Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 23;65(Pt 11):o2799. doi: 10.1107/S1600536809042135

4-(1,3-Thia­zolidin-2-yl)phenol

Xue-Mei Yang a,*
PMCID: PMC2971304  PMID: 21578391

Abstract

In the title compound, C9H11NOS, the thia­zolidinyl ring is almost perpendicular to the phenyl ring with N—C—C—C torsion angles of 71.7 (2) and 107.1 (2)°. In the crystal, mol­ecules are connected via N—H⋯O and O—H⋯N hydrogen bonds, forming layers.

Related literature

For the cyclization of 2-amino-ethanthiol Schiff bases, see: Al-Sayyab et al. (1968); Stacy & Strong (1967); Thompson & Busch (1964).graphic file with name e-65-o2799-scheme1.jpg

Experimental

Crystal data

  • C9H11NOS

  • M r = 181.25

  • Orthorhombic, Inline graphic

  • a = 12.3638 (6) Å

  • b = 8.9683 (5) Å

  • c = 15.8249 (8) Å

  • V = 1754.7 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 173 K

  • 0.47 × 0.45 × 0.16 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.865, T max = 0.951

  • 9635 measured reflections

  • 1919 independent reflections

  • 1615 reflections with I > 2σ(I)

  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.105

  • S = 1.07

  • 1919 reflections

  • 115 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042135/im2144sup1.cif

e-65-o2799-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042135/im2144Isup2.hkl

e-65-o2799-Isup2.hkl (94.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.85 (2) 2.28 (2) 3.073 (2) 156 (2)
O1—H1A⋯N1ii 0.82 (2) 1.91 (2) 2.713 (2) 164 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The author thanks the National Science Foundation of China for financial support.

supplementary crystallographic information

Comment

In our search for a new synthetic route to imipenem, a carbapenem antibiotic, we got a thiazolidine compound from a reaction of p-hydroxybenzaldehyde with 2-amino-ethanthiol, despite of our initial plan to prepare a Schiff base compound. This is consistent with reports that the 2-amino-ethanthiol Schiff base compounds can undergo intromolecular cyclization to form thiazolidines (Al-Sayyab et al., 1968; Thompson & Busch, 1964; Stacy & Strong, 1967).

In the molecular sturcture (Fig. 1), as it is expected the thiazolidinyl ring is not planar, showing a N(1)—C(1)—C(2)—S(1) torsion angle of -33.7 (2)°. Furthermore, the thiazolidinyl ring is almost perpendicular to the phenyl ring, with torsion angles N(1)—C(3)—C(4)—C(9) of 71.7 (2)° and N(1)—C(3)—C(4)—C(5) of 107.1 (2)°. In Fig. 1 the chiral center C(3) adopts R configuation. Nevertheless, due to space group symmetry a reacemate has been formed and both enantiomers are present in the crystal structure.

In the crystal structure two adjacent molecules are connected via N—H···O and O—H···N hydrogen bonds to form centrosymmetric molecule pairs. These pairs are further linked by additional N—H···O and O—H···N intermolecular hydrogen bonds leading to the observed layered supramolecular (Fig. 2).

Experimental

2-Amino-ethanthiol 0.77 g (0.001 mol) was mixed with p-hydroxybenzaldehyde 1.22 g (0.001 mol) in ethanol (10 ml) and the mixture refluxed for 2 h. The solvent was evaporated to dryness under reduced pressure and the remaining residue recrystallized from ethanol to afford 1.5 g of yellow block crystals. (Yield 85%). Crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanolic solution. Spectroscopic analysis: 1H NMR (DMSO-d6, δ, p.p.m.): 2.75–2.90 (m, 2H), 2.85–3.05 (m, 2H), 3.50 (m, 1H), 5.35 (s, 1H), 6.70 (d, 2H), 7.25 (d, 2H), 9.35 (s, 1H); elemental analysis, calculated for C9H11NOS: C, 59.67; H, 6.08; N, 7.73; found: C, 59.33; H, 5.93; N 7.41%.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso=1.2Ueq (C) for aromatic 1.00 Å, Uiso = 1.2Ueq (C) for CH, 0.99 Å, Uiso = 1.2Ueq (C) for CH2 and 0.88 Å, Uiso = 1.5Ueq (N) for the NH atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure with thermal ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal lattice along c axis. H atoms not involved in hydrogen bonds have been omitted for clarity.

Crystal data

C9H11NOS F(000) = 768
Mr = 181.25 Dx = 1.372 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 4931 reflections
a = 12.3638 (6) Å θ = 2.6–27.0°
b = 8.9683 (5) Å µ = 0.32 mm1
c = 15.8249 (8) Å T = 173 K
V = 1754.7 (2) Å3 Block, colorless
Z = 8 0.47 × 0.45 × 0.16 mm

Data collection

Bruker SMART 1000 CCD diffractometer 1919 independent reflections
Radiation source: fine-focus sealed tube 1615 reflections with I > 2σ(I)
graphite Rint = 0.022
ω scans θmax = 27.0°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −15→15
Tmin = 0.865, Tmax = 0.951 k = −11→8
9635 measured reflections l = −20→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.7197P] where P = (Fo2 + 2Fc2)/3
1919 reflections (Δ/σ)max < 0.001
115 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.47979 (3) 0.18010 (5) 0.70817 (2) 0.02679 (16)
C1 0.27121 (14) 0.1895 (2) 0.74816 (11) 0.0355 (4)
H1B 0.2501 0.2924 0.7327 0.043*
H1C 0.2046 0.1288 0.7530 0.043*
C2 0.34426 (15) 0.1245 (3) 0.67981 (12) 0.0417 (5)
H2A 0.3245 0.1646 0.6236 0.050*
H2B 0.3381 0.0145 0.6783 0.050*
C3 0.43704 (12) 0.24880 (18) 0.81446 (9) 0.0217 (3)
H3 0.4323 0.3600 0.8119 0.026*
C4 0.51646 (12) 0.20804 (17) 0.88292 (9) 0.0209 (3)
C5 0.55139 (13) 0.31669 (17) 0.93977 (10) 0.0235 (3)
H5 0.5255 0.4159 0.9342 0.028*
C6 0.62307 (13) 0.28297 (18) 1.00422 (10) 0.0248 (4)
H6 0.6461 0.3587 1.0421 0.030*
C7 0.66115 (13) 0.13804 (18) 1.01328 (9) 0.0227 (3)
C8 0.62657 (13) 0.02820 (18) 0.95705 (10) 0.0239 (3)
H8 0.6521 −0.0712 0.9630 0.029*
C9 0.55519 (12) 0.06344 (18) 0.89265 (10) 0.0229 (3)
H9 0.5323 −0.0122 0.8546 0.027*
N1 0.32818 (11) 0.19058 (16) 0.82922 (9) 0.0249 (3)
H1 0.3303 (16) 0.103 (3) 0.8493 (12) 0.030*
O1 0.73103 (10) 0.09658 (14) 1.07553 (7) 0.0302 (3)
H1A 0.7567 (19) 0.172 (3) 1.0971 (13) 0.036*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0253 (2) 0.0357 (3) 0.0194 (2) 0.00118 (16) 0.00148 (14) −0.00048 (16)
C1 0.0239 (9) 0.0512 (12) 0.0313 (9) 0.0019 (8) −0.0045 (7) −0.0055 (8)
C2 0.0308 (9) 0.0616 (14) 0.0326 (9) −0.0052 (9) −0.0028 (8) −0.0139 (9)
C3 0.0218 (7) 0.0221 (8) 0.0213 (7) 0.0008 (6) 0.0012 (6) −0.0004 (6)
C4 0.0213 (7) 0.0232 (8) 0.0182 (7) −0.0019 (6) 0.0023 (6) 0.0005 (6)
C5 0.0265 (8) 0.0188 (7) 0.0252 (8) −0.0003 (6) 0.0013 (6) −0.0004 (6)
C6 0.0283 (8) 0.0229 (8) 0.0233 (7) −0.0042 (6) −0.0009 (6) −0.0046 (6)
C7 0.0214 (7) 0.0271 (8) 0.0197 (7) −0.0034 (6) 0.0012 (6) 0.0013 (6)
C8 0.0259 (8) 0.0204 (7) 0.0254 (8) 0.0011 (6) 0.0009 (6) −0.0003 (6)
C9 0.0236 (7) 0.0233 (8) 0.0218 (7) −0.0033 (6) 0.0008 (6) −0.0027 (6)
N1 0.0219 (7) 0.0266 (7) 0.0262 (7) 0.0003 (5) 0.0013 (5) 0.0001 (6)
O1 0.0337 (7) 0.0275 (6) 0.0293 (6) −0.0026 (5) −0.0117 (5) −0.0012 (5)

Geometric parameters (Å, °)

S1—C2 1.8049 (19) C4—C5 1.395 (2)
S1—C3 1.8676 (15) C5—C6 1.385 (2)
C1—N1 1.463 (2) C5—H5 0.9500
C1—C2 1.525 (3) C6—C7 1.390 (2)
C1—H1B 0.9900 C6—H6 0.9500
C1—H1C 0.9900 C7—O1 1.3620 (19)
C2—H2A 0.9900 C7—C8 1.395 (2)
C2—H2B 0.9900 C8—C9 1.385 (2)
C3—N1 1.462 (2) C8—H8 0.9500
C3—C4 1.507 (2) C9—H9 0.9500
C3—H3 1.0000 N1—H1 0.85 (2)
C4—C9 1.391 (2) O1—H1A 0.82 (2)
C2—S1—C3 93.00 (8) C5—C4—C3 119.73 (14)
N1—C1—C2 109.83 (14) C6—C5—C4 121.38 (15)
N1—C1—H1B 109.7 C6—C5—H5 119.3
C2—C1—H1B 109.7 C4—C5—H5 119.3
N1—C1—H1C 109.7 C5—C6—C7 119.81 (14)
C2—C1—H1C 109.7 C5—C6—H6 120.1
H1B—C1—H1C 108.2 C7—C6—H6 120.1
C1—C2—S1 105.55 (12) O1—C7—C6 123.01 (14)
C1—C2—H2A 110.6 O1—C7—C8 117.59 (14)
S1—C2—H2A 110.6 C6—C7—C8 119.40 (14)
C1—C2—H2B 110.6 C9—C8—C7 120.25 (15)
S1—C2—H2B 110.6 C9—C8—H8 119.9
H2A—C2—H2B 108.8 C7—C8—H8 119.9
N1—C3—C4 113.46 (13) C8—C9—C4 120.91 (14)
N1—C3—S1 106.65 (10) C8—C9—H9 119.5
C4—C3—S1 112.52 (11) C4—C9—H9 119.5
N1—C3—H3 108.0 C3—N1—C1 107.78 (13)
C4—C3—H3 108.0 C3—N1—H1 111.2 (14)
S1—C3—H3 108.0 C1—N1—H1 109.8 (13)
C9—C4—C5 118.25 (14) C7—O1—H1A 108.7 (15)
C9—C4—C3 122.01 (14)
N1—C1—C2—S1 −33.3 (2) C5—C6—C7—O1 −179.46 (15)
C3—S1—C2—C1 10.32 (15) C5—C6—C7—C8 0.1 (2)
C2—S1—C3—N1 14.01 (13) O1—C7—C8—C9 179.74 (14)
C2—S1—C3—C4 139.03 (13) C6—C7—C8—C9 0.2 (2)
N1—C3—C4—C9 71.65 (19) C7—C8—C9—C4 −0.2 (2)
S1—C3—C4—C9 −49.55 (18) C5—C4—C9—C8 0.0 (2)
N1—C3—C4—C5 −107.07 (17) C3—C4—C9—C8 −178.77 (14)
S1—C3—C4—C5 131.73 (13) C4—C3—N1—C1 −159.92 (14)
C9—C4—C5—C6 0.3 (2) S1—C3—N1—C1 −35.47 (15)
C3—C4—C5—C6 179.05 (14) C2—C1—N1—C3 45.7 (2)
C4—C5—C6—C7 −0.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.85 (2) 2.28 (2) 3.073 (2) 156 (2)
O1—H1A···N1ii 0.82 (2) 1.91 (2) 2.713 (2) 164 (2)

Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1/2, −y+1/2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2144).

References

  1. Al-Sayyab, A. F., Lawson, A. & Stevens, J. O. (1968). J. Chem. Soc. C, pp. 411–415. [DOI] [PubMed]
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Stacy, G. W. & Strong, P. L. (1967). J. Org. Chem.32, 1487–1491.
  7. Thompson, M. C. & Busch, D. H. (1964). J. Am. Chem. Soc.86, 213–217.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809042135/im2144sup1.cif

e-65-o2799-sup1.cif (15.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042135/im2144Isup2.hkl

e-65-o2799-Isup2.hkl (94.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES