Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1967 Jul;46(7):1254–1263. doi: 10.1172/JCI105618

Changes in Proximal and Distal Tubular Reabsorption Produced by Rapid Expansion of Extracellular Fluid*

John P Hayslett 1,2,, Michael Kashgarian 1,2,, Franklin H Epstein 1,2,§
PMCID: PMC297124  PMID: 6027087

Abstract

Acute infusions of isotonic saline in the rat cause an increase in glomerular filtration rate and in the excretion of salt and water. The kidney swells, due to expansion of tubular and interstitial volume. Despite the increase in tubular diameter, transit time through the proximal tubules and loops of Henle is decreased, presumably owing to a greatly accelerated rate of tubular flow. Proximal tubular reabsorption, measured in blocked tubules, is inhibited in a way that cannot be ascribed to changes in tubular diameter. The prolongation of proximal reabsorptive half-time is not affected by the administration of aldosterone. It occurs equally in rats chronically loaded with or deprived of salt, and it is therefore not likely that it is influenced by the renal content of renin. In contrast, reabsorption from the distal convoluted tubule is enhanced by saline infusion. This change is observed in segments of tubules blocked with oil and isolated from their glomeruli and thus appears to occur independently of changes in glomerular filtration or tubular flow.

Full text

PDF
1254

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunner F. P., Rector F. C., Jr, Seldin D. W. Mechanism of glomerulotubular balance. II. Regulation of proximal tubular reabsorption by tubular volume, as studied by stopped-flow microperfusion. J Clin Invest. 1966 Apr;45(4):603–611. doi: 10.1172/JCI105374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cortney M. A., Mylle M., Lassiter W. E., Gottschalk C. W. Renal tubular transport of water, solute, and PAH in rats loaded with isotonic saline. Am J Physiol. 1965 Dec;209(6):1199–1205. doi: 10.1152/ajplegacy.1965.209.6.1199. [DOI] [PubMed] [Google Scholar]
  3. DE WARDENER H. E., MILLS I. H., CLAPHAM W. F., HAYTER C. J. Studies on the efferent mechanism of the sodium diuresis which follows the administration of intravenous saline in the dog. Clin Sci. 1961 Oct;21:249–258. [PubMed] [Google Scholar]
  4. DIRKS J. H., CIRKSENA W. J., BERLINER R. W. THE EFFECTS OF SALINE INFUSION ON SODIUM REABSORPTION BY THE PROXIMAL TUBULE OF THE DOG. J Clin Invest. 1965 Jul;44:1160–1170. doi: 10.1172/JCI105223. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FLANIGAN W. J., OKEN D. E. RENAL MICROPUNCTURE STUDY OF THE DEVELOPMENT OF ANURIA IN THE RAT WITH MERCURY-INDUCED ACUTE RENAL FAILURE. J Clin Invest. 1965 Mar;44:449–457. doi: 10.1172/JCI105158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gertz K. H., Mangos J. A., Braun G., Pagel H. D. On the glomerular tubular balance in the rat kidney. Pflugers Arch Gesamte Physiol Menschen Tiere. 1965 Sep 15;285(4):360–372. doi: 10.1007/BF00363236. [DOI] [PubMed] [Google Scholar]
  7. HANDLEY C. A., MOYER J. H. Unilateral renal adrenergic blockade and the renal response to vasopressor agents and to hemorrhage. J Pharmacol Exp Ther. 1954 Sep;112(1):1–7. [PubMed] [Google Scholar]
  8. HANNON J. P. Intermediary glucose metabolism in the cold-acclimatized rat. Fed Proc. 1960 Dec;19(Suppl 5):100–105. [PubMed] [Google Scholar]
  9. HARTROFT P. M., HARTROFT W. S. Studies on renal juxtaglomerular cells. I. Variations produced by sodium chloride and desoxycorticosterone acetate. J Exp Med. 1953 Mar;97(3):415–429. doi: 10.1084/jem.97.3.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HARTROFT P. M., HARTROFT W. S. Studies on renal juxtaglomerular cells. II. Correlation of the degree of granulation of juxtaglomerular cells with width of the zone glomerulosa of the adrenal cortex. J Exp Med. 1955 Aug 1;102(2):205–212. doi: 10.1084/jem.102.2.205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Johnston C. I., Davis J. O. Evidence from cross circulation studies for a humoral mechanism in the natriuresis of saline loading. Proc Soc Exp Biol Med. 1966 Apr;121(4):1058–1063. doi: 10.3181/00379727-121-30965. [DOI] [PubMed] [Google Scholar]
  12. LEVINSKY N. G., LALONE R. C. THE MECHANISM OF SODIUM DURESIS AFTER SALINE INFUSION IN THE DOG. J Clin Invest. 1963 Aug;42:1261–1276. doi: 10.1172/JCI104811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. LEYSSAC P. P., LASSEN U. V., THAYSEN J. H. Inhibition of sodium transport in isolated renal tissue by angiotensin. Biochim Biophys Acta. 1961 Apr 15;48:602–603. doi: 10.1016/0006-3002(61)90063-4. [DOI] [PubMed] [Google Scholar]
  14. LEYSSAC P. P. THE IN VIVO EFFECT OF ANGIOTENSIN ON THE PROXIMAL TUBULAR REABSORPTION OF SALT IN RAT KIDNEYS. Acta Physiol Scand. 1964 Dec;62:436–448. doi: 10.1111/j.1748-1716.1964.tb10441.x. [DOI] [PubMed] [Google Scholar]
  15. Lichardus B., Pearce J. W. Evidence for a humoral natriuretic factor released by blood volume expansion. Nature. 1966 Jan 22;209(5021):407–409. doi: 10.1038/209407a0. [DOI] [PubMed] [Google Scholar]
  16. MCDONALD S. J., DE WARDENER H. E. THE RELATIONSHIP BETWEEN THE RENAL ARTERIAL PERFUSION PRESSURE AND THE INCREASE IN SODIUM EXCRETION WHICH OCCURS DURING AN INFUSION OF SALINE. Nephron. 1965;2:1–14. doi: 10.1159/000179370. [DOI] [PubMed] [Google Scholar]
  17. Malnic G., Klose R. M., Giebisch G. Microperfusion study of distal tubular potassium and sodium transfer in rat kidney. Am J Physiol. 1966 Sep;211(3):548–559. doi: 10.1152/ajplegacy.1966.211.3.548. [DOI] [PubMed] [Google Scholar]
  18. PITCOCK J. A., HARTROFT P. M., NEWMARK L. N. Increased renal pressor activity (renin) in sodium deficient rats and correlation with juxtaglomerular cell granulation. Proc Soc Exp Biol Med. 1959 Apr;100(4):868–869. doi: 10.3181/00379727-100-24807. [DOI] [PubMed] [Google Scholar]
  19. RECTOR F. C., Jr, VANGIESEN G., KIIL F., SELDIN D. W. INFLUENCE OF EXPANSION OF EXTRACELLULAR VOLUME ON TUBULAR REABSORPTION OF SODIUM INDEPENDENT OF CHANGES IN GLOMERULAR FILTRATION RATE AND ALDOSTERONE ACTIVITY. J Clin Invest. 1964 Mar;43:341–348. doi: 10.1172/JCI104919. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rector F. C., Jr, Brunner F. P., Seldin D. W. Mechanism of glomerulotubular balance. I. Effect of aortic constriction and elevated ureteropelvic pressure on glomerular filtration rate, fractional reabsorption, transit time, and tubular size in the proximal tubule of the rat. J Clin Invest. 1966 Apr;45(4):590–602. doi: 10.1172/JCI105373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rector F. C., Jr, Sellman J. C., Martinez-Maldonado M., Seldin D. W. The mechanism of suppression of proximal tubular reabsorption by saline infusions. J Clin Invest. 1967 Jan;46(1):47–56. doi: 10.1172/JCI105510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SELKURT E. E. Effect of pulse pressure and mean arterial pressure modification on renal hemodynamics and electrolyte and water excretion. Circulation. 1951 Oct;4(4):541–551. doi: 10.1161/01.cir.4.4.541. [DOI] [PubMed] [Google Scholar]
  23. SELKURT E. E., WOMACK I., DAILEY W. N. MECHANISM OF NATRIURESIS AND DIURESIS DURING ELEVATED RENAL ARTERIAL PRESSURE. Am J Physiol. 1965 Jul;209:95–99. doi: 10.1152/ajplegacy.1965.209.1.95. [DOI] [PubMed] [Google Scholar]
  24. TOBIAN L., COFFEE K., FERREIRA D., MEULI J. THE EFFECT OF RENAL PERFUSION PRESSURE ON THE NET TRANSPORT OF SODIUM OUT OF DISTAL TUBULAR URINE AS STUDIED WITH THE STOP-FLOW TECHNIQUE. J Clin Invest. 1964 Jan;43:118–128. doi: 10.1172/JCI104886. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WIRZ H. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv Physiol Pharmacol Acta. 1956;14(3):353–362. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES