Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2772–o2773. doi: 10.1107/S1600536809041646

Tris(1-naphth­yl)arsine chloro­form solvate

Omar bin Shawkataly a,*,, Imthyaz Ahmed Khan a, Chin Sing Yeap b,§, Hoong-Kun Fun b,
PMCID: PMC2971302  PMID: 21578366

Abstract

In the title compound, C30H21As·CHCl3, the dihedral angles between the three naphthalene ring systems [r.m.s. deviations = 0.007, 0.009 and 0.020 Å] are 72.54 (4), 88.05 (4) and 83.36 (4)°. In the crystal, the mol­ecules are stacked down the a axis being consolidated by C—H⋯π and π–π inter­actions [centroid to centroid distance = 3.7839 (7) Å].

Related literature

For general background to tris­(1-naphth­yl)arsine, see: Cullen et al. (1995). For related structures, see: Kamepalli et al. (1996); Shawkataly et al. (2009). For the synthesis, see: Burfield et al. (1977, 1978); Burfield & Smithers (1978); Michaelis (1902). For description of the Cambridge Structural Database, see: Allen (2002). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o2772-scheme1.jpg

Experimental

Crystal data

  • C30H21As·CHCl3

  • M r = 575.76

  • Triclinic, Inline graphic

  • a = 9.1326 (2) Å

  • b = 11.9473 (2) Å

  • c = 12.3971 (2) Å

  • α = 77.432 (1)°

  • β = 87.455 (1)°

  • γ = 75.434 (1)°

  • V = 1277.72 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.66 mm−1

  • T = 100 K

  • 0.62 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.427, T max = 0.849

  • 37994 measured reflections

  • 7382 independent reflections

  • 6791 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.023

  • wR(F 2) = 0.061

  • S = 1.04

  • 7382 reflections

  • 316 parameters

  • H-atom parameters constrained

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041646/tk2554sup1.cif

e-65-o2772-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041646/tk2554Isup2.hkl

e-65-o2772-Isup2.hkl (361.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4ACg1i 0.93 2.68 3.6013 (14) 169
C14—H14ACg2ii 0.93 2.86 3.7421 (15) 160

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 and Cg2 are centroids of the C25–C30 and C5–C10 benzene rings, respectively.

Acknowledgments

The authors would like to thank the Malaysian Government and Universiti Sains Malaysia (USM) for the Research grant No. 1001/PJJAUH/811115. IAK is grateful to USM for a postdoctoral Fellowship and Gokhale Centenary College, Ankola, Karnataka, India for study leave. HKF thanks USM for the Research University Golden Goose grant No. 1001/PFIZIK/811012. CSY thanks USM for the award of a USM Fellowship.

supplementary crystallographic information

Comment

Tris(1-naphthyl)arsine has been used in the synthesis of osmium and ruthenium cluster derivatives (Cullen et al., 1995). A search of the Cambridge Structural Database (Allen, 2002) revealed no structure containing this molecule. Among substituted naphthylarsines, only the structure of tris[8-(dimethylamino)-1-naphthyl]arsine (Kamepalli et al., 1996) is known.

The asymmetric unit of the title compound comprises a molecule of tris(1-naphthyl)arsine and a solvent chloroform molecule (Fig. 1). The As–C bond lengths lie in the range 1.9595 (11) to 1.9635 (12) Å, and the C–As–C angles lie in the range 98.97 (5) to 100.92 (5) °. The values are comparable to those found in related structures (Kamepalli et al., 1996; Shawkataly et al., 2009). The dihedral angles between the three naphthalene ring systems (C1–C10/C11–C20, C1–C10/C21–C30 and C11–C20/C21–C30) are 72.54 (4), 88.05 (4) and 83.36 (4)°, respectively. In the crystal packing (Fig. 2), the molecules are stacked down the a axis being consolidated by C—H···π (Table 1) and π–π interactions [Cg1···Cg3iii = 3.7839 (7) Å; Cg1 and Cg3 are centroids of benzene rings C25–C30 and C21–C25/C30, respectively; (iii) -x, 2 - y, 1 - z].

Experimental

Solvents were dried by recommended literature routes (Burfield et al., 1977, 1978; Burfield & Smithers, 1978). Tris(1-naphthyl)arsine was prepared from arsenic trichloride and 1-bromonaphthalene (Michaelis, 1902). Crystals were obtained by slow evaporation from its chloroform solution.

Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with 50% probability ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed down the a axis, showing the molecules stacked down the a axis.

Crystal data

C30H21As·CHCl3 Z = 2
Mr = 575.76 F(000) = 584
Triclinic, P1 Dx = 1.497 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.1326 (2) Å Cell parameters from 9912 reflections
b = 11.9473 (2) Å θ = 2.3–35.0°
c = 12.3971 (2) Å µ = 1.66 mm1
α = 77.432 (1)° T = 100 K
β = 87.455 (1)° Needle, colourless
γ = 75.434 (1)° 0.62 × 0.23 × 0.10 mm
V = 1277.72 (4) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 7382 independent reflections
Radiation source: fine-focus sealed tube 6791 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 30.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→12
Tmin = 0.427, Tmax = 0.849 k = −16→16
37994 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.030P)2 + 0.531P] where P = (Fo2 + 2Fc2)/3
7382 reflections (Δ/σ)max = 0.001
316 parameters Δρmax = 0.47 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
As1 0.090367 (13) 0.707273 (10) 0.281681 (9) 0.01270 (4)
C1 0.23298 (13) 0.55322 (10) 0.33306 (9) 0.0139 (2)
C2 0.28065 (14) 0.51442 (11) 0.44200 (10) 0.0164 (2)
H2A 0.2371 0.5585 0.4937 0.020*
C3 0.39459 (15) 0.40882 (11) 0.47644 (10) 0.0188 (2)
H3A 0.4246 0.3840 0.5503 0.023*
C4 0.46095 (14) 0.34296 (11) 0.40176 (11) 0.0188 (2)
H4A 0.5363 0.2740 0.4251 0.023*
C5 0.41573 (14) 0.37905 (10) 0.28882 (10) 0.0163 (2)
C6 0.48349 (15) 0.31226 (12) 0.20993 (11) 0.0214 (2)
H6A 0.5581 0.2427 0.2327 0.026*
C7 0.44079 (16) 0.34851 (13) 0.10090 (12) 0.0245 (3)
H7A 0.4869 0.3041 0.0501 0.029*
C8 0.32697 (16) 0.45316 (12) 0.06568 (11) 0.0221 (3)
H8A 0.2985 0.4778 −0.0085 0.027*
C9 0.25769 (15) 0.51907 (11) 0.14008 (10) 0.0176 (2)
H9A 0.1815 0.5872 0.1157 0.021*
C10 0.30027 (13) 0.48509 (10) 0.25366 (9) 0.0143 (2)
C11 −0.09515 (14) 0.65816 (10) 0.26369 (9) 0.0147 (2)
C12 −0.09601 (15) 0.54044 (11) 0.27990 (10) 0.0181 (2)
H12A −0.0091 0.4825 0.3063 0.022*
C13 −0.22715 (16) 0.50634 (12) 0.25697 (11) 0.0210 (2)
H13A −0.2258 0.4265 0.2690 0.025*
C14 −0.35565 (15) 0.59027 (12) 0.21725 (10) 0.0206 (2)
H14A −0.4410 0.5670 0.2021 0.025*
C15 −0.36018 (14) 0.71242 (12) 0.19895 (10) 0.0174 (2)
C16 −0.49212 (15) 0.80103 (13) 0.15651 (11) 0.0225 (3)
H16A −0.5780 0.7786 0.1411 0.027*
C17 −0.49483 (16) 0.91876 (13) 0.13799 (12) 0.0258 (3)
H17A −0.5817 0.9756 0.1094 0.031*
C18 −0.36570 (16) 0.95368 (12) 0.16231 (12) 0.0238 (3)
H18A −0.3679 1.0337 0.1499 0.029*
C19 −0.23685 (14) 0.87058 (11) 0.20412 (10) 0.0179 (2)
H19A −0.1531 0.8952 0.2205 0.022*
C20 −0.22911 (14) 0.74750 (11) 0.22286 (9) 0.0150 (2)
C21 0.04874 (14) 0.75520 (10) 0.42365 (9) 0.0142 (2)
C22 −0.06416 (14) 0.72313 (11) 0.49122 (10) 0.0170 (2)
H22A −0.1222 0.6782 0.4690 0.020*
C23 −0.09342 (15) 0.75733 (11) 0.59400 (10) 0.0193 (2)
H23A −0.1703 0.7350 0.6386 0.023*
C24 −0.00874 (15) 0.82332 (11) 0.62790 (10) 0.0193 (2)
H24A −0.0278 0.8446 0.6960 0.023*
C25 0.10744 (14) 0.85955 (10) 0.56059 (10) 0.0167 (2)
C26 0.19211 (15) 0.93203 (11) 0.59281 (11) 0.0202 (2)
H26A 0.1735 0.9537 0.6607 0.024*
C27 0.30057 (16) 0.97039 (12) 0.52556 (12) 0.0226 (3)
H27A 0.3535 1.0191 0.5473 0.027*
C28 0.33213 (15) 0.93604 (11) 0.42328 (11) 0.0211 (2)
H28A 0.4063 0.9618 0.3780 0.025*
C29 0.25383 (14) 0.86469 (11) 0.39033 (10) 0.0168 (2)
H29A 0.2772 0.8415 0.3234 0.020*
C30 0.13786 (13) 0.82569 (10) 0.45661 (10) 0.0143 (2)
C31 0.01969 (16) 0.16195 (12) 0.04382 (11) 0.0225 (3)
H31A 0.0208 0.1606 −0.0350 0.027*
Cl1 0.13525 (5) 0.25237 (4) 0.06542 (3) 0.03896 (10)
Cl2 −0.16874 (4) 0.21894 (3) 0.08181 (3) 0.03183 (8)
Cl3 0.08848 (4) 0.01550 (3) 0.11983 (3) 0.02454 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
As1 0.01297 (6) 0.01246 (6) 0.01270 (6) −0.00293 (4) −0.00088 (4) −0.00281 (4)
C1 0.0133 (5) 0.0134 (5) 0.0151 (5) −0.0032 (4) −0.0005 (4) −0.0029 (4)
C2 0.0167 (6) 0.0172 (5) 0.0148 (5) −0.0027 (4) −0.0009 (4) −0.0038 (4)
C3 0.0190 (6) 0.0191 (6) 0.0164 (5) −0.0035 (5) −0.0036 (4) −0.0003 (4)
C4 0.0158 (6) 0.0156 (5) 0.0222 (6) −0.0008 (4) −0.0023 (4) −0.0013 (4)
C5 0.0148 (5) 0.0153 (5) 0.0192 (5) −0.0043 (4) 0.0015 (4) −0.0041 (4)
C6 0.0184 (6) 0.0192 (6) 0.0267 (6) −0.0019 (5) 0.0031 (5) −0.0087 (5)
C7 0.0244 (7) 0.0264 (7) 0.0251 (6) −0.0045 (5) 0.0056 (5) −0.0135 (5)
C8 0.0254 (7) 0.0264 (6) 0.0164 (5) −0.0071 (5) 0.0020 (5) −0.0080 (5)
C9 0.0192 (6) 0.0179 (5) 0.0154 (5) −0.0037 (4) −0.0004 (4) −0.0038 (4)
C10 0.0133 (5) 0.0151 (5) 0.0151 (5) −0.0051 (4) 0.0011 (4) −0.0034 (4)
C11 0.0151 (5) 0.0167 (5) 0.0134 (5) −0.0052 (4) −0.0010 (4) −0.0039 (4)
C12 0.0207 (6) 0.0164 (5) 0.0176 (5) −0.0057 (4) −0.0005 (4) −0.0033 (4)
C13 0.0261 (7) 0.0210 (6) 0.0199 (6) −0.0122 (5) 0.0022 (5) −0.0060 (5)
C14 0.0207 (6) 0.0287 (7) 0.0177 (5) −0.0145 (5) 0.0018 (4) −0.0069 (5)
C15 0.0156 (5) 0.0258 (6) 0.0120 (5) −0.0069 (5) 0.0017 (4) −0.0049 (4)
C16 0.0127 (6) 0.0369 (7) 0.0176 (6) −0.0062 (5) −0.0001 (4) −0.0050 (5)
C17 0.0150 (6) 0.0330 (7) 0.0234 (6) 0.0006 (5) −0.0005 (5) −0.0010 (5)
C18 0.0190 (6) 0.0206 (6) 0.0271 (6) 0.0000 (5) 0.0016 (5) −0.0012 (5)
C19 0.0147 (5) 0.0181 (6) 0.0206 (6) −0.0033 (4) 0.0003 (4) −0.0043 (4)
C20 0.0148 (5) 0.0186 (5) 0.0119 (5) −0.0044 (4) 0.0006 (4) −0.0034 (4)
C21 0.0156 (5) 0.0125 (5) 0.0143 (5) −0.0025 (4) −0.0009 (4) −0.0033 (4)
C22 0.0182 (6) 0.0152 (5) 0.0180 (5) −0.0051 (4) 0.0012 (4) −0.0033 (4)
C23 0.0203 (6) 0.0185 (6) 0.0171 (5) −0.0029 (5) 0.0041 (4) −0.0026 (4)
C24 0.0230 (6) 0.0175 (6) 0.0152 (5) 0.0002 (5) 0.0004 (4) −0.0047 (4)
C25 0.0189 (6) 0.0126 (5) 0.0165 (5) 0.0005 (4) −0.0040 (4) −0.0034 (4)
C26 0.0231 (6) 0.0161 (5) 0.0209 (6) −0.0002 (5) −0.0078 (5) −0.0068 (5)
C27 0.0231 (6) 0.0184 (6) 0.0280 (6) −0.0054 (5) −0.0097 (5) −0.0059 (5)
C28 0.0190 (6) 0.0199 (6) 0.0250 (6) −0.0077 (5) −0.0046 (5) −0.0016 (5)
C29 0.0166 (6) 0.0169 (5) 0.0172 (5) −0.0047 (4) −0.0017 (4) −0.0031 (4)
C30 0.0150 (5) 0.0111 (5) 0.0156 (5) −0.0011 (4) −0.0032 (4) −0.0024 (4)
C31 0.0244 (7) 0.0257 (6) 0.0185 (6) −0.0106 (5) 0.0031 (5) −0.0028 (5)
Cl1 0.0520 (3) 0.0475 (2) 0.03150 (18) −0.0357 (2) 0.01156 (17) −0.01343 (16)
Cl2 0.02568 (17) 0.02956 (17) 0.03121 (18) 0.00074 (13) 0.00267 (13) 0.00334 (14)
Cl3 0.02050 (15) 0.02695 (16) 0.02393 (15) −0.00309 (12) −0.00302 (11) −0.00328 (12)

Geometric parameters (Å, °)

As1—C21 1.9595 (11) C16—C17 1.369 (2)
As1—C1 1.9615 (12) C16—H16A 0.9300
As1—C11 1.9635 (12) C17—C18 1.411 (2)
C1—C2 1.3808 (16) C17—H17A 0.9300
C1—C10 1.4326 (16) C18—C19 1.3717 (18)
C2—C3 1.4147 (17) C18—H18A 0.9300
C2—H2A 0.9300 C19—C20 1.4219 (17)
C3—C4 1.3678 (18) C19—H19A 0.9300
C3—H3A 0.9300 C21—C22 1.3762 (17)
C4—C5 1.4197 (17) C21—C30 1.4362 (16)
C4—H4A 0.9300 C22—C23 1.4154 (17)
C5—C6 1.4191 (17) C22—H22A 0.9300
C5—C10 1.4267 (17) C23—C24 1.3696 (18)
C6—C7 1.3688 (19) C23—H23A 0.9300
C6—H6A 0.9300 C24—C25 1.4159 (18)
C7—C8 1.408 (2) C24—H24A 0.9300
C7—H7A 0.9300 C25—C26 1.4220 (17)
C8—C9 1.3729 (17) C25—C30 1.4286 (16)
C8—H8A 0.9300 C26—C27 1.369 (2)
C9—C10 1.4210 (16) C26—H26A 0.9300
C9—H9A 0.9300 C27—C28 1.4121 (19)
C11—C12 1.3787 (16) C27—H27A 0.9300
C11—C20 1.4336 (17) C28—C29 1.3745 (17)
C12—C13 1.4168 (18) C28—H28A 0.9300
C12—H12A 0.9300 C29—C30 1.4206 (17)
C13—C14 1.367 (2) C29—H29A 0.9300
C13—H13A 0.9300 C31—Cl1 1.7541 (14)
C14—C15 1.4175 (18) C31—Cl2 1.7677 (15)
C14—H14A 0.9300 C31—Cl3 1.7681 (14)
C15—C16 1.4219 (18) C31—H31A 0.9800
C15—C20 1.4262 (17)
C21—As1—C1 98.97 (5) C15—C16—H16A 119.4
C21—As1—C11 99.78 (5) C16—C17—C18 119.88 (13)
C1—As1—C11 100.92 (5) C16—C17—H17A 120.1
C2—C1—C10 119.28 (11) C18—C17—H17A 120.1
C2—C1—As1 121.43 (9) C19—C18—C17 120.56 (13)
C10—C1—As1 119.00 (8) C19—C18—H18A 119.7
C1—C2—C3 121.20 (11) C17—C18—H18A 119.7
C1—C2—H2A 119.4 C18—C19—C20 121.14 (12)
C3—C2—H2A 119.4 C18—C19—H19A 119.4
C4—C3—C2 120.41 (11) C20—C19—H19A 119.4
C4—C3—H3A 119.8 C19—C20—C15 118.20 (11)
C2—C3—H3A 119.8 C19—C20—C11 122.68 (11)
C3—C4—C5 120.52 (11) C15—C20—C11 119.12 (11)
C3—C4—H4A 119.7 C22—C21—C30 119.90 (11)
C5—C4—H4A 119.7 C22—C21—As1 121.23 (9)
C6—C5—C4 121.43 (11) C30—C21—As1 118.87 (9)
C6—C5—C10 119.22 (11) C21—C22—C23 121.10 (11)
C4—C5—C10 119.35 (11) C21—C22—H22A 119.5
C7—C6—C5 121.09 (12) C23—C22—H22A 119.5
C7—C6—H6A 119.5 C24—C23—C22 120.10 (12)
C5—C6—H6A 119.5 C24—C23—H23A 119.9
C6—C7—C8 119.94 (12) C22—C23—H23A 119.9
C6—C7—H7A 120.0 C23—C24—C25 120.81 (11)
C8—C7—H7A 120.0 C23—C24—H24A 119.6
C9—C8—C7 120.47 (12) C25—C24—H24A 119.6
C9—C8—H8A 119.8 C24—C25—C26 121.36 (11)
C7—C8—H8A 119.8 C24—C25—C30 119.58 (11)
C8—C9—C10 121.20 (12) C26—C25—C30 119.04 (12)
C8—C9—H9A 119.4 C27—C26—C25 121.12 (12)
C10—C9—H9A 119.4 C27—C26—H26A 119.4
C9—C10—C5 118.05 (11) C25—C26—H26A 119.4
C9—C10—C1 122.70 (11) C26—C27—C28 120.01 (12)
C5—C10—C1 119.24 (10) C26—C27—H27A 120.0
C12—C11—C20 119.45 (11) C28—C27—H27A 120.0
C12—C11—As1 121.68 (9) C29—C28—C27 120.34 (12)
C20—C11—As1 118.61 (8) C29—C28—H28A 119.8
C11—C12—C13 121.08 (12) C27—C28—H28A 119.8
C11—C12—H12A 119.5 C28—C29—C30 121.21 (12)
C13—C12—H12A 119.5 C28—C29—H29A 119.4
C14—C13—C12 120.31 (12) C30—C29—H29A 119.4
C14—C13—H13A 119.8 C29—C30—C25 118.25 (11)
C12—C13—H13A 119.8 C29—C30—C21 123.25 (11)
C13—C14—C15 120.70 (12) C25—C30—C21 118.50 (11)
C13—C14—H14A 119.7 Cl1—C31—Cl2 110.57 (8)
C15—C14—H14A 119.7 Cl1—C31—Cl3 110.72 (8)
C14—C15—C16 121.55 (12) Cl2—C31—Cl3 109.87 (7)
C14—C15—C20 119.34 (12) Cl1—C31—H31A 108.5
C16—C15—C20 119.11 (12) Cl2—C31—H31A 108.5
C17—C16—C15 121.11 (12) Cl3—C31—H31A 108.5
C17—C16—H16A 119.4
C21—As1—C1—C2 −4.02 (11) C16—C17—C18—C19 0.2 (2)
C11—As1—C1—C2 −105.88 (10) C17—C18—C19—C20 0.7 (2)
C21—As1—C1—C10 −177.76 (9) C18—C19—C20—C15 −1.16 (18)
C11—As1—C1—C10 80.38 (10) C18—C19—C20—C11 178.32 (12)
C10—C1—C2—C3 0.04 (18) C14—C15—C20—C19 −179.78 (11)
As1—C1—C2—C3 −173.68 (9) C16—C15—C20—C19 0.66 (17)
C1—C2—C3—C4 0.41 (19) C14—C15—C20—C11 0.72 (17)
C2—C3—C4—C5 −0.48 (19) C16—C15—C20—C11 −178.84 (11)
C3—C4—C5—C6 179.76 (12) C12—C11—C20—C19 179.98 (12)
C3—C4—C5—C10 0.11 (18) As1—C11—C20—C19 −5.71 (15)
C4—C5—C6—C7 −179.07 (13) C12—C11—C20—C15 −0.54 (17)
C10—C5—C6—C7 0.58 (19) As1—C11—C20—C15 173.77 (8)
C5—C6—C7—C8 −0.5 (2) C1—As1—C21—C22 −87.58 (10)
C6—C7—C8—C9 −0.3 (2) C11—As1—C21—C22 15.24 (11)
C7—C8—C9—C10 1.1 (2) C1—As1—C21—C30 92.80 (9)
C8—C9—C10—C5 −1.03 (18) C11—As1—C21—C30 −164.39 (9)
C8—C9—C10—C1 178.47 (12) C30—C21—C22—C23 −0.73 (18)
C6—C5—C10—C9 0.19 (17) As1—C21—C22—C23 179.65 (9)
C4—C5—C10—C9 179.85 (11) C21—C22—C23—C24 −0.08 (19)
C6—C5—C10—C1 −179.33 (11) C22—C23—C24—C25 0.82 (19)
C4—C5—C10—C1 0.33 (17) C23—C24—C25—C26 177.45 (12)
C2—C1—C10—C9 −179.90 (11) C23—C24—C25—C30 −0.73 (18)
As1—C1—C10—C9 −6.02 (15) C24—C25—C26—C27 −177.59 (12)
C2—C1—C10—C5 −0.40 (17) C30—C25—C26—C27 0.61 (18)
As1—C1—C10—C5 173.47 (8) C25—C26—C27—C28 −1.31 (19)
C21—As1—C11—C12 −105.15 (10) C26—C27—C28—C29 0.4 (2)
C1—As1—C11—C12 −3.94 (11) C27—C28—C29—C30 1.25 (19)
C21—As1—C11—C20 80.67 (9) C28—C29—C30—C25 −1.91 (18)
C1—As1—C11—C20 −178.13 (9) C28—C29—C30—C21 177.34 (11)
C20—C11—C12—C13 −0.08 (18) C24—C25—C30—C29 179.21 (11)
As1—C11—C12—C13 −174.21 (9) C26—C25—C30—C29 0.98 (17)
C11—C12—C13—C14 0.53 (19) C24—C25—C30—C21 −0.08 (17)
C12—C13—C14—C15 −0.35 (19) C26—C25—C30—C21 −178.31 (11)
C13—C14—C15—C16 179.27 (12) C22—C21—C30—C29 −178.45 (11)
C13—C14—C15—C20 −0.28 (18) As1—C21—C30—C29 1.18 (15)
C14—C15—C16—C17 −179.29 (13) C22—C21—C30—C25 0.80 (17)
C20—C15—C16—C17 0.26 (19) As1—C21—C30—C25 −179.57 (8)
C15—C16—C17—C18 −0.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···Cg1i 0.93 2.68 3.6013 (14) 169
C14—H14A···Cg2ii 0.93 2.86 3.7421 (15) 160

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2554).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burfield, D. R., Gan, G.-H. & Smithers, R. H. (1978). J. Appl. Chem. Biotechnol.28, 23–30.
  4. Burfield, D. R., Lee, K.-H. & Smithers, R. H. (1977). J. Org. Chem.42, 3060–3065.
  5. Burfield, D. R. & Smithers, R. H. (1978). J. Org. Chem.43, 3966–3968. [DOI] [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Cullen, W. R., Rettig, S. J. & Tu, C. Z. (1995). Organometallics, 14, 1466–1470.
  8. Kamepalli, S., Carmalt, C. J., Culp, R. D., Cowley, A. H. & Jones, R. A. (1996). Inorg. Chem.35, 6179–6183.
  9. Michaelis, A. (1902). Justus Liebigs Ann. Chem.321, 242–248.
  10. Shawkataly, O. bin, Khan, I. A., Goh, J. H. & Fun, H.-K. (2009). Acta Cryst. E65, o2591–o2592. [DOI] [PMC free article] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041646/tk2554sup1.cif

e-65-o2772-sup1.cif (24.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041646/tk2554Isup2.hkl

e-65-o2772-Isup2.hkl (361.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES