Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 23;65(Pt 11):o2821. doi: 10.1107/S1600536809042469

Acetohydrazide

Bao-Han Zhou a,*
PMCID: PMC2971306  PMID: 21578412

Abstract

In the title compound, C2H6N2O, a hydrazine derivative, the asymmetric unit contains two mol­ecules with similar geom­etries. The crystal structure is stabilized by inter­molecular N—H⋯O hydrogen bonds.

Related literature

For general background to hydrazine and its derivatives, see: Gagnon et al. (1951); Hermanson (1996); Lumley-Woodyear et al. (1996); Raddatz et al. (2002).graphic file with name e-65-o2821-scheme1.jpg

Experimental

Crystal data

  • C2H6N2O

  • M r = 74.09

  • Monoclinic, Inline graphic

  • a = 9.5636 (7) Å

  • b = 8.7642 (6) Å

  • c = 10.4282 (7) Å

  • β = 110.886 (1)°

  • V = 816.63 (10) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.20 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART 4K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.971, T max = 0.990

  • 4189 measured reflections

  • 1762 independent reflections

  • 1604 reflections with I > 2σ(I)

  • R int = 0.097

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.151

  • S = 1.15

  • 1762 reflections

  • 112 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042469/rk2154sup1.cif

e-65-o2821-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042469/rk2154Isup2.hkl

e-65-o2821-Isup2.hkl (86.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1D⋯O2 0.863 (9) 2.052 (10) 2.8971 (17) 166.0 (19)
N4—H4B⋯N2i 0.865 (9) 2.342 (12) 3.160 (2) 157.9 (19)
N4—H4A⋯O1ii 0.868 (9) 2.216 (11) 3.061 (2) 164.2 (19)
N3—H3D⋯O1iii 0.857 (9) 2.018 (10) 2.8599 (17) 167.1 (19)
N2—H2B⋯O2iv 0.867 (10) 2.255 (13) 3.065 (2) 155 (2)
N2—H2A⋯O2v 0.863 (10) 2.400 (15) 3.152 (2) 145.7 (19)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

The author thanks Professor An–Xin Wu (Central China Normal University, Wuhan, China) for helpful discussions, and Dr Xiang–Gao Meng (Central China Normal University, Wuhan, China) for the X–ray data collection.

supplementary crystallographic information

Comment

Hydrazide and its derivatives were used as versatile synthons. For example, substituted pyrazolones can be prepared by treatment of corresponding hydrazide with strong alkalies (Gagnon et al., 1951). What's more, hydrazides are reactive functional groups routinely used in protein and carbohydrate chemistry (Raddatz et al., 2002; Hermanson, 1996). It is reported that oligonucleotides can be modified with hydrazide (Lumley-Woodyear et al., 1996). Acethydrazide is an important organic intermediate mainly for synthesis of nifuratrone in the pharmaceutical industry. Here we report the structure of the title compound (Fig. 1). Asymmetric unit contains two molecules with the same geometry. The crystal packing is stabilized by intermolecular classical N—H···O hydrogen bonds (Table 1).

Experimental

Acethydrazide, prepared from ethyl acetate and 85% hydrazine was synthesized in 40% isolated yield. Crystals of acethydrazide suitable for X–ray data collection were obtained by cooled the reaction solution from 353 K to 293 K for overnight.

Refinement

All H atoms of methyl groups were positioned geometrically with C—H = 0.96Å and Uiso(H) = 1.5Uiso(C). H atoms of amino–groups were found from the difference maps and refined with Uiso(H) = 1.2Uiso(N).

Figures

Fig. 1.

Fig. 1.

View of the asymmetric unit showing the atom–labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Crystal data

C2H6N2O F(000) = 320
Mr = 74.09 Dx = 1.205 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 2153 reflections
a = 9.5636 (7) Å θ = 2.5–28.0°
b = 8.7642 (6) Å µ = 0.10 mm1
c = 10.4282 (7) Å T = 298 K
β = 110.886 (1)° Block, colourless
V = 816.63 (10) Å3 0.20 × 0.15 × 0.10 mm
Z = 8

Data collection

Bruker SMART 4K CCD diffractometer 1762 independent reflections
Radiation source: fine-focus sealed tube 1604 reflections with I > 2σ(I)
graphite Rint = 0.097
φ and ω scans θmax = 27.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −10→12
Tmin = 0.971, Tmax = 0.990 k = −11→9
4189 measured reflections l = −13→10

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.061P)2 + 0.1265P] where P = (Fo2 + 2Fc2)/3
S = 1.15 (Δ/σ)max < 0.001
1762 reflections Δρmax = 0.19 e Å3
112 parameters Δρmin = −0.18 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.17 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.8855 (2) 0.2274 (2) 0.0022 (2) 0.0608 (5)
H1A 0.9481 0.3141 0.0057 0.091*
H1B 0.7835 0.2603 −0.0227 0.091*
H1C 0.8932 0.1562 −0.0649 0.091*
C2 0.93450 (16) 0.15234 (18) 0.13942 (17) 0.0434 (4)
C3 0.4604 (2) 0.0155 (2) 0.1911 (2) 0.0646 (5)
H3A 0.4598 −0.0526 0.1188 0.097*
H3B 0.3836 −0.0142 0.2254 0.097*
H3C 0.5561 0.0111 0.2640 0.097*
C4 0.43160 (16) 0.17510 (19) 0.13651 (16) 0.0443 (4)
N1 0.83138 (14) 0.13848 (17) 0.19703 (16) 0.0501 (4)
H1D 0.7430 (14) 0.176 (2) 0.1567 (19) 0.060*
N2 0.86280 (16) 0.0740 (2) 0.32791 (17) 0.0575 (5)
H2A 0.9337 (19) 0.128 (2) 0.3837 (19) 0.069*
H2B 0.893 (2) −0.0180 (14) 0.321 (2) 0.069*
N3 0.30038 (14) 0.23464 (17) 0.12609 (15) 0.0490 (4)
H3D 0.2363 (18) 0.182 (2) 0.148 (2) 0.059*
N4 0.25433 (16) 0.38388 (19) 0.07867 (18) 0.0550 (4)
H4B 0.257 (2) 0.398 (2) −0.0025 (13) 0.066*
H4A 0.3202 (19) 0.443 (2) 0.1362 (18) 0.066*
O1 1.06315 (12) 0.10511 (15) 0.19701 (13) 0.0578 (4)
O2 0.52482 (11) 0.24591 (14) 0.10257 (13) 0.0560 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0487 (9) 0.0676 (12) 0.0619 (11) −0.0009 (8) 0.0147 (8) 0.0087 (9)
C2 0.0331 (7) 0.0403 (8) 0.0566 (9) −0.0026 (6) 0.0158 (6) −0.0024 (7)
C3 0.0511 (10) 0.0578 (11) 0.0859 (14) −0.0015 (9) 0.0256 (10) 0.0131 (10)
C4 0.0338 (7) 0.0516 (9) 0.0478 (8) −0.0028 (6) 0.0149 (6) −0.0019 (7)
N1 0.0330 (7) 0.0591 (9) 0.0590 (9) 0.0061 (6) 0.0174 (6) 0.0051 (7)
N2 0.0446 (8) 0.0717 (11) 0.0612 (10) 0.0017 (7) 0.0252 (7) 0.0019 (8)
N3 0.0350 (7) 0.0567 (9) 0.0605 (9) −0.0027 (6) 0.0234 (6) 0.0018 (7)
N4 0.0385 (7) 0.0613 (10) 0.0690 (10) 0.0052 (6) 0.0237 (7) 0.0025 (8)
O1 0.0343 (6) 0.0723 (9) 0.0706 (8) 0.0085 (5) 0.0233 (6) 0.0194 (6)
O2 0.0369 (6) 0.0574 (7) 0.0806 (9) 0.0047 (5) 0.0292 (6) 0.0124 (6)

Geometric parameters (Å, °)

C1—C2 1.491 (2) C4—O2 1.2370 (18)
C1—H1A 0.9600 C4—N3 1.327 (2)
C1—H1B 0.9600 N1—N2 1.407 (2)
C1—H1C 0.9600 N1—H1D 0.863 (9)
C2—O1 1.2324 (18) N2—H2A 0.863 (10)
C2—N1 1.331 (2) N2—H2B 0.867 (10)
C3—C4 1.498 (3) N3—N4 1.412 (2)
C3—H3A 0.9600 N3—H3D 0.857 (9)
C3—H3B 0.9600 N4—H4B 0.865 (9)
C3—H3C 0.9600 N4—H4A 0.868 (9)
C2—C1—H1A 109.5 O2—C4—N3 122.42 (16)
C2—C1—H1B 109.5 O2—C4—C3 121.57 (14)
H1A—C1—H1B 109.5 N3—C4—C3 116.01 (14)
C2—C1—H1C 109.5 C2—N1—N2 122.56 (13)
H1A—C1—H1C 109.5 C2—N1—H1D 120.0 (14)
H1B—C1—H1C 109.5 N2—N1—H1D 117.3 (14)
O1—C2—N1 121.40 (16) N1—N2—H2A 106.0 (15)
O1—C2—C1 122.26 (15) N1—N2—H2B 104.9 (16)
N1—C2—C1 116.34 (14) H2A—N2—H2B 111 (2)
C4—C3—H3A 109.5 C4—N3—N4 124.09 (14)
C4—C3—H3B 109.5 C4—N3—H3D 120.8 (14)
H3A—C3—H3B 109.5 N4—N3—H3D 115.1 (14)
C4—C3—H3C 109.5 N3—N4—H4B 110.9 (14)
H3A—C3—H3C 109.5 N3—N4—H4A 104.5 (14)
H3B—C3—H3C 109.5 H4B—N4—H4A 109 (2)
O1—C2—N1—N2 2.0 (3) O2—C4—N3—N4 −1.3 (3)
C1—C2—N1—N2 −178.17 (16) C3—C4—N3—N4 179.13 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1D···O2 0.86 (1) 2.05 (1) 2.8971 (17) 166 (2)
N4—H4B···N2i 0.87 (1) 2.34 (1) 3.160 (2) 158 (2)
N4—H4A···O1ii 0.87 (1) 2.22 (1) 3.061 (2) 164 (2)
N3—H3D···O1iii 0.86 (1) 2.02 (1) 2.8599 (17) 167 (2)
N2—H2B···O2iv 0.87 (1) 2.26 (1) 3.065 (2) 155 (2)
N2—H2A···O2v 0.86 (1) 2.40 (2) 3.152 (2) 146 (2)

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+3/2, y+1/2, −z+1/2; (iii) x−1, y, z; (iv) −x+3/2, y−1/2, −z+1/2; (v) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2154).

References

  1. Bruker (2001). SMART, SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Gagnon, P. E., Nolin, B. & Jones, R. N. (1951). Can. J. Chem.29, 843–847.
  3. Hermanson, G. T. (1996). Bioconjugate Techniques San Diego: Academic Press.
  4. Lumley-Woodyear, T. D., Campbell, C. N. & Heller, A. (1996). J. Am. Chem. Soc 118, 5504–5505.
  5. Raddatz, S., Mueller–Ibeler, J., Kluge, J., Wab, L., Burdinski, G., Havens, J. R., Onofrey, T. J., Wang, D. G. & Schweitzer, M. (2002). Nucleic Acid Res.21, 4793–4802. [DOI] [PMC free article] [PubMed]
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809042469/rk2154sup1.cif

e-65-o2821-sup1.cif (14.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809042469/rk2154Isup2.hkl

e-65-o2821-Isup2.hkl (86.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES