzymol Relat Subj Biochem. 1962;24:291–358. doi: 10.1002/9780470124888.ch6. [DOI] [PubMed] [Google Scholar]
  2. DENIS G., PREUSS H., PITTS R. THE PNH3 OF RENAL TUBULAR CELLS. J Clin Invest. 1964 Apr;43:571–582. doi: 10.1172/JCI104942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EICHEL H. J., BUKOVSKY J. Intracellular distribution pattern of rat liver glutamic-oxalacetic transaminase. Nature. 1961 Jul 15;191:243–245. doi: 10.1038/191243a0. [DOI] [PubMed] [Google Scholar]
  4. KAFER E., POLLAK J. K. Amino acid metabolism of growing tissues. II. Alanine-glutamic acid transaminase activity of embryonic rat liver. Exp Cell Res. 1961 Jan;22:120–136. doi: 10.1016/0014-4827(61)90091-x. [DOI] [PubMed] [Google Scholar]
  5. KAMIN H., HANDLER P. The metabolism of parenterally administered amino acids. III. Ammonia formation. J Biol Chem. 1951 Dec;193(2):873–880. [PubMed] [Google Scholar]
  6. Krebs H. A. Metabolism of amino-acids: The synthesis of glutamine from glutamic acid and ammonia, and the enzymic hydrolysis of glutamine in animal tissues. Biochem J. 1935 Aug;29(8):1951–1969. doi: 10.1042/bj0291951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. MEISTER A., TICE S. V. Transamination from glutamine to alpha-keto acids. J Biol Chem. 1950 Nov;187(1):173–187. [PubMed] [Google Scholar]
  8. OWEN E. E., ROBINSON R. R. Amino acid extraction and ammonia metabolism by the human kidney during the prolonged administration of ammonium chloride. J Clin Invest. 1963 Feb;42:263–276. doi: 10.1172/JCI104713. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. PILKINGTON L. A., BINDER R., DEHAAS J. C., PITTS R. F. INTRARENAL DISTRIBUTION OF BLOOD FLOW. Am J Physiol. 1965 Jun;208:1107–1113. doi: 10.1152/ajplegacy.1965.208.6.1107. [DOI] [PubMed] [Google Scholar]
  10. PILKINGTON L. A., WELCH J., PITTS R. F. RELATIONSHIP OF PNH3 OF TUBULAR CELLS TO RENAL PRODUCTION OF AMMONIA. Am J Physiol. 1965 Jun;208:1100–1106. doi: 10.1152/ajplegacy.1965.208.6.1100. [DOI] [PubMed] [Google Scholar]
  11. PITTS R. F., PILKINGTON L. A., DEHAAS J. C. N15 TRACER STUDIES ON THE ORIGIN OF URINARY AMMONIA IN THE ACIDOTIC DOG, WITH NOTES ON THE ENZYMATIC SYNTHESIS OF LABELED CLUTAMIC ACID AND GLUTAMINES. J Clin Invest. 1965 May;44:731–745. doi: 10.1172/JCI105186. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. PITTS R. F. RENAL PRODUCTION AND EXCRETION OF AMMONIA. Am J Med. 1964 May;36:720–742. doi: 10.1016/0002-9343(64)90182-2. [DOI] [PubMed] [Google Scholar]
  13. POLLAK V. E., MATTENHEIMER H., DEBRUIN H., WEINMAN K. J. EXPERIMENTAL METABOLIC ACIDOSIS: THE ENZYMATIC BASIS OF AMMONIA PRODUCTION BY THE DOG KIDNEY. J Clin Invest. 1965 Feb;44:169–181. doi: 10.1172/JCI105132. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Pitts R. F., Stone W. J. Renal metabolism of alanine. J Clin Invest. 1967 Apr;46(4):530–538. doi: 10.1172/JCI105554. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. RICHTERICH R. W., GOLDSTEIN L. Distribution of glutamine metabolizing enzymes and production of urinary ammonia in the mammalian kidney. Am J Physiol. 1958 Nov;195(2):316–320. doi: 10.1152/ajplegacy.1958.195.2.316. [DOI] [PubMed] [Google Scholar]
  16. TALLAN H. H., MOORE S., STEIN W. H. Studies on the free amino acids and related compounds in the tissues of the cat. J Biol Chem. 1954 Dec;211(2):927–939. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES