Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 23;65(Pt 11):o2808. doi: 10.1107/S1600536809041579

c-3,t-3-Dimethyl-4-oxo-r-2,c-6-diphenyl­piperidine-1-carboxamide

M Thenmozhi a, T Kavitha a, S Ponnuswamy b, M Jamesh b, M N Ponnuswamy a,*
PMCID: PMC2971303  PMID: 21578400

Abstract

In the title compound, C26H26N2O2, the piperidinone ring adopts a distorted boat conformation. The two phenyl rings substituted at positions 2 and 6 of the piperidinone ring occupy axial and equatorial orientations, which are approximately perpendicular to each other [89.14 (8)°]. The phenyl­carbamoyl group adopts an extended conformation. The crystal structure is stabilized by inter­molecular C—H⋯O inter­actions.

Related literature

For general background to the pharmaceutical activity of piperidine derivatives, see: Mobio et al. (1989); Palani et al. (2002). For hybridization, see: Beddoes et al. (1986). For hydrogen-bond motifs, see: Bernstein et al. (1995). For ring conformational analysis, see: Cremer & Pople (1975); Nardelli (1983).graphic file with name e-65-o2808-scheme1.jpg

Experimental

Crystal data

  • C26H26N2O2

  • M r = 398.49

  • Triclinic, Inline graphic

  • a = 9.6648 (2) Å

  • b = 10.7938 (3) Å

  • c = 11.4233 (3) Å

  • α = 101.303 (2)°

  • β = 90.158 (1)°

  • γ = 113.191 (1)°

  • V = 1069.91 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.12 × 0.12 × 0.10 mm

Data collection

  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001) T min = 0.991, T max = 0.992

  • 26776 measured reflections

  • 6362 independent reflections

  • 4483 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.129

  • S = 1.03

  • 6362 reflections

  • 278 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041579/bt5059sup1.cif

e-65-o2808-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041579/bt5059Isup2.hkl

e-65-o2808-Isup2.hkl (305.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O2i 0.93 2.56 3.4488 (17) 161
C20—H20B⋯O1ii 0.96 2.52 3.4520 (17) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

MT thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection. SP thanks the UGC, India, for financial support.

supplementary crystallographic information

Comment

Several 2,6-disubstituted piperidine derivatives have fungicidal, herbicidal and bactericidal properties. Both the natural and synthetic piperidine derivatives exhibit high pharmaceutical values (Mobio et al., 1989). Piperidines have a favourable pharmacokinetic profile in rodents and primates, excellent oral bioavailability, and potent antiviral activity against a wide range of primary HIV-1 isolates and considered as promising new candidate for the treatment of HIV-1 infection (Palani et al., 2002).

The ORTEP plot of the molecule is shown in Fig. 1. The piperidine ring adopts distorted boat conformation, with the puckering amplitudes q2 = 0.5877 (13)°, q3 =-0.1100 (13)°, φ = 258.06 (12)° (Cremer & Pople, 1975) and asymmetry parameters Δs(C2)=Δs(C5) = 18.55 (12)° (Nardelli, 1983). The planar phenyl rings substituted at positions 2 and 6 occupy axial [70.71 (13)°] and equatorial [-162.73 (11)°] orientations and are approximately perpendicular to each other [89.14 (8)°]. One of the methyl groups attached at position 3 of the piperidine ring occupy equatorial [N1-C2-C3-C20 = 177.95 (10)°] orientation and other one is in axial [N1-C2-C3-C21 = 58.31 (12)°] orientation. The sum of the bond angles around N1[358.2 (3)°] indicates sp2 hybridization (Beddoes et al., 1986).

The phenylcarbamoyl group attached to the N1 atom adopts an extended conformation which is evidenced from the torsion angle [N1-C7-N2-C8=]169.19 (11)°. The crystal structure is stabilized by C-H···O type of intermolecular interactions in addition to van der Waals forces. The C20-H20B···O1 interaction between the molecules lead to the dimer arrangement along the bc plane. These dimers are interconnected by C18-H18···O2 hydrogen bonds, which form a one dimensional chain running along a - axis (Fig. 2).

Experimental

A mixture of c-3,t-3-dimethyl-r-2,c-6-diphenylpiperidin-4-one (1.4g), phenylisocyanate (1.1ml) and triethylamine (2ml) in anhydrous benzene (20ml) was stirred at room temperature for 7 hours. The precipitated ammonium salt was washed with water (40ml). The resulting pasty mass was purified by crystallization from benzene and pet-ether (60-80°C) in the ratio of 95 : 5.

Refinement

H atoms were positioned geometrically (C-H = 0.93 - 0.98Å) and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H and 1.2Ueq(C) for other H atoms. The components of the anisotropic displacement parameters of C24 and C25 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001.

Figures

Fig. 1.

Fig. 1.

The ORTEP plot of the molecule with 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The crystal packing of the molecules viewed along a - axis.

Crystal data

C26H26N2O2 Z = 2
Mr = 398.49 F(000) = 424
Triclinic, P1 Dx = 1.237 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.6648 (2) Å Cell parameters from 6362 reflections
b = 10.7938 (3) Å θ = 2.1–30.3°
c = 11.4233 (3) Å µ = 0.08 mm1
α = 101.303 (2)° T = 293 K
β = 90.158 (1)° Block, colourless
γ = 113.191 (1)° 0.12 × 0.12 × 0.10 mm
V = 1069.91 (5) Å3

Data collection

Bruker Kappa APEXII area-detector diffractometer 6362 independent reflections
Radiation source: fine-focus sealed tube 4483 reflections with I > 2σ(I)
graphite Rint = 0.027
ω and φ scans θmax = 30.3°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 2001) h = −13→13
Tmin = 0.991, Tmax = 0.992 k = −15→15
26776 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0562P)2 + 0.1478P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.010
6362 reflections Δρmax = 0.23 e Å3
278 parameters Δρmin = −0.16 e Å3
1 restraint Extinction correction: SHELXS97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.034 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C2 0.44729 (12) 0.65312 (11) 0.17958 (10) 0.0397 (2)
H2 0.4661 0.5889 0.1148 0.048*
C3 0.27465 (12) 0.60768 (12) 0.17189 (11) 0.0464 (3)
C4 0.23264 (13) 0.71273 (13) 0.25470 (11) 0.0482 (3)
C5 0.34974 (13) 0.85807 (13) 0.28686 (12) 0.0486 (3)
H5A 0.3981 0.8718 0.3656 0.058*
H5B 0.2979 0.9197 0.2936 0.058*
C6 0.47423 (12) 0.90306 (11) 0.20204 (10) 0.0414 (2)
H6 0.4324 0.9268 0.1356 0.050*
C7 0.60634 (12) 0.79834 (11) 0.05299 (10) 0.0397 (2)
C8 0.78032 (12) 0.96713 (11) −0.05439 (10) 0.0404 (2)
C9 0.77964 (15) 0.88317 (13) −0.16236 (11) 0.0503 (3)
H9 0.7057 0.7938 −0.1843 0.060*
C10 0.89077 (17) 0.93379 (15) −0.23770 (13) 0.0628 (4)
H10 0.8916 0.8770 −0.3101 0.075*
C11 0.99929 (16) 1.06556 (15) −0.20790 (14) 0.0628 (4)
H11 1.0729 1.0980 −0.2596 0.075*
C12 0.99842 (15) 1.14898 (14) −0.10158 (14) 0.0582 (3)
H12 1.0711 1.2390 −0.0812 0.070*
C13 0.89053 (14) 1.10043 (12) −0.02441 (11) 0.0485 (3)
H13 0.8916 1.1575 0.0484 0.058*
C14 0.52831 (12) 0.64977 (11) 0.29232 (10) 0.0419 (2)
C15 0.48157 (15) 0.66344 (14) 0.40654 (12) 0.0550 (3)
H15 0.3888 0.6690 0.4183 0.066*
C16 0.5715 (2) 0.66892 (17) 0.50407 (14) 0.0684 (4)
H16 0.5387 0.6785 0.5805 0.082*
C17 0.70797 (18) 0.66035 (16) 0.48857 (15) 0.0683 (4)
H17 0.7680 0.6646 0.5543 0.082*
C18 0.75602 (15) 0.64543 (15) 0.37601 (15) 0.0630 (4)
H18 0.8486 0.6392 0.3651 0.076*
C19 0.66678 (13) 0.63960 (13) 0.27891 (13) 0.0510 (3)
H19 0.6999 0.6286 0.2027 0.061*
C20 0.19496 (16) 0.46380 (14) 0.19745 (15) 0.0632 (4)
H20A 0.2215 0.4659 0.2791 0.095*
H20B 0.2257 0.4003 0.1447 0.095*
H20C 0.0876 0.4347 0.1847 0.095*
C21 0.22210 (16) 0.60584 (16) 0.04407 (13) 0.0628 (4)
H21A 0.1147 0.5793 0.0374 0.094*
H21B 0.2470 0.5409 −0.0124 0.094*
H21C 0.2718 0.6962 0.0275 0.094*
C22 0.60341 (13) 1.03354 (12) 0.26859 (11) 0.0474 (3)
C23 0.70016 (15) 1.02965 (15) 0.35611 (12) 0.0587 (3)
H23 0.6878 0.9455 0.3737 0.070*
C24 0.81482 (18) 1.1497 (2) 0.41752 (16) 0.0796 (5)
H24 0.8786 1.1460 0.4766 0.095*
C25 0.8349 (2) 1.27372 (19) 0.3918 (2) 0.0935 (6)
H25 0.9122 1.3543 0.4334 0.112*
C26 0.7412 (2) 1.27938 (16) 0.3048 (2) 0.0903 (6)
H26 0.7558 1.3639 0.2870 0.108*
C27 0.62430 (18) 1.15950 (14) 0.24296 (15) 0.0664 (4)
H27 0.5603 1.1640 0.1845 0.080*
N1 0.52148 (10) 0.79071 (9) 0.15014 (8) 0.0386 (2)
N2 0.67000 (12) 0.92692 (11) 0.02715 (9) 0.0469 (2)
O1 0.62406 (11) 0.69939 (9) −0.00520 (8) 0.0565 (2)
O2 0.11166 (10) 0.68212 (11) 0.29595 (10) 0.0686 (3)
H2A 0.6752 (17) 0.9942 (16) 0.0847 (14) 0.061 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C2 0.0345 (5) 0.0362 (5) 0.0476 (6) 0.0130 (4) 0.0116 (4) 0.0097 (4)
C3 0.0332 (5) 0.0434 (6) 0.0576 (7) 0.0109 (4) 0.0071 (5) 0.0091 (5)
C4 0.0336 (5) 0.0558 (7) 0.0562 (7) 0.0185 (5) 0.0092 (5) 0.0132 (5)
C5 0.0407 (6) 0.0486 (6) 0.0588 (7) 0.0219 (5) 0.0163 (5) 0.0078 (5)
C6 0.0381 (5) 0.0406 (5) 0.0475 (6) 0.0186 (4) 0.0088 (4) 0.0081 (4)
C7 0.0360 (5) 0.0403 (5) 0.0425 (5) 0.0149 (4) 0.0079 (4) 0.0090 (4)
C8 0.0395 (5) 0.0421 (6) 0.0443 (6) 0.0190 (5) 0.0088 (4) 0.0145 (4)
C9 0.0519 (7) 0.0447 (6) 0.0498 (6) 0.0154 (5) 0.0129 (5) 0.0084 (5)
C10 0.0709 (9) 0.0624 (8) 0.0555 (8) 0.0271 (7) 0.0264 (7) 0.0123 (6)
C11 0.0537 (8) 0.0642 (9) 0.0750 (9) 0.0229 (7) 0.0297 (7) 0.0265 (7)
C12 0.0436 (7) 0.0491 (7) 0.0772 (9) 0.0112 (5) 0.0121 (6) 0.0187 (6)
C13 0.0466 (6) 0.0443 (6) 0.0531 (7) 0.0171 (5) 0.0063 (5) 0.0099 (5)
C14 0.0374 (5) 0.0363 (5) 0.0525 (6) 0.0135 (4) 0.0101 (5) 0.0134 (4)
C15 0.0532 (7) 0.0634 (8) 0.0559 (7) 0.0281 (6) 0.0154 (6) 0.0192 (6)
C16 0.0810 (10) 0.0730 (10) 0.0530 (8) 0.0312 (8) 0.0074 (7) 0.0168 (7)
C17 0.0655 (9) 0.0618 (9) 0.0740 (10) 0.0196 (7) −0.0122 (7) 0.0197 (7)
C18 0.0425 (7) 0.0569 (8) 0.0917 (11) 0.0185 (6) 0.0011 (7) 0.0237 (7)
C19 0.0410 (6) 0.0506 (7) 0.0660 (8) 0.0195 (5) 0.0136 (5) 0.0199 (6)
C20 0.0460 (7) 0.0478 (7) 0.0863 (10) 0.0084 (6) 0.0184 (7) 0.0154 (7)
C21 0.0466 (7) 0.0664 (9) 0.0634 (8) 0.0150 (6) −0.0062 (6) 0.0037 (7)
C22 0.0423 (6) 0.0429 (6) 0.0523 (6) 0.0161 (5) 0.0160 (5) 0.0012 (5)
C23 0.0482 (7) 0.0603 (8) 0.0567 (7) 0.0163 (6) 0.0078 (6) 0.0002 (6)
C24 0.0541 (8) 0.0866 (10) 0.0687 (10) 0.0134 (8) 0.0045 (7) −0.0170 (8)
C25 0.0692 (11) 0.0643 (9) 0.1014 (14) 0.0008 (8) 0.0184 (10) −0.0282 (8)
C26 0.0941 (13) 0.0401 (8) 0.1177 (16) 0.0155 (8) 0.0353 (12) −0.0011 (8)
C27 0.0710 (9) 0.0430 (7) 0.0821 (10) 0.0227 (6) 0.0206 (8) 0.0062 (6)
N1 0.0362 (4) 0.0361 (4) 0.0446 (5) 0.0151 (4) 0.0113 (4) 0.0094 (4)
N2 0.0549 (6) 0.0398 (5) 0.0472 (5) 0.0194 (4) 0.0190 (4) 0.0108 (4)
O1 0.0640 (6) 0.0426 (5) 0.0640 (5) 0.0224 (4) 0.0311 (4) 0.0117 (4)
O2 0.0388 (5) 0.0738 (7) 0.0890 (7) 0.0197 (4) 0.0237 (5) 0.0137 (5)

Geometric parameters (Å, °)

C2—N1 1.4802 (13) C14—C15 1.3816 (17)
C2—C14 1.5193 (16) C14—C19 1.3917 (16)
C2—C3 1.5395 (15) C15—C16 1.389 (2)
C2—H2 0.9800 C15—H15 0.9300
C3—C4 1.5132 (17) C16—C17 1.368 (2)
C3—C20 1.5256 (18) C16—H16 0.9300
C3—C21 1.5384 (19) C17—C18 1.370 (2)
C4—O2 1.2075 (14) C17—H17 0.9300
C4—C5 1.5001 (17) C18—C19 1.379 (2)
C5—C6 1.5339 (15) C18—H18 0.9300
C5—H5A 0.9700 C19—H19 0.9300
C5—H5B 0.9700 C20—H20A 0.9600
C6—N1 1.4786 (13) C20—H20B 0.9600
C6—C22 1.5201 (16) C20—H20C 0.9600
C6—H6 0.9800 C21—H21A 0.9600
C7—O1 1.2159 (13) C21—H21B 0.9600
C7—N2 1.3715 (15) C21—H21C 0.9600
C7—N1 1.3779 (13) C22—C27 1.3839 (19)
C8—C9 1.3783 (16) C22—C23 1.385 (2)
C8—C13 1.3856 (16) C23—C24 1.381 (2)
C8—N2 1.4115 (14) C23—H23 0.9300
C9—C10 1.3856 (17) C24—C25 1.366 (3)
C9—H9 0.9300 C24—H24 0.9300
C10—C11 1.368 (2) C25—C26 1.369 (3)
C10—H10 0.9300 C25—H25 0.9300
C11—C12 1.365 (2) C26—C27 1.392 (2)
C11—H11 0.9300 C26—H26 0.9300
C12—C13 1.3765 (18) C27—H27 0.9300
C12—H12 0.9300 N2—H2A 0.864 (16)
C13—H13 0.9300
N1—C2—C14 109.54 (9) C14—C15—C16 120.74 (13)
N1—C2—C3 110.26 (9) C14—C15—H15 119.6
C14—C2—C3 119.32 (9) C16—C15—H15 119.6
N1—C2—H2 105.6 C17—C16—C15 120.48 (14)
C14—C2—H2 105.6 C17—C16—H16 119.8
C3—C2—H2 105.6 C15—C16—H16 119.8
C4—C3—C20 111.63 (10) C16—C17—C18 119.82 (14)
C4—C3—C21 106.12 (11) C16—C17—H17 120.1
C20—C3—C21 109.08 (11) C18—C17—H17 120.1
C4—C3—C2 110.60 (9) C17—C18—C19 119.84 (13)
C20—C3—C2 111.34 (10) C17—C18—H18 120.1
C21—C3—C2 107.87 (10) C19—C18—H18 120.1
O2—C4—C5 120.53 (11) C18—C19—C14 121.52 (13)
O2—C4—C3 122.26 (11) C18—C19—H19 119.2
C5—C4—C3 117.19 (9) C14—C19—H19 119.2
C4—C5—C6 117.78 (10) C3—C20—H20A 109.5
C4—C5—H5A 107.9 C3—C20—H20B 109.5
C6—C5—H5A 107.9 H20A—C20—H20B 109.5
C4—C5—H5B 107.9 C3—C20—H20C 109.5
C6—C5—H5B 107.9 H20A—C20—H20C 109.5
H5A—C5—H5B 107.2 H20B—C20—H20C 109.5
N1—C6—C22 113.61 (9) C3—C21—H21A 109.5
N1—C6—C5 112.05 (9) C3—C21—H21B 109.5
C22—C6—C5 108.49 (9) H21A—C21—H21B 109.5
N1—C6—H6 107.5 C3—C21—H21C 109.5
C22—C6—H6 107.5 H21A—C21—H21C 109.5
C5—C6—H6 107.5 H21B—C21—H21C 109.5
O1—C7—N2 122.47 (10) C27—C22—C23 118.93 (13)
O1—C7—N1 122.90 (10) C27—C22—C6 119.72 (13)
N2—C7—N1 114.63 (9) C23—C22—C6 121.35 (12)
C9—C8—C13 119.39 (10) C24—C23—C22 120.53 (16)
C9—C8—N2 123.48 (10) C24—C23—H23 119.7
C13—C8—N2 117.08 (10) C22—C23—H23 119.7
C8—C9—C10 119.03 (12) C25—C24—C23 120.28 (19)
C8—C9—H9 120.5 C25—C24—H24 119.9
C10—C9—H9 120.5 C23—C24—H24 119.9
C11—C10—C9 121.42 (13) C24—C25—C26 119.99 (16)
C11—C10—H10 119.3 C24—C25—H25 120.0
C9—C10—H10 119.3 C26—C25—H25 120.0
C12—C11—C10 119.36 (12) C25—C26—C27 120.40 (18)
C12—C11—H11 120.3 C25—C26—H26 119.8
C10—C11—H11 120.3 C27—C26—H26 119.8
C11—C12—C13 120.31 (12) C22—C27—C26 119.87 (18)
C11—C12—H12 119.8 C22—C27—H27 120.1
C13—C12—H12 119.8 C26—C27—H27 120.1
C12—C13—C8 120.47 (12) C7—N1—C6 121.29 (9)
C12—C13—H13 119.8 C7—N1—C2 116.56 (8)
C8—C13—H13 119.8 C6—N1—C2 120.31 (8)
C15—C14—C19 117.59 (12) C7—N2—C8 125.58 (9)
C15—C14—C2 126.22 (10) C7—N2—H2A 115.1 (10)
C19—C14—C2 116.09 (10) C8—N2—H2A 113.3 (10)
N1—C2—C3—C4 −57.33 (13) C16—C17—C18—C19 0.2 (2)
C14—C2—C3—C4 70.71 (13) C17—C18—C19—C14 0.6 (2)
N1—C2—C3—C20 177.95 (10) C15—C14—C19—C18 −1.17 (18)
C14—C2—C3—C20 −54.01 (14) C2—C14—C19—C18 175.36 (11)
N1—C2—C3—C21 58.31 (12) N1—C6—C22—C27 129.49 (12)
C14—C2—C3—C21 −173.65 (10) C5—C6—C22—C27 −105.18 (13)
C20—C3—C4—O2 −29.31 (18) N1—C6—C22—C23 −51.43 (14)
C21—C3—C4—O2 89.41 (15) C5—C6—C22—C23 73.89 (13)
C2—C3—C4—O2 −153.86 (13) C27—C22—C23—C24 0.55 (19)
C20—C3—C4—C5 149.20 (12) C6—C22—C23—C24 −178.53 (12)
C21—C3—C4—C5 −92.08 (13) C22—C23—C24—C25 −0.6 (2)
C2—C3—C4—C5 24.65 (15) C23—C24—C25—C26 0.0 (3)
O2—C4—C5—C6 −158.95 (12) C24—C25—C26—C27 0.7 (3)
C3—C4—C5—C6 22.51 (17) C23—C22—C27—C26 0.1 (2)
C4—C5—C6—N1 −36.49 (15) C6—C22—C27—C26 179.15 (13)
C4—C5—C6—C22 −162.73 (11) C25—C26—C27—C22 −0.7 (2)
C13—C8—C9—C10 0.85 (19) O1—C7—N1—C6 −166.29 (11)
N2—C8—C9—C10 178.19 (12) N2—C7—N1—C6 13.92 (15)
C8—C9—C10—C11 −1.0 (2) O1—C7—N1—C2 −1.72 (16)
C9—C10—C11—C12 0.1 (2) N2—C7—N1—C2 178.49 (10)
C10—C11—C12—C13 0.8 (2) C22—C6—N1—C7 −71.04 (14)
C11—C12—C13—C8 −0.9 (2) C5—C6—N1—C7 165.56 (10)
C9—C8—C13—C12 0.09 (19) C22—C6—N1—C2 124.96 (11)
N2—C8—C13—C12 −177.42 (12) C5—C6—N1—C2 1.56 (14)
N1—C2—C14—C15 100.75 (13) C14—C2—N1—C7 107.12 (10)
C3—C2—C14—C15 −27.62 (17) C3—C2—N1—C7 −119.65 (10)
N1—C2—C14—C19 −75.44 (12) C14—C2—N1—C6 −88.14 (11)
C3—C2—C14—C19 156.19 (10) C3—C2—N1—C6 45.08 (13)
C19—C14—C15—C16 1.00 (19) O1—C7—N2—C8 −10.60 (19)
C2—C14—C15—C16 −175.14 (12) N1—C7—N2—C8 169.19 (11)
C14—C15—C16—C17 −0.2 (2) C9—C8—N2—C7 39.03 (18)
C15—C16—C17—C18 −0.4 (2) C13—C8—N2—C7 −143.58 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C18—H18···O2i 0.93 2.56 3.4488 (17) 161
C20—H20B···O1ii 0.96 2.52 3.4520 (17) 162

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5059).

References

  1. Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  5. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  6. Mobio, I. G., Soldatenkov, A. T., Federov, V. O., Ageev, E. A., Sargeeva, N. D., Lin, S., Stashenko, E. E., Prostakov, N. S. & Andreeva, E. I. (1989). Khim. Farm. Zh.23, 421–427.
  7. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  8. Palani, A., Shapiro, S., Josien, H., Bara, T., Clader, J. W., Greenlee, W. J., Cox, K., Strizki, J. M., Bahige, M. & Baroudy, B. M. (2002). J. Med. Chem. 45, 3143–3160. [DOI] [PubMed]
  9. Sheldrick, G. M. (2001). SADABS University of Göttingen, Germany.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041579/bt5059sup1.cif

e-65-o2808-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041579/bt5059Isup2.hkl

e-65-o2808-Isup2.hkl (305.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES