Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):o2874. doi: 10.1107/S1600536809043682

N-(3,4-Dimethyl­phen­yl)maleamic acid

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, K Shakuntala a, Hartmut Fuess c
PMCID: PMC2971237  PMID: 21578460

Abstract

The title compound, C12H13NO3, crystallizes with four independent mol­ecules in the asymmetric unit. The N—H bond and the C=O bond in the amide segment are anti to each other. The C=C double bond is cis configured and an intra­molecular O—H⋯O hydrogen bond is formed in each molecule. The mean planes through the aromatic ring and the amide group –NHCO– are inclined at angles of 17.4 (3), 20.8 (2), 16.2 (2) and 11.2 (3)° in the four mol­ecules. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into ribbons along the b axis.

Related literature

For our study on the effect of ring and side-chain substitutions on the crystal structures of biologically important amides, see: Gowda, Foro, Saraswathi & Fuess (2009); Gowda, Foro, Saraswathi, Terao & Fuess (2009); Gowda, Tokarčík et al. (2009); Prasad et al. (2002). For modes of inter­linking carboxylic acids by hydrogen bonds, see: Leiserowitz (1976). For a related structure, see: Lo & Ng (2009). graphic file with name e-65-o2874-scheme1.jpg

Experimental

Crystal data

  • C12H13NO3

  • M r = 219.23

  • Monoclinic, Inline graphic

  • a = 11.9003 (2) Å

  • b = 12.9991 (2) Å

  • c = 15.2641 (3) Å

  • β = 110.207 (2)°

  • V = 2215.92 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 295 K

  • 0.48 × 0.32 × 0.31 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2009) T min = 0.958, T max = 0.965

  • 67608 measured reflections

  • 5279 independent reflections

  • 4100 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.134

  • S = 1.03

  • 5279 reflections

  • 577 parameters

  • 10 restraints

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043682/bt5110sup1.cif

e-65-o2874-sup1.cif (34.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043682/bt5110Isup2.hkl

e-65-o2874-Isup2.hkl (253.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O63i 0.86 2.00 2.851 (3) 168
N2—H2N⋯O43 0.86 2.03 2.865 (3) 163
N3—H3N⋯O23i 0.86 2.07 2.916 (3) 167
N4—H4N⋯O3 0.86 2.08 2.930 (3) 169
O2—H2A⋯O1 0.88 1.62 2.481 (3) 165
O22—H22A⋯O21 0.88 1.59 2.471 (3) 176
O42—H42A⋯O41 0.88 1.61 2.487 (3) 175
O62—H62A⋯O61 0.88 1.6 2.480 (3) 176

Symmetry code: (i) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (VEGA 1/0817/08) and Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As a part of studying the effect of ring and side chain substitutions on the crystal structures of biologically important amides (Gowda, Foro, Saraswathi & Fuess, 2009; Gowda, Foro, Saraswathi, Terao & Fuess, 2009; Gowda, Tokarčík et al., 2009; Prasad et al., 2002), the crystal structure of N-(3,4-dimethylphenyl)-maleamic acid (I) has been determined. The asymmetric unit of the cell contains four independent molecules (Fig. 1). The conformations of the N—H and C=O bonds in the amide segment of the structure are anti to each other and those of the amide O atom and the carbonyl O atom of the acid segment are also anti to each other. But the amide O atom is anti to the H atom attached to the adjacent C atom, while the carboxyl O atom is syn to the H atom attached to its adjacent C atom (Fig.1). In the structure of (I), the rare anti conformation of the C=O and O—H bonds of the acid group has been observed, similar to that obsrved in N-(2,6-dimethylphenyl)maleamic acid (Gowda, Tokarčík et al., 2009) and N-phenylmaleamic acid (Lo & Ng, 2009), but contrary to the more general syn conformation observed for C=O and O—H bonds of the acid group in N- (2,6-dimethylphenyl)succinamic acid (Gowda et al., 2009b). The various modes of interlinking carboxylic acids by hydrogen bonds is described elsewhere (Leiserowitz, 1976).

In the maleamic moiety the C8—C9, C28—C29, C48—C49 and C68—C69 bond lengths of 1.322 (5), 1.343 (4), 1.320 (4) and 1.321 (4) Å clearly indicate the double bond character. Each maleamic moiety features one intramolecular hydrogen O–H···O bond (Table 1). The mean planes through the phenyl ring and the amido group –NHCO– are inclined at the angles of 17.4 (3), 20.8 (2), 16.2 (2) and 11.2 (3)° in the first, second, third and fourth molecules, respectively. In the crystal structure, the intermolecular N–H···O hydrogen bonds link the molecules into ribbons parallel to the ab-plane of the cell (Fig. 2).

Experimental

To a solution of maleic anhydride (0.025 mol) in toluene (25 ml) was added dropwise a solution of 3,4-dimethylaniline (0.025 mol) also in toluene (20 ml) with constant stirring. The resulting mixture was warmed with stirring for over 30 min and set aside for additional 30 min at room temperature for the completion of reaction. The mixture was then treated with dilute hydrochloric acid to remove the unreacted 3,4-dimethylaniline. The resultant solid N-(3,4-dimethylphenyl)maleamic acid was filtered under suction and washed thoroughly with water to remove the unreacted maleic anhydride and maleic acid. It was recrystallized to constant melting point from ethanol. The purity of the compound was checked by elemental analysis and characterized by its infrared spectra. The single crystals used in X-ray diffraction studies were grown in an ethanol solution by slow evaporation at room temperature.

Refinement

All H atoms bonded to C and N atoms were positioned with idealized geometry (C—H = 0.93 or 0.96 Å, N—H = 0.86 Å) and refined using a riding model. H atoms of the carboxyl groups were located in a difference map and finally refined with O—H distance fixed at 0.88 Å. The Uiso(H) values were set at 1.2Ueq(Caromatic, N, O) and 1.5Ueq(Cmethyl). Two methyl groups (C12 and C72) exhibit orientational disorder in hydrogen atoms positions. In both groups two sets of H atoms were refined with equal occupancies of 0.50. The U values of the fragment C62, C63, C64, C65, C66 and C72 and of the atom pairs C42—C43 and N2—C21 were subject to a restraint (DELU instruction), i.e. the components of the displacement parameters in the direction of the bond were restrained to be equal within an effective standard deviation 0.005. Because of low anomalous scattering power the absolute structure cannot be determined reliably and therefore 5143 Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Part of crystal structure of the title compound with N—H···O hydrogen bonds represented by dashed lines. Symmetry code (i): x,y - 1,z. H atoms not involved in intermolecular hydrogen bonding have been omitted.

Crystal data

C12H13NO3 F(000) = 928
Mr = 219.23 Dx = 1.314 Mg m3
Monoclinic, Pc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2yc Cell parameters from 31828 reflections
a = 11.9003 (2) Å θ = 1.9–27.8°
b = 12.9991 (2) Å µ = 0.10 mm1
c = 15.2641 (3) Å T = 295 K
β = 110.207 (2)° Truncated square pyramid, colourless
V = 2215.92 (7) Å3 0.48 × 0.32 × 0.31 mm
Z = 8

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer 5279 independent reflections
graphite 4100 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.028
ω scans θmax = 27.9°, θmin = 2.1°
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) h = −15→15
Tmin = 0.958, Tmax = 0.965 k = −17→17
67608 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0958P)2 + 0.0272P] where P = (Fo2 + 2Fc2)/3
5279 reflections (Δ/σ)max = 0.001
577 parameters Δρmax = 0.29 e Å3
10 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.5468 (2) 0.4000 (2) 0.1080 (2) 0.0430 (6)
C2 0.6117 (3) 0.4743 (2) 0.0804 (2) 0.0450 (6)
H2 0.5758 0.5365 0.056 0.054*
C3 0.7309 (3) 0.4559 (2) 0.0893 (2) 0.0462 (7)
C4 0.7851 (3) 0.3631 (2) 0.1243 (2) 0.0474 (7)
C5 0.7189 (3) 0.2888 (2) 0.1513 (2) 0.0493 (7)
H5 0.7544 0.2264 0.1755 0.059*
C6 0.6006 (3) 0.3075 (2) 0.1423 (2) 0.0484 (7)
H6 0.5571 0.2569 0.1596 0.058*
C7 0.3634 (3) 0.4981 (2) 0.0983 (2) 0.0468 (6)
C8 0.2429 (3) 0.4810 (3) 0.1042 (3) 0.0564 (8)
H8 0.2164 0.4132 0.0976 0.068*
C9 0.1684 (3) 0.5495 (2) 0.1176 (3) 0.0585 (8)
H9 0.0983 0.5213 0.1212 0.07*
C10 0.1759 (3) 0.6647 (2) 0.1281 (2) 0.0524 (7)
C11 0.7982 (3) 0.5385 (2) 0.0590 (3) 0.0589 (8)
H11A 0.8646 0.5613 0.1118 0.088*
H11B 0.7457 0.5955 0.0336 0.088*
H11C 0.8272 0.5115 0.0123 0.088*
C12 0.9124 (3) 0.3412 (3) 0.1342 (3) 0.0626 (9)
H12A 0.9338 0.2734 0.1594 0.094* 0.5
H12B 0.9639 0.3909 0.1754 0.094* 0.5
H12C 0.9211 0.3453 0.074 0.094* 0.5
H12D 0.9455 0.3996 0.1131 0.094* 0.5
H12E 0.9153 0.2822 0.0972 0.094* 0.5
H12F 0.9581 0.3278 0.1985 0.094* 0.5
N1 0.4259 (2) 0.41119 (17) 0.10310 (19) 0.0495 (6)
H1 0.3879 0.3549 0.1032 0.059*
O1 0.40148 (19) 0.58444 (16) 0.08902 (19) 0.0609 (6)
O2 0.2602 (2) 0.71471 (17) 0.1095 (2) 0.0745 (7)
H2A 0.3048 0.671 0.092 0.089*
O3 0.1018 (2) 0.70943 (18) 0.1511 (2) 0.0708 (7)
C21 −0.0264 (2) 0.63766 (18) 0.36357 (17) 0.0369 (5)
C22 −0.0921 (3) 0.7141 (2) 0.38831 (19) 0.0388 (6)
H22 −0.0562 0.7768 0.4112 0.047*
C23 −0.2114 (2) 0.69692 (19) 0.37893 (18) 0.0382 (6)
C24 −0.2663 (2) 0.6027 (2) 0.34333 (18) 0.0405 (6)
C25 −0.1979 (3) 0.5278 (2) 0.3203 (2) 0.0480 (7)
H25 −0.2328 0.4647 0.2978 0.058*
C26 −0.0802 (3) 0.5444 (2) 0.3298 (2) 0.0471 (7)
H26 −0.0366 0.4931 0.3135 0.056*
C27 0.1559 (3) 0.7351 (2) 0.3711 (2) 0.0429 (6)
C28 0.2785 (3) 0.7178 (2) 0.3698 (2) 0.0505 (7)
H28 0.3061 0.6503 0.3785 0.061*
C29 0.3543 (3) 0.7882 (2) 0.3577 (3) 0.0552 (8)
H29 0.4274 0.7609 0.3597 0.066*
C30 0.3450 (3) 0.8997 (2) 0.3418 (2) 0.0511 (7)
C31 −0.2811 (3) 0.7797 (2) 0.4058 (2) 0.0525 (7)
H31A −0.2289 0.8363 0.4332 0.079*
H31B −0.3142 0.7529 0.4503 0.079*
H31C −0.3447 0.8029 0.3513 0.079*
C32 −0.3959 (3) 0.5826 (3) 0.3293 (2) 0.0548 (7)
H32A −0.415 0.5124 0.3107 0.082*
H32B −0.4455 0.6275 0.2816 0.082*
H32C −0.41 0.5952 0.3866 0.082*
N2 0.09531 (19) 0.64905 (16) 0.37116 (16) 0.0417 (5)
H2N 0.1352 0.5928 0.3765 0.05*
O21 0.11403 (19) 0.82277 (15) 0.37276 (19) 0.0594 (6)
O22 0.2552 (2) 0.95070 (16) 0.3502 (2) 0.0701 (8)
H22A 0.2037 0.9074 0.3597 0.084*
O23 0.4227 (2) 0.94389 (17) 0.3212 (2) 0.0689 (7)
C41 0.6529 (2) 0.13584 (19) 0.35178 (18) 0.0367 (5)
C42 0.7424 (3) 0.2090 (2) 0.3831 (2) 0.0413 (6)
H42 0.7261 0.2714 0.406 0.05*
C43 0.8552 (2) 0.1909 (2) 0.38079 (19) 0.0400 (5)
C44 0.8820 (2) 0.0970 (2) 0.3492 (2) 0.0408 (6)
C45 0.7941 (3) 0.0228 (2) 0.3204 (2) 0.0488 (7)
H45 0.8121 −0.0407 0.3004 0.059*
C46 0.6794 (2) 0.04100 (19) 0.3205 (2) 0.0441 (6)
H46 0.6206 −0.0094 0.3 0.053*
C47 0.4769 (2) 0.23407 (19) 0.3576 (2) 0.0428 (6)
C48 0.3514 (3) 0.2177 (2) 0.3524 (3) 0.0518 (7)
H48 0.3262 0.1496 0.3481 0.062*
C49 0.2708 (3) 0.2873 (2) 0.3530 (3) 0.0578 (8)
H49 0.1977 0.2596 0.3505 0.069*
C50 0.2750 (3) 0.4020 (2) 0.3570 (2) 0.0538 (7)
C51 0.9488 (3) 0.2750 (2) 0.4126 (3) 0.0619 (9)
H51A 0.9188 0.3299 0.4405 0.093*
H51B 0.9664 0.3009 0.3599 0.093*
H51C 1.0204 0.2475 0.4576 0.093*
C52 1.0043 (3) 0.0740 (3) 0.3436 (3) 0.0600 (8)
H52A 1.0097 0.0021 0.3313 0.09*
H52B 1.0652 0.0917 0.4017 0.09*
H52C 1.0154 0.1137 0.2941 0.09*
N3 0.53418 (19) 0.14672 (16) 0.35181 (16) 0.0420 (5)
H3N 0.4942 0.0907 0.3476 0.05*
O41 0.52359 (19) 0.31979 (15) 0.3658 (2) 0.0668 (7)
O42 0.3700 (2) 0.45152 (16) 0.3612 (2) 0.0663 (7)
H42A 0.4274 0.4076 0.3639 0.08*
O43 0.1861 (2) 0.44801 (18) 0.3567 (2) 0.0835 (9)
C61 −0.1341 (3) 0.8982 (2) 0.11567 (19) 0.0422 (6)
C62 −0.2221 (3) 0.9730 (2) 0.0861 (2) 0.0452 (6)
H62 −0.2043 1.0366 0.0661 0.054*
C63 −0.3375 (3) 0.9533 (2) 0.0862 (2) 0.0468 (6)
C64 −0.3650 (3) 0.8579 (2) 0.1163 (2) 0.0489 (7)
C65 −0.2730 (3) 0.7836 (2) 0.1469 (2) 0.0507 (7)
H65 −0.2894 0.7198 0.1673 0.061*
C66 −0.1596 (3) 0.8041 (2) 0.1469 (2) 0.0502 (7)
H66 −0.0998 0.7546 0.1679 0.06*
C67 0.0405 (3) 0.9968 (2) 0.1050 (2) 0.0466 (7)
C68 0.1659 (3) 0.9812 (2) 0.1108 (2) 0.0523 (8)
H68 0.1915 0.9132 0.115 0.063*
C69 0.2463 (3) 1.0512 (2) 0.1108 (3) 0.0615 (8)
H69 0.3196 1.0235 0.1137 0.074*
C70 0.2430 (3) 1.1660 (2) 0.1070 (3) 0.0554 (8)
C71 −0.4309 (3) 1.0354 (3) 0.0559 (3) 0.0679 (9)
H71A −0.4987 1.0102 0.0055 0.102*
H71B −0.3985 1.0946 0.0354 0.102*
H71C −0.4555 1.0542 0.1074 0.102*
C72 −0.4875 (3) 0.8336 (3) 0.1182 (3) 0.0653 (9)
H72A −0.4884 0.7648 0.1407 0.098* 0.5
H72B −0.5452 0.8394 0.0562 0.098* 0.5
H72C −0.5074 0.8812 0.1587 0.098* 0.5
H72D −0.5389 0.8921 0.0964 0.098* 0.5
H72E −0.4821 0.8175 0.1809 0.098* 0.5
H72F −0.5199 0.7757 0.0784 0.098* 0.5
N4 −0.0147 (2) 0.91139 (17) 0.11665 (17) 0.0450 (5)
H4N 0.0278 0.8563 0.1261 0.054*
O61 −0.0095 (2) 1.08224 (16) 0.0903 (2) 0.0649 (6)
O62 0.1442 (2) 1.21427 (16) 0.09843 (19) 0.0637 (6)
H62A 0.0882 1.1694 0.0969 0.076*
O63 0.3342 (2) 1.21084 (19) 0.1144 (3) 0.0878 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0381 (14) 0.0391 (13) 0.0533 (15) −0.0002 (11) 0.0177 (12) −0.0032 (11)
C2 0.0439 (16) 0.0392 (14) 0.0527 (16) −0.0027 (12) 0.0178 (13) 0.0025 (12)
C3 0.0528 (18) 0.0398 (14) 0.0507 (17) −0.0023 (12) 0.0238 (14) −0.0044 (11)
C4 0.0418 (16) 0.0443 (15) 0.0589 (17) 0.0038 (12) 0.0209 (14) −0.0069 (12)
C5 0.0468 (16) 0.0394 (14) 0.0616 (18) 0.0040 (12) 0.0187 (15) 0.0006 (13)
C6 0.0461 (17) 0.0347 (13) 0.0676 (19) 0.0014 (12) 0.0240 (14) 0.0011 (12)
C7 0.0356 (14) 0.0372 (14) 0.0689 (18) 0.0015 (11) 0.0196 (13) 0.0007 (12)
C8 0.0403 (16) 0.0445 (16) 0.085 (2) −0.0039 (13) 0.0220 (16) −0.0029 (15)
C9 0.0415 (16) 0.0452 (16) 0.093 (2) −0.0009 (13) 0.0282 (16) 0.0067 (15)
C10 0.0465 (16) 0.0411 (15) 0.0701 (19) 0.0039 (13) 0.0209 (14) 0.0039 (13)
C11 0.0536 (18) 0.0518 (17) 0.082 (2) −0.0080 (14) 0.0370 (17) −0.0011 (15)
C12 0.0453 (18) 0.065 (2) 0.080 (2) 0.0038 (15) 0.0249 (17) −0.0128 (16)
N1 0.0429 (13) 0.0365 (12) 0.0731 (16) −0.0020 (10) 0.0253 (12) −0.0008 (11)
O1 0.0457 (11) 0.0383 (10) 0.1082 (18) −0.0021 (9) 0.0386 (12) −0.0003 (11)
O2 0.0640 (16) 0.0378 (12) 0.137 (2) 0.0040 (10) 0.0545 (16) 0.0031 (12)
O3 0.0603 (14) 0.0574 (14) 0.1057 (18) 0.0152 (11) 0.0428 (14) 0.0056 (12)
C21 0.0358 (13) 0.0307 (12) 0.0480 (15) 0.0021 (10) 0.0194 (11) −0.0004 (10)
C22 0.0402 (14) 0.0299 (12) 0.0512 (15) −0.0014 (10) 0.0220 (12) −0.0030 (10)
C23 0.0389 (14) 0.0327 (12) 0.0469 (15) 0.0058 (10) 0.0197 (12) 0.0027 (10)
C24 0.0396 (14) 0.0398 (14) 0.0453 (14) −0.0043 (11) 0.0187 (12) 0.0004 (11)
C25 0.0519 (18) 0.0355 (13) 0.0623 (19) −0.0108 (12) 0.0270 (15) −0.0101 (12)
C26 0.0515 (17) 0.0333 (13) 0.0658 (18) −0.0012 (11) 0.0323 (14) −0.0067 (11)
C27 0.0430 (15) 0.0326 (13) 0.0592 (17) 0.0004 (11) 0.0256 (13) −0.0017 (11)
C28 0.0410 (15) 0.0294 (12) 0.087 (2) 0.0030 (11) 0.0293 (15) −0.0044 (13)
C29 0.0320 (14) 0.0447 (16) 0.095 (2) −0.0003 (12) 0.0291 (15) −0.0055 (15)
C30 0.0359 (15) 0.0408 (15) 0.078 (2) −0.0089 (12) 0.0219 (14) −0.0089 (13)
C31 0.0512 (17) 0.0390 (14) 0.076 (2) 0.0089 (12) 0.0335 (16) −0.0027 (13)
C32 0.0438 (16) 0.0537 (17) 0.0700 (19) −0.0067 (14) 0.0238 (15) −0.0015 (14)
N2 0.0338 (11) 0.0292 (10) 0.0679 (15) 0.0024 (8) 0.0249 (11) −0.0017 (9)
O21 0.0489 (11) 0.0289 (9) 0.1141 (18) 0.0038 (8) 0.0455 (12) −0.0007 (10)
O22 0.0547 (15) 0.0347 (11) 0.137 (2) −0.0010 (9) 0.0542 (16) 0.0025 (12)
O23 0.0545 (13) 0.0493 (12) 0.1149 (19) −0.0133 (11) 0.0444 (13) −0.0027 (12)
C41 0.0361 (14) 0.0295 (11) 0.0482 (15) 0.0044 (10) 0.0190 (11) 0.0018 (10)
C42 0.0459 (15) 0.0303 (12) 0.0509 (15) 0.0042 (10) 0.0207 (12) −0.0038 (10)
C43 0.0354 (13) 0.0326 (12) 0.0511 (15) 0.0018 (10) 0.0140 (12) −0.0004 (11)
C44 0.0352 (14) 0.0378 (13) 0.0527 (15) 0.0093 (10) 0.0191 (12) 0.0015 (11)
C45 0.0478 (16) 0.0313 (12) 0.072 (2) 0.0049 (11) 0.0273 (15) −0.0074 (12)
C46 0.0387 (14) 0.0286 (12) 0.0659 (18) 0.0019 (10) 0.0191 (13) −0.0042 (11)
C47 0.0380 (14) 0.0272 (12) 0.0672 (18) 0.0044 (10) 0.0231 (13) 0.0005 (11)
C48 0.0461 (16) 0.0309 (13) 0.088 (2) −0.0034 (12) 0.0348 (16) −0.0037 (13)
C49 0.0366 (15) 0.0439 (16) 0.102 (2) −0.0010 (13) 0.0352 (16) −0.0026 (16)
C50 0.0421 (16) 0.0385 (15) 0.086 (2) 0.0077 (12) 0.0284 (15) −0.0023 (13)
C51 0.0411 (16) 0.0489 (17) 0.094 (3) −0.0070 (12) 0.0208 (17) −0.0182 (16)
C52 0.0401 (17) 0.0526 (17) 0.095 (2) 0.0091 (13) 0.0330 (16) −0.0054 (16)
N3 0.0379 (12) 0.0271 (10) 0.0672 (15) 0.0036 (9) 0.0263 (11) −0.0011 (9)
O41 0.0426 (11) 0.0301 (10) 0.138 (2) 0.0009 (9) 0.0438 (13) −0.0023 (11)
O42 0.0481 (13) 0.0353 (11) 0.124 (2) 0.0050 (9) 0.0399 (14) −0.0040 (11)
O43 0.0504 (14) 0.0443 (12) 0.166 (3) 0.0117 (10) 0.0500 (17) −0.0096 (14)
C61 0.0403 (15) 0.0354 (13) 0.0528 (16) −0.0049 (11) 0.0187 (13) −0.0022 (11)
C62 0.0409 (14) 0.0365 (13) 0.0579 (17) −0.0006 (11) 0.0167 (13) 0.0060 (12)
C63 0.0440 (15) 0.0406 (14) 0.0541 (16) 0.0000 (12) 0.0148 (13) 0.0023 (12)
C64 0.0454 (15) 0.0376 (14) 0.0648 (18) −0.0070 (11) 0.0206 (14) −0.0049 (12)
C65 0.0520 (16) 0.0375 (14) 0.067 (2) −0.0064 (12) 0.0262 (16) 0.0011 (13)
C66 0.0562 (17) 0.0351 (14) 0.0647 (18) 0.0001 (12) 0.0279 (15) 0.0029 (12)
C67 0.0427 (16) 0.0385 (14) 0.0654 (18) −0.0033 (11) 0.0273 (14) −0.0005 (12)
C68 0.0423 (16) 0.0370 (14) 0.085 (2) 0.0015 (12) 0.0310 (15) 0.0033 (14)
C69 0.0459 (17) 0.0450 (17) 0.101 (3) −0.0004 (14) 0.0351 (17) 0.0058 (17)
C70 0.0466 (17) 0.0437 (16) 0.078 (2) −0.0024 (14) 0.0241 (15) 0.0061 (14)
C71 0.0435 (17) 0.0501 (17) 0.108 (3) 0.0048 (13) 0.0232 (18) 0.0119 (17)
C72 0.0508 (18) 0.0541 (19) 0.091 (3) −0.0094 (15) 0.0245 (18) −0.0014 (17)
N4 0.0408 (12) 0.0311 (11) 0.0658 (15) 0.0031 (9) 0.0220 (12) 0.0025 (9)
O61 0.0446 (11) 0.0361 (10) 0.1192 (19) 0.0011 (9) 0.0348 (12) 0.0126 (11)
O62 0.0484 (13) 0.0386 (11) 0.1059 (18) 0.0005 (9) 0.0288 (13) 0.0048 (11)
O63 0.0550 (15) 0.0537 (14) 0.164 (3) −0.0110 (11) 0.0502 (17) 0.0081 (16)

Geometric parameters (Å, °)

C1—C6 1.378 (4) C41—C42 1.384 (4)
C1—C2 1.390 (4) C41—C46 1.397 (4)
C1—N1 1.423 (4) C41—N3 1.420 (3)
C2—C3 1.399 (5) C42—C43 1.374 (4)
C2—H2 0.93 C42—H42 0.93
C3—C4 1.385 (4) C43—C44 1.389 (4)
C3—C11 1.505 (4) C43—C51 1.516 (4)
C4—C5 1.395 (4) C44—C45 1.379 (4)
C4—C12 1.498 (4) C44—C52 1.518 (4)
C5—C6 1.388 (4) C45—C46 1.386 (4)
C5—H5 0.93 C45—H45 0.93
C6—H6 0.93 C46—H46 0.93
C7—O1 1.237 (3) C47—O41 1.232 (3)
C7—N1 1.341 (4) C47—N3 1.343 (3)
C7—C8 1.483 (4) C47—C48 1.483 (4)
C8—C9 1.322 (5) C48—C49 1.320 (4)
C8—H8 0.93 C48—H48 0.93
C9—C10 1.505 (4) C49—C50 1.493 (4)
C9—H9 0.93 C49—H49 0.93
C10—O3 1.206 (4) C50—O43 1.214 (3)
C10—O2 1.306 (4) C50—O42 1.283 (4)
C11—H11A 0.96 C51—H51A 0.96
C11—H11B 0.96 C51—H51B 0.96
C11—H11C 0.96 C51—H51C 0.96
C12—H12A 0.96 C52—H52A 0.96
C12—H12B 0.96 C52—H52B 0.96
C12—H12C 0.96 C52—H52C 0.96
C12—H12D 0.96 N3—H3N 0.86
C12—H12E 0.96 O42—H42A 0.88
C12—H12F 0.96 C61—C66 1.384 (4)
N1—H1 0.86 C61—C62 1.385 (4)
O2—H2A 0.88 C61—N4 1.426 (4)
C21—C26 1.384 (4) C62—C63 1.398 (4)
C21—C22 1.395 (3) C62—H62 0.93
C21—N2 1.420 (3) C63—C64 1.400 (4)
C22—C23 1.394 (4) C63—C71 1.494 (4)
C22—H22 0.93 C64—C65 1.413 (4)
C23—C24 1.406 (4) C64—C72 1.502 (4)
C23—C31 1.500 (4) C65—C66 1.377 (5)
C24—C25 1.390 (4) C65—H65 0.93
C24—C32 1.505 (4) C66—H66 0.93
C25—C26 1.375 (4) C67—O61 1.243 (3)
C25—H25 0.93 C67—N4 1.333 (3)
C26—H26 0.93 C67—C68 1.479 (4)
C27—O21 1.247 (3) C68—C69 1.321 (4)
C27—N2 1.332 (3) C68—H68 0.93
C27—C28 1.483 (4) C69—C70 1.493 (4)
C28—C29 1.343 (4) C69—H69 0.93
C28—H28 0.93 C70—O63 1.203 (4)
C29—C30 1.467 (4) C70—O62 1.299 (4)
C29—H29 0.93 C71—H71A 0.96
C30—O23 1.218 (4) C71—H71B 0.96
C30—O22 1.301 (4) C71—H71C 0.96
C31—H31A 0.96 C72—H72A 0.96
C31—H31B 0.96 C72—H72B 0.96
C31—H31C 0.96 C72—H72C 0.96
C32—H32A 0.96 C72—H72D 0.96
C32—H32B 0.96 C72—H72E 0.96
C32—H32C 0.96 C72—H72F 0.96
N2—H2N 0.86 N4—H4N 0.86
O22—H22A 0.88 O62—H62A 0.88
C6—C1—C2 119.2 (3) C42—C41—C46 119.2 (2)
C6—C1—N1 116.0 (3) C42—C41—N3 125.4 (2)
C2—C1—N1 124.8 (3) C46—C41—N3 115.4 (2)
C1—C2—C3 120.2 (3) C43—C42—C41 121.0 (2)
C1—C2—H2 119.9 C43—C42—H42 119.5
C3—C2—H2 119.9 C41—C42—H42 119.5
C4—C3—C2 120.5 (3) C42—C43—C44 120.2 (2)
C4—C3—C11 121.0 (3) C42—C43—C51 119.0 (2)
C2—C3—C11 118.5 (3) C44—C43—C51 120.9 (2)
C3—C4—C5 118.9 (3) C45—C44—C43 119.1 (2)
C3—C4—C12 121.6 (3) C45—C44—C52 118.7 (2)
C5—C4—C12 119.5 (3) C43—C44—C52 122.2 (3)
C6—C5—C4 120.4 (3) C44—C45—C46 121.3 (2)
C6—C5—H5 119.8 C44—C45—H45 119.4
C4—C5—H5 119.8 C46—C45—H45 119.4
C1—C6—C5 120.8 (3) C45—C46—C41 119.3 (2)
C1—C6—H6 119.6 C45—C46—H46 120.3
C5—C6—H6 119.6 C41—C46—H46 120.3
O1—C7—N1 123.5 (3) O41—C47—N3 123.3 (3)
O1—C7—C8 122.9 (3) O41—C47—C48 123.1 (2)
N1—C7—C8 113.6 (2) N3—C47—C48 113.6 (2)
C9—C8—C7 128.5 (3) C49—C48—C47 128.5 (3)
C9—C8—H8 115.8 C49—C48—H48 115.8
C7—C8—H8 115.8 C47—C48—H48 115.8
C8—C9—C10 131.9 (3) C48—C49—C50 132.1 (3)
C8—C9—H9 114 C48—C49—H49 114
C10—C9—H9 114 C50—C49—H49 114
O3—C10—O2 121.1 (3) O43—C50—O42 120.4 (3)
O3—C10—C9 119.2 (3) O43—C50—C49 118.3 (3)
O2—C10—C9 119.6 (3) O42—C50—C49 121.3 (3)
C3—C11—H11A 109.5 C43—C51—H51A 109.5
C3—C11—H11B 109.5 C43—C51—H51B 109.5
H11A—C11—H11B 109.5 H51A—C51—H51B 109.5
C3—C11—H11C 109.5 C43—C51—H51C 109.5
H11A—C11—H11C 109.5 H51A—C51—H51C 109.5
H11B—C11—H11C 109.5 H51B—C51—H51C 109.5
C4—C12—H12A 109.5 C44—C52—H52A 109.5
C4—C12—H12B 109.5 C44—C52—H52B 109.5
H12A—C12—H12B 109.5 H52A—C52—H52B 109.5
C4—C12—H12C 109.5 C44—C52—H52C 109.5
H12A—C12—H12C 109.5 H52A—C52—H52C 109.5
H12B—C12—H12C 109.5 H52B—C52—H52C 109.5
C4—C12—H12D 109.5 C47—N3—C41 127.8 (2)
H12A—C12—H12D 141.1 C47—N3—H3N 116.1
H12B—C12—H12D 56.3 C41—N3—H3N 116.1
H12C—C12—H12D 56.3 C50—O42—H42A 109.5
C4—C12—H12E 109.5 C66—C61—C62 120.1 (3)
H12A—C12—H12E 56.3 C66—C61—N4 116.0 (3)
H12B—C12—H12E 141.1 C62—C61—N4 123.9 (2)
H12C—C12—H12E 56.3 C61—C62—C63 120.2 (3)
H12D—C12—H12E 109.5 C61—C62—H62 119.9
C4—C12—H12F 109.5 C63—C62—H62 119.9
H12A—C12—H12F 56.3 C62—C63—C64 120.2 (3)
H12B—C12—H12F 56.3 C62—C63—C71 119.7 (3)
H12C—C12—H12F 141.1 C64—C63—C71 120.1 (3)
H12D—C12—H12F 109.5 C63—C64—C65 118.2 (3)
H12E—C12—H12F 109.5 C63—C64—C72 122.0 (3)
C7—N1—C1 128.4 (2) C65—C64—C72 119.8 (3)
C7—N1—H1 115.8 C66—C65—C64 121.0 (3)
C1—N1—H1 115.8 C66—C65—H65 119.5
C10—O2—H2A 109.5 C64—C65—H65 119.5
C26—C21—C22 119.6 (2) C65—C66—C61 120.2 (3)
C26—C21—N2 116.7 (2) C65—C66—H66 119.9
C22—C21—N2 123.7 (2) C61—C66—H66 119.9
C23—C22—C21 120.3 (2) O61—C67—N4 122.8 (3)
C23—C22—H22 119.9 O61—C67—C68 123.0 (2)
C21—C22—H22 119.9 N4—C67—C68 114.3 (2)
C22—C23—C24 120.0 (2) C69—C68—C67 128.4 (3)
C22—C23—C31 119.8 (2) C69—C68—H68 115.8
C24—C23—C31 120.2 (2) C67—C68—H68 115.8
C25—C24—C23 118.2 (2) C68—C69—C70 132.8 (3)
C25—C24—C32 120.2 (3) C68—C69—H69 113.6
C23—C24—C32 121.5 (2) C70—C69—H69 113.6
C26—C25—C24 121.8 (3) O63—C70—O62 122.1 (3)
C26—C25—H25 119.1 O63—C70—C69 118.0 (3)
C24—C25—H25 119.1 O62—C70—C69 119.9 (3)
C25—C26—C21 120.0 (2) C63—C71—H71A 109.5
C25—C26—H26 120 C63—C71—H71B 109.5
C21—C26—H26 120 H71A—C71—H71B 109.5
O21—C27—N2 123.2 (3) C63—C71—H71C 109.5
O21—C27—C28 122.7 (2) H71A—C71—H71C 109.5
N2—C27—C28 114.1 (2) H71B—C71—H71C 109.5
C29—C28—C27 127.6 (3) C64—C72—H72A 109.5
C29—C28—H28 116.2 C64—C72—H72B 109.5
C27—C28—H28 116.2 H72A—C72—H72B 109.5
C28—C29—C30 132.9 (3) C64—C72—H72C 109.5
C28—C29—H29 113.6 H72A—C72—H72C 109.5
C30—C29—H29 113.6 H72B—C72—H72C 109.5
O23—C30—O22 120.5 (3) C64—C72—H72D 109.5
O23—C30—C29 119.1 (3) H72A—C72—H72D 141.1
O22—C30—C29 120.3 (3) H72B—C72—H72D 56.3
C23—C31—H31A 109.5 H72C—C72—H72D 56.3
C23—C31—H31B 109.5 C64—C72—H72E 109.5
H31A—C31—H31B 109.5 H72A—C72—H72E 56.3
C23—C31—H31C 109.5 H72B—C72—H72E 141.1
H31A—C31—H31C 109.5 H72C—C72—H72E 56.3
H31B—C31—H31C 109.5 H72D—C72—H72E 109.5
C24—C32—H32A 109.5 C64—C72—H72F 109.5
C24—C32—H32B 109.5 H72A—C72—H72F 56.3
H32A—C32—H32B 109.5 H72B—C72—H72F 56.3
C24—C32—H32C 109.5 H72C—C72—H72F 141.1
H32A—C32—H32C 109.5 H72D—C72—H72F 109.5
H32B—C32—H32C 109.5 H72E—C72—H72F 109.5
C27—N2—C21 128.7 (2) C67—N4—C61 129.3 (2)
C27—N2—H2N 115.7 C67—N4—H4N 115.4
C21—N2—H2N 115.7 C61—N4—H4N 115.4
C30—O22—H22A 109.5 C70—O62—H62A 109.5
C6—C1—C2—C3 −1.3 (4) C46—C41—C42—C43 2.2 (4)
N1—C1—C2—C3 179.2 (3) N3—C41—C42—C43 179.5 (3)
C1—C2—C3—C4 0.9 (4) C41—C42—C43—C44 −1.8 (4)
C1—C2—C3—C11 −179.8 (3) C41—C42—C43—C51 177.8 (3)
C2—C3—C4—C5 −0.6 (4) C42—C43—C44—C45 0.0 (4)
C11—C3—C4—C5 −179.9 (3) C51—C43—C44—C45 −179.6 (3)
C2—C3—C4—C12 179.8 (3) C42—C43—C44—C52 178.8 (3)
C11—C3—C4—C12 0.4 (4) C51—C43—C44—C52 −0.8 (4)
C3—C4—C5—C6 0.6 (5) C43—C44—C45—C46 1.4 (5)
C12—C4—C5—C6 −179.7 (3) C52—C44—C45—C46 −177.4 (3)
C2—C1—C6—C5 1.4 (4) C44—C45—C46—C41 −1.0 (5)
N1—C1—C6—C5 −179.1 (3) C42—C41—C46—C45 −0.8 (4)
C4—C5—C6—C1 −1.1 (5) N3—C41—C46—C45 −178.4 (3)
O1—C7—C8—C9 −13.3 (6) O41—C47—C48—C49 1.8 (6)
N1—C7—C8—C9 167.3 (4) N3—C47—C48—C49 −177.6 (4)
C7—C8—C9—C10 2.3 (8) C47—C48—C49—C50 1.4 (7)
C8—C9—C10—O3 −171.1 (4) C48—C49—C50—O43 −179.9 (4)
C8—C9—C10—O2 10.9 (7) C48—C49—C50—O42 −0.4 (7)
O1—C7—N1—C1 6.8 (5) O41—C47—N3—C41 −1.5 (5)
C8—C7—N1—C1 −173.9 (3) C48—C47—N3—C41 178.0 (3)
C6—C1—N1—C7 159.6 (3) C42—C41—N3—C47 18.9 (4)
C2—C1—N1—C7 −20.9 (5) C46—C41—N3—C47 −163.7 (3)
C26—C21—C22—C23 −0.1 (4) C66—C61—C62—C63 −1.0 (5)
N2—C21—C22—C23 −179.9 (2) N4—C61—C62—C63 179.1 (3)
C21—C22—C23—C24 −0.8 (4) C61—C62—C63—C64 0.1 (5)
C21—C22—C23—C31 180.0 (3) C61—C62—C63—C71 178.8 (3)
C22—C23—C24—C25 1.4 (4) C62—C63—C64—C65 0.5 (5)
C31—C23—C24—C25 −179.3 (3) C71—C63—C64—C65 −178.2 (3)
C22—C23—C24—C32 −178.0 (3) C62—C63—C64—C72 179.6 (3)
C31—C23—C24—C32 1.3 (4) C71—C63—C64—C72 1.0 (5)
C23—C24—C25—C26 −1.2 (5) C63—C64—C65—C66 −0.2 (5)
C32—C24—C25—C26 178.2 (3) C72—C64—C65—C66 −179.3 (3)
C24—C25—C26—C21 0.3 (5) C64—C65—C66—C61 −0.7 (5)
C22—C21—C26—C25 0.4 (4) C62—C61—C66—C65 1.3 (5)
N2—C21—C26—C25 −179.9 (3) N4—C61—C66—C65 −178.8 (3)
O21—C27—C28—C29 −9.7 (6) O61—C67—C68—C69 7.0 (6)
N2—C27—C28—C29 170.8 (4) N4—C67—C68—C69 −173.2 (4)
C27—C28—C29—C30 −0.3 (7) C67—C68—C69—C70 1.3 (8)
C28—C29—C30—O23 −170.8 (4) C68—C69—C70—O63 175.1 (5)
C28—C29—C30—O22 9.5 (7) C68—C69—C70—O62 −3.2 (7)
O21—C27—N2—C21 7.0 (5) O61—C67—N4—C61 −0.3 (5)
C28—C27—N2—C21 −173.6 (3) C68—C67—N4—C61 179.8 (3)
C26—C21—N2—C27 155.7 (3) C66—C61—N4—C67 −168.4 (3)
C22—C21—N2—C27 −24.5 (4) C62—C61—N4—C67 11.4 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O63i 0.86 2.00 2.851 (3) 168
N2—H2N···O43 0.86 2.03 2.865 (3) 163
N3—H3N···O23i 0.86 2.07 2.916 (3) 167
N4—H4N···O3 0.86 2.08 2.930 (3) 169
O2—H2A···O1 0.88 1.62 2.481 (3) 165
O22—H22A···O21 0.88 1.59 2.471 (3) 176
O42—H42A···O41 0.88 1.61 2.487 (3) 175
O62—H62A···O61 0.88 1.6 2.480 (3) 176

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5110).

References

  1. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Gowda, B. T., Foro, S., Saraswathi, B. S. & Fuess, H. (2009). Acta Cryst. E65, o2056. [DOI] [PMC free article] [PubMed]
  5. Gowda, B. T., Foro, S., Saraswathi, B. S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o466. [DOI] [PMC free article] [PubMed]
  6. Gowda, B. T., Tokarčík, M., Kožíšek, J., Shakuntala, K. & Fuess, H. (2009). Acta Cryst. E65, o2807. [DOI] [PMC free article] [PubMed]
  7. Leiserowitz, L. (1976). Acta Cryst. B32, 775–802.
  8. Lo, K. M. & Ng, S. W. (2009). Acta Cryst. E65, o1101. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  10. Prasad, S. M., Sinha, R. B. P., Mandal, D. K. & Rani, A. (2002). Acta Cryst. E58, o891–o892.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043682/bt5110sup1.cif

e-65-o2874-sup1.cif (34.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043682/bt5110Isup2.hkl

e-65-o2874-Isup2.hkl (253.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES