Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2769. doi: 10.1107/S1600536809036903

Adamantane-1-ammonium benzoate

Wen-Ni Zheng a, Bo Wang a,*
PMCID: PMC2971192  PMID: 21578363

Abstract

In the title molecular salt, C10H15NH3 +·C7H5O2 , both carboxyl O atoms act as acceptors for strong N—H⋯O inter­molecular hydrogen-bond inter­actions with the ammonium group in the cation, generating infinite chains along the b axis. A weak C—H⋯π inter­action is also present.

Related literature

For related structures, see: Tukada & Mochizuki (2003); Zhao et al. (2003); He & Wen (2006). For puckering parameters, see: Cremer & Pople (1975). graphic file with name e-65-o2769-scheme1.jpg

Experimental

Crystal data

  • C10H18N+·C7H5O2

  • M r = 273.36

  • Monoclinic, Inline graphic

  • a = 10.918 (2) Å

  • b = 6.5664 (13) Å

  • c = 21.197 (4) Å

  • β = 100.07 (3)°

  • V = 1496.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) T min = 0.774, T max = 1.000

  • 15027 measured reflections

  • 3437 independent reflections

  • 2453 reflections with I > 2σ(I)

  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.147

  • S = 1.04

  • 3437 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: CrystalClear (Rigaku 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999).

Supplementary Material

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809036903/jj2008sup1.cif

e-65-o2769-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036903/jj2008Isup2.hkl

e-65-o2769-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.89 1.83 2.7134 (17) 176
N1—H1B⋯O2ii 0.89 1.90 2.7840 (18) 173
N1—H1C⋯O2 0.89 1.92 2.7915 (18) 166
C16—H16ACg1iii 0.97 2.74 3.702 (2) 174

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg1 is the centroid of the C2–C7 ring.

Acknowledgments

The authors are grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

Owing to its highly symmetrical and stable structure, adamantane and its derivatives have generated much interest in the past and continue to be actively studied as evidenced by the large number of compounds containing amantadine that have been synthesized (Tukada & Mochizuki, 2003; Zhao et al., 2003; He & Wen, 2006). Here we report the synthesis and crystal structure of the title compound,(I), C10H15NH3+ . C7H5O2-, a salt obtained from the reaction of adamantane-1-ammonium hydrochloride and sodium benzoate (Fig. 1).

The adamantane-1-ammonium cation contains four 6-membered rings in a cage-like structure each in a slightly distorted boat conformation and with a protonated N atom at the 1-position. Puckering parameters (Cremer & Pople, 1975) Q, θ and φ are for rings 1–4 [(1) 0.630 (2) Å, 1.48 (18)°,272 (54)°; (2) 0.6247 (19)Å,178.36 (17)°, 251 (423)°; (3) 0.621 (4)Å,0.67 (18)°, 240 (54)°; (4)0.6207 (19)Å, 0.55 (18)°, 218 (39)°] where (1) = C7–C9/C13–C15, (2) = C7/C8/C10/C11/C16/C15, (3) = C8/C9/C13/C12/C11/C10 and (4) = C11–C16. C—C distances range from 1.518 (2)Å to 1.531 (3)Å and C—C—C angles range from 108.93 (13)° to 109.91 (13)°, while the exocyclic C—N bond length is 1.4924 (19)Å. These values are similar to that observed in adamantane-1-ammonium 2-nitrobenzoate (C—C = 1.5254 (18)Å to 1.532 (2)Å, C—C—C 109.06 (13)° to 109.84 (11)°, C—N = 1.4967 (18)Å (He & Wen, 2006). Both the negativly charged and neutral oxygen atoms in the benzoate anion are involved in strong N—H···O intermolecular hydrogen bond interactions with the ammonium cation group generating infinite one-dimensional chains along the b axis of the unit cell (Fig. 2, Table 1). In addition, weak π-ring C16–H16A···Cg1 interactions exist which contribute to crystal stability (Cg1 is the center of gravity of ring 1).

Experimental

A mixture of adamantane-1- ammonium hydrochloride (10 mmol), sodiumbenzoate (10 mmol) and methanol (50 ml) was stirred in a beaker. There were many solid powders produced and the solution was filtered. Colorless single crystals of the title compound suitable for X-ray analysis were obtained by slow evaporation of the solvents over a period of 20 h.

Refinement

Positional parameters of all the H atoms were calculated geometrically (aromatic C–H = 0.93 A°, aliphatic C–H = 0.97 A°) & N–H = 0.89Å) and were allowed to ride on the C,N atoms to which they are bonded, with Uiso(H) = 1.2-1.5Ueq(C,N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with the atomic numbering scheme and displacement ellipsoids drawn at the 30% probability level. All H atoms except those on the N atom have been omitted for clarity.

Fig. 2.

Fig. 2.

A view of the crystal packing of the title compound. Dashed lines indicate N–H···O hydrogen bonds which form infinite, one-dimensional chains along the b axis of the unit cell. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C10H18N+·C7H5O2 F(000) = 592
Mr = 273.36 Dx = 1.214 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 12490 reflections
a = 10.918 (2) Å θ = 3.2–27.7°
b = 6.5664 (13) Å µ = 0.08 mm1
c = 21.197 (4) Å T = 298 K
β = 100.07 (3)° Prism, colourless
V = 1496.3 (5) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer 3437 independent reflections
Radiation source: fine-focus sealed tube 2453 reflections with I > 2σ(I)
graphite Rint = 0.043
Detector resolution: 13.6612 pixels mm-1 θmax = 27.5°, θmin = 3.2°
CCD_Profile_fitting scans h = −14→14
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) k = −8→8
Tmin = 0.774, Tmax = 1.000 l = −27→26
15027 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.147 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0654P)2 + 0.3147P] where P = (Fo2 + 2Fc2)/3
3437 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.20 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.56217 (14) 0.6892 (3) 0.15342 (7) 0.0405 (4)
C2 0.47020 (13) 0.7614 (2) 0.09647 (7) 0.0365 (3)
C3 0.41146 (17) 0.6184 (3) 0.05392 (8) 0.0551 (5)
H3A 0.4282 0.4807 0.0612 0.066*
C4 0.3278 (2) 0.6789 (3) 0.00041 (9) 0.0718 (6)
H4A 0.2899 0.5820 −0.0286 0.086*
C5 0.30094 (19) 0.8799 (4) −0.00983 (9) 0.0707 (6)
H5A 0.2439 0.9201 −0.0455 0.085*
C6 0.35764 (18) 1.0225 (3) 0.03223 (9) 0.0651 (5)
H6A 0.3385 1.1596 0.0253 0.078*
C7 0.44324 (15) 0.9646 (3) 0.08504 (8) 0.0481 (4)
H7A 0.4828 1.0629 0.1130 0.058*
C8 0.93359 (16) 0.8861 (2) 0.16653 (8) 0.0463 (4)
H8A 0.9568 1.0003 0.1952 0.056*
H8B 0.8483 0.9057 0.1452 0.056*
C9 0.94432 (13) 0.6891 (2) 0.20453 (7) 0.0347 (3)
C10 0.90627 (16) 0.5096 (2) 0.15964 (8) 0.0472 (4)
H10A 0.9123 0.3838 0.1840 0.057*
H10B 0.8207 0.5260 0.1383 0.057*
C11 0.99218 (19) 0.5007 (3) 0.11014 (9) 0.0591 (5)
H11A 0.9681 0.3859 0.0811 0.071*
C12 0.98200 (19) 0.6977 (3) 0.07187 (9) 0.0633 (5)
H12A 0.8972 0.7158 0.0496 0.076*
H12B 1.0360 0.6915 0.0401 0.076*
C13 1.01933 (18) 0.8766 (3) 0.11689 (9) 0.0548 (5)
H13A 1.0126 1.0035 0.0922 0.066*
C14 1.07795 (14) 0.6598 (3) 0.23908 (8) 0.0474 (4)
H14A 1.0846 0.5347 0.2638 0.057*
H14B 1.1021 0.7723 0.2683 0.057*
C15 1.16369 (16) 0.6503 (3) 0.18941 (9) 0.0596 (5)
H15A 1.2497 0.6317 0.2113 0.071*
C16 1.15367 (17) 0.8477 (3) 0.15120 (10) 0.0628 (5)
H16A 1.2089 0.8428 0.1200 0.075*
H16B 1.1783 0.9616 0.1797 0.075*
C17 1.1262 (2) 0.4714 (3) 0.14452 (11) 0.0689 (6)
H17A 1.1330 0.3455 0.1688 0.083*
H17B 1.1813 0.4629 0.1134 0.083*
N1 0.85951 (11) 0.69816 (19) 0.25257 (6) 0.0393 (3)
H1A 0.8810 0.8025 0.2790 0.059*
H1B 0.8654 0.5828 0.2749 0.059*
H1C 0.7815 0.7146 0.2324 0.059*
O1 0.57302 (14) 0.5030 (2) 0.16200 (6) 0.0744 (5)
O2 0.62592 (11) 0.81896 (19) 0.18784 (6) 0.0594 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0380 (8) 0.0485 (9) 0.0338 (8) 0.0034 (7) 0.0030 (6) −0.0005 (7)
C2 0.0332 (7) 0.0430 (8) 0.0325 (7) −0.0025 (6) 0.0039 (6) 0.0033 (6)
C3 0.0573 (10) 0.0494 (10) 0.0514 (10) −0.0022 (8) −0.0102 (8) −0.0026 (8)
C4 0.0713 (13) 0.0782 (15) 0.0541 (11) −0.0070 (11) −0.0218 (10) −0.0098 (10)
C5 0.0622 (12) 0.0890 (16) 0.0518 (11) 0.0029 (11) −0.0148 (9) 0.0201 (11)
C6 0.0635 (12) 0.0581 (12) 0.0670 (12) 0.0025 (9) −0.0073 (10) 0.0234 (10)
C7 0.0473 (9) 0.0454 (9) 0.0482 (9) −0.0030 (7) −0.0012 (7) 0.0045 (7)
C8 0.0529 (9) 0.0362 (9) 0.0467 (9) 0.0043 (7) −0.0002 (7) 0.0037 (7)
C9 0.0346 (7) 0.0325 (7) 0.0343 (7) −0.0002 (6) −0.0019 (6) −0.0008 (6)
C10 0.0521 (9) 0.0385 (9) 0.0493 (9) −0.0068 (7) 0.0046 (8) −0.0090 (7)
C11 0.0723 (12) 0.0516 (11) 0.0546 (11) −0.0037 (9) 0.0137 (9) −0.0182 (8)
C12 0.0675 (12) 0.0823 (14) 0.0398 (9) −0.0007 (10) 0.0083 (9) −0.0031 (9)
C13 0.0648 (11) 0.0487 (10) 0.0507 (10) −0.0016 (8) 0.0092 (9) 0.0150 (8)
C14 0.0391 (8) 0.0527 (10) 0.0461 (9) 0.0016 (7) −0.0045 (7) 0.0046 (7)
C15 0.0375 (8) 0.0759 (13) 0.0635 (11) 0.0061 (8) 0.0036 (8) 0.0076 (10)
C16 0.0528 (10) 0.0718 (13) 0.0651 (12) −0.0150 (9) 0.0134 (9) 0.0019 (10)
C17 0.0717 (13) 0.0601 (12) 0.0810 (14) 0.0191 (10) 0.0297 (11) 0.0009 (10)
N1 0.0371 (6) 0.0397 (7) 0.0375 (7) 0.0005 (5) −0.0030 (5) −0.0023 (5)
O1 0.0912 (11) 0.0536 (9) 0.0663 (9) 0.0002 (7) −0.0200 (8) 0.0209 (6)
O2 0.0484 (7) 0.0625 (8) 0.0575 (7) 0.0142 (6) −0.0177 (6) −0.0197 (6)

Geometric parameters (Å, °)

C1—O1 1.238 (2) C10—H10B 0.9700
C1—O2 1.2512 (19) C11—C12 1.520 (3)
C1—C2 1.505 (2) C11—C17 1.528 (3)
C2—C7 1.378 (2) C11—H11A 0.9800
C2—C3 1.380 (2) C12—C13 1.523 (3)
C3—C4 1.384 (3) C12—H12A 0.9700
C3—H3A 0.9300 C12—H12B 0.9700
C4—C5 1.361 (3) C13—C16 1.531 (3)
C4—H4A 0.9300 C13—H13A 0.9800
C5—C6 1.365 (3) C14—C15 1.528 (2)
C5—H5A 0.9300 C14—H14A 0.9700
C6—C7 1.380 (2) C14—H14B 0.9700
C6—H6A 0.9300 C15—C17 1.522 (3)
C7—H7A 0.9300 C15—C16 1.522 (3)
C8—C9 1.518 (2) C15—H15A 0.9800
C8—C13 1.527 (2) C16—H16A 0.9700
C8—H8A 0.9700 C16—H16B 0.9700
C8—H8B 0.9700 C17—H17A 0.9700
C9—N1 1.4925 (19) C17—H17B 0.9700
C9—C14 1.526 (2) N1—H1A 0.8900
C9—C10 1.526 (2) N1—H1B 0.8900
C10—C11 1.526 (2) N1—H1C 0.8900
C10—H10A 0.9700
O1—C1—O2 123.88 (15) C17—C11—H11A 109.4
O1—C1—C2 117.52 (14) C11—C12—C13 109.58 (14)
O2—C1—C2 118.55 (15) C11—C12—H12A 109.8
C7—C2—C3 118.90 (15) C13—C12—H12A 109.8
C7—C2—C1 122.54 (14) C11—C12—H12B 109.8
C3—C2—C1 118.55 (14) C13—C12—H12B 109.8
C2—C3—C4 120.31 (18) H12A—C12—H12B 108.2
C2—C3—H3A 119.8 C12—C13—C8 109.53 (15)
C4—C3—H3A 119.8 C12—C13—C16 109.35 (16)
C5—C4—C3 120.12 (18) C8—C13—C16 109.25 (15)
C5—C4—H4A 119.9 C12—C13—H13A 109.6
C3—C4—H4A 119.9 C8—C13—H13A 109.6
C4—C5—C6 120.05 (17) C16—C13—H13A 109.6
C4—C5—H5A 120.0 C9—C14—C15 108.92 (13)
C6—C5—H5A 120.0 C9—C14—H14A 109.9
C5—C6—C7 120.41 (18) C15—C14—H14A 109.9
C5—C6—H6A 119.8 C9—C14—H14B 109.9
C7—C6—H6A 119.8 C15—C14—H14B 109.9
C2—C7—C6 120.18 (16) H14A—C14—H14B 108.3
C2—C7—H7A 119.9 C17—C15—C16 109.76 (16)
C6—C7—H7A 119.9 C17—C15—C14 109.41 (15)
C9—C8—C13 109.32 (13) C16—C15—C14 109.63 (15)
C9—C8—H8A 109.8 C17—C15—H15A 109.3
C13—C8—H8A 109.8 C16—C15—H15A 109.3
C9—C8—H8B 109.8 C14—C15—H15A 109.3
C13—C8—H8B 109.8 C15—C16—C13 109.38 (15)
H8A—C8—H8B 108.3 C15—C16—H16A 109.8
N1—C9—C8 109.18 (12) C13—C16—H16A 109.8
N1—C9—C14 109.45 (12) C15—C16—H16B 109.8
C8—C9—C14 109.91 (13) C13—C16—H16B 109.8
N1—C9—C10 108.82 (12) H16A—C16—H16B 108.2
C8—C9—C10 109.89 (12) C15—C17—C11 109.36 (15)
C14—C9—C10 109.58 (13) C15—C17—H17A 109.8
C11—C10—C9 108.97 (13) C11—C17—H17A 109.8
C11—C10—H10A 109.9 C15—C17—H17B 109.8
C9—C10—H10A 109.9 C11—C17—H17B 109.8
C11—C10—H10B 109.9 H17A—C17—H17B 108.3
C9—C10—H10B 109.9 C9—N1—H1A 109.5
H10A—C10—H10B 108.3 C9—N1—H1B 109.5
C12—C11—C10 109.76 (15) H1A—N1—H1B 109.5
C12—C11—C17 109.64 (17) C9—N1—H1C 109.5
C10—C11—C17 109.22 (15) H1A—N1—H1C 109.5
C12—C11—H11A 109.4 H1B—N1—H1C 109.5
C10—C11—H11A 109.4

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O1i 0.89 1.83 2.7134 (17) 176
N1—H1B···O2ii 0.89 1.90 2.7840 (18) 173
N1—H1C···O2 0.89 1.92 2.7915 (18) 166
C16—H16A···Cg1iii 0.97 2.74 3.702 (2) 174

Symmetry codes: (i) −x+3/2, y+1/2, −z+1/2; (ii) −x+3/2, y−1/2, −z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2008).

References

  1. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  2. Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  3. He, Y.-H. & Wen, Y.-H. (2006). Acta Cryst. E62, o1312–o1313.
  4. Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Tukada, H. & Mochizuki, K. (2003). J. Mol. Struct. 655, 473–478.
  7. Zhao, G. L., Feng, Y. L., Hu, X. C. & Kong, L. C. (2003). Chin. J. Appl. Chem.20, 806–808.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, New_Global_Publ_Block. DOI: 10.1107/S1600536809036903/jj2008sup1.cif

e-65-o2769-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809036903/jj2008Isup2.hkl

e-65-o2769-Isup2.hkl (168.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES