Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1967 Jul;46(7):1196–1204. doi: 10.1172/JCI105613

Erythrocyte Energy Metabolism in Hereditary Spherocytosis*

Claude F Reed 1, Lawrence E Young 1,
PMCID: PMC297119  PMID: 6027083

Abstract

The incorporation of extracellular orthophosphate-32P into cellular ATP, 2,3-diphosphoglyceric acid, and inorganic phosphate has been measured over a period of 6 hours in vitro in red blood cells from normal subjects and from patients with hereditary spherocytosis who had undergone splenectomy. The pattern of labeling of the intracellular compounds was found to be the same in both types of red blood cells, as reported by other workers using much shorter periods of incubation. In addition, in the present study it was possible to compare the net flux of extracellular phosphate into ATP between the two groups of erythrocytes. These latter results suggest that the actual turnover rate of ATP was not abnormal in these patients with hereditary spherocytosis.

Full text

PDF
1196

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALTMAN K. I., IZZO M. J., SWISHER S. N., YOUNG L. E. Studies on spontaneous in vitro autohemolysis in hemolytic disorders. Blood. 1956 Nov;11(11):977–997. [PubMed] [Google Scholar]
  2. BARTLETT G. R. Human red cell glycolytic intermediates. J Biol Chem. 1959 Mar;234(3):449–458. [PubMed] [Google Scholar]
  3. BARTLETT G. R. Methods for the isolation of glycolytic intermediated by column chromatography with ion exchange resins. J Biol Chem. 1959 Mar;234(3):459–465. [PubMed] [Google Scholar]
  4. BARTLETT G. R. Organization of red cell glycolytic enzymes; cell coat phosphorus transfer. Ann N Y Acad Sci. 1958 Oct 13;75(1):110–114. doi: 10.1111/j.1749-6632.1958.tb36855.x. [DOI] [PubMed] [Google Scholar]
  5. BARTLETT G. R. Phosphorus assay in column chromatography. J Biol Chem. 1959 Mar;234(3):466–468. [PubMed] [Google Scholar]
  6. BERTLES J. F. Sodium transport across the surface membrane of red blood cells in hereditary spherocytosis. J Clin Invest. 1957 Jun;36(6 Pt 1):816–824. doi: 10.1172/JCI103487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DUNN I., IBSEN K. H., COE E. L., SCHNEIDER A. S., WEINSTEIN I. M. ERYTHROCYTE CARBOHYDRATE METABOLISM IN HEREDITARY SPHEROCYTOSIS. J Clin Invest. 1963 Oct;42:1535–1541. doi: 10.1172/JCI104838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. GARBY L., DE VERDIERCH C. H. GLUCOSE METABOLISM IN NORMAL ERYTHROCYTES. I. KINETICS OF THE HEXOKINASE REACTION IN INTACT CELLS. Scand J Haematol. 1964;1:150–167. doi: 10.1111/j.1600-0609.1964.tb00013.x. [DOI] [PubMed] [Google Scholar]
  9. GERLACH E., FLECKENSTEIN A., GROSS E. Der intermediäre Phosphat-Stoffwechsel des Menschen-Erythrocyten; papierchromatographische Studien unter Verwendung von 32P-markiertem Orthophosphat. Pflugers Arch. 1958;266(5):528–555. doi: 10.1007/BF00362257. [DOI] [PubMed] [Google Scholar]
  10. HARRIS E. J., PRANKERD T. A. The rate of sodium extrusion from human erythrocytes. J Physiol. 1953 Sep;121(3):470–486. doi: 10.1113/jphysiol.1953.sp004959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. KEITT A. S. CHANGES IN THE CONTENT AND 32P INCORPORATION OF GLYCOLYTIC INTERMEDIATES DURING INCUBATION OF NORMAL AND HEREDITARY SPHEROCYTOSIS ERYTHROCYTES. Br J Haematol. 1965 Mar;11:177–187. doi: 10.1111/j.1365-2141.1965.tb06575.x. [DOI] [PubMed] [Google Scholar]
  12. MOHLER D. N. ADENOSINE TRIPHOSPHATE METABOLISM IN HEREDITARY SPHEROCYTOSIS. J Clin Invest. 1965 Aug;44:1417–1424. doi: 10.1172/JCI105247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. MURPHY J. R. Erythrocyte metabolism. II. Glucose metabolism and pathways. J Lab Clin Med. 1960 Feb;55:286–302. [PubMed] [Google Scholar]
  14. Nathan D. G., Oski F. A., Sidel V. W., Gardner F. H., Diamond L. K. Studies of erythrocyte spicule formation in haemolytic anaemia. Br J Haematol. 1966 Jul;12(4):385–395. doi: 10.1111/j.1365-2141.1966.tb05648.x. [DOI] [PubMed] [Google Scholar]
  15. PRANKERD T. A., ALTMAN K. I., YOUNG L. E. Abnormalities of carbohydrate metabolism of red cells in hereditary spherocytosis. J Clin Invest. 1955 Aug;34(8):1268–1275. doi: 10.1172/JCI103173. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. ROBINSON M. A., LODER P. B., DE GRUCHY G. C. Red-cell metabolism in non-spherocytic congenital haemolytic anaemia. Br J Haematol. 1961 Jul;7:327–339. doi: 10.1111/j.1365-2141.1961.tb00343.x. [DOI] [PubMed] [Google Scholar]
  17. Reed C. F., Swisher S. N. Erythrocyte lipid loss in hereditary spherocytosis. J Clin Invest. 1966 May;45(5):777–781. doi: 10.1172/JCI105392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. SCHAUER R., HILLMANN G. [Contributions on the mechanism of phosphate transport in human erythrocytes]. Hoppe Seylers Z Physiol Chem. 1961 Jun 30;325:9–34. doi: 10.1515/bchm2.1961.325.1.9. [DOI] [PubMed] [Google Scholar]
  19. SCHRIER S. L. Studies of the metabolism of human erythrocyte membranes. J Clin Invest. 1963 Jun;42:756–766. doi: 10.1172/JCI104768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SELWYN J. G., DACIE J. V. Autohemolysis and other changes resulting from the incubation in vitro of red cells from patients with congenital hemolytic anemia. Blood. 1954 May;9(5):414–438. [PubMed] [Google Scholar]
  21. SHAFER A. W. THE PHOSPHORYLATED CARBOHYDRATE INTERMEDIATES FROM ERYTHROCYTES IN HEREDITARY SPHEROCYTOSIS. Blood. 1964 Apr;23:417–426. [PubMed] [Google Scholar]
  22. Schrier S. L. Organization of enzymes in human erythrocyte membranes. Am J Physiol. 1966 Jan;210(1):139–145. doi: 10.1152/ajplegacy.1966.210.1.139. [DOI] [PubMed] [Google Scholar]
  23. Weed R. I., Bowdler A. J. Metabolic dependence of the critical hemolytic volume of human erythrocytes: relationship to osmotic fragility and autohemolysis in hereditary spherocytosis and normal red cells. J Clin Invest. 1966 Jul;45(7):1137–1149. doi: 10.1172/JCI105420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. de VERDIER C. Exchange of phosphate-groups between inorganic phosphate and adenosine triphosphate in red blood cells. Acta Physiol Scand. 1963 Apr;57:301–308. doi: 10.1111/j.1748-1716.1963.tb02593.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES