Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 3;65(Pt 11):o2638. doi: 10.1107/S1600536809039567

(5E)-5-(4-Hydr­oxy-3-methoxy­benzyl­idene)-2-thioxo-1,3-thia­zolidin-4-one methanol monosolvate

Durre Shahwar a, M Nawaz Tahir b,*, Muhammad Asam Raza a, Maria Saddaf a, Sana Majeed a
PMCID: PMC2971307  PMID: 21578253

Abstract

In the title compound, C11H9NO3S2·CH4O, the dihedral angle between the aromatic rings is 3.57 (16)° and intra­molecular O—H⋯O and C—H⋯S inter­actions occur. In the crystal, the thia­zolidin-4-one mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains. The hydrogen-bond motifs lead to S(5), S(6) and R 3 3(8) ring motifs. There exist C=O⋯π inter­actions between the heterocyclic rings and π–π inter­actions between the heterocyclic and benzene rings at distances of 3.455 (2) and 3.602 (2) Å, respectively. The methanol solvent mol­ecule is disordered over two sets of sites in a 0.542 (9):0.458 (9) ratio.

Related literature

For related structures, see: Barreiro et al. (2007); Shahwar et al. (2009). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-65-o2638-scheme1.jpg

Experimental

Crystal data

  • C11H9NO3S2·CH4O

  • M r = 299.35

  • Orthorhombic, Inline graphic

  • a = 17.731 (2) Å

  • b = 11.7528 (14) Å

  • c = 6.5715 (6) Å

  • V = 1369.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.40 mm−1

  • T = 296 K

  • 0.26 × 0.13 × 0.12 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.942, T max = 0.955

  • 7574 measured reflections

  • 2472 independent reflections

  • 1807 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.070

  • S = 1.02

  • 2472 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.21 e Å−3

  • Absolute structure: Flack (1983), 829 Friedal Pairs

  • Flack parameter: 0.01 (8)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039567/hb5118sup1.cif

e-65-o2638-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039567/hb5118Isup2.hkl

e-65-o2638-Isup2.hkl (119KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2 0.88 (3) 2.21 (3) 2.641 (3) 109 (3)
C2—H2⋯S1 0.93 2.66 3.349 (3) 132
O1—H1⋯O4Ai 0.88 (3) 1.85 (3) 2.622 (7) 145 (3)
N1—H1N⋯O1ii 0.86 2.05 2.899 (3) 169
O4A—H4A⋯O3iii 0.96 (8) 1.79 (8) 2.744 (7) 173 (7)
C12A—H12A⋯O3iv 0.96 2.37 3.150 (5) 139

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic. Cg2 is the centroid of the C1–C6 benzene ring.

Acknowledgments

MAR greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–111212-PS2–200).

supplementary crystallographic information

Comment

We have recently reported the crystal structure of (5Z)-5-(2-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one - methanol (1:0.5) (Shahwar et al., 2009). In continuation of synthesizing various derivatives of rhodanine, the title compound (I, Fig. 1), is being reported.

The crystal structure of (II) 5-(4-Hydroxybenzylidene)-2-thioxo-1,3-thiazolidin-4-one dimethylsulfoxide solvate (Barreiro, et al., 2007) has been published. The title compound (I) differs from (II) due to attachment of methoxy group adjacent to the hydroxy group and due to solvate i.e methanol instead of dimethylsulfoxide.

In the title molecule there exist interamolecular H-bondings of O—H···O, C—H···O and S—H···O types (Table 1, Fig. 1) forming two S(5) and one S(6) ring motif (Bernstein et al., 1995). The role of disordered methanol solvate is to interlink the molecules through O—H···O type of H-bondings forming R33(8) ring motifs (Fig. 2). The molecules are stabilized in the form of infinite one dimensional polymeric chains. There exist π–π interactions between the centroids of heterocyclic ring Cg1 (C8/C9/N1/C10/S1) and the benzene ring Cg2 (C1—C6). The distance between the centroids Cg1 →Cg2 is 3.455 (2) Å due to symmetry (x, y, ∓1 + z) and for Cg2 →Cg1 is 3.602 (2) Å due to symmetry (1/2 - x, ∓1/2 + y, ∓1/2 + z), respectively. The molecules may also be stabilized due C==O···π interaction (Table 1). The methanol molecule is disordered over two sites with an occupancy ratio of 0.542 (9):0.458 (9).

Experimental

Rhodanine (0.266 g, 0.2 mol), 4-hydroxy-3-methoxybenzaldehyde (0.304 g, 0.2 mol) and K2CO3 (0.553 g, 0.4 mol) were dissolved in 10 ml distilled water at room temperature. The stirring was continued for 24 h and reaction was monitored by TLC. The precipitates were formed during neutalization of the reaction mixture with 5% HCl. The precipitates were filtered off and washed with saturated solution of NaCl. The crude material obtained was recrystalized in methanol to affoard dark brown needles of (I).

Refinement

The coordinates of H1 and H4A attached with O1 and O4A respectively, were refined.

The H-atoms were positioned geometrically with O–H = 0.82, N–H = 0.86, C–H = 0.93 and 0.96 Å for aromatic like and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C, N, O), where x = 1.5 for methyl and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius. The dotted line represent the intramolecular H-bond.

Fig. 2.

Fig. 2.

The partial packing of (I), which shows that molecules form polymeric chains.

Crystal data

C11H9NO3S2·CH4O F(000) = 624
Mr = 299.35 Dx = 1.452 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 2472 reflections
a = 17.731 (2) Å θ = 2.9–27.1°
b = 11.7528 (14) Å µ = 0.40 mm1
c = 6.5715 (6) Å T = 296 K
V = 1369.4 (3) Å3 Cut needle, dark brown
Z = 4 0.26 × 0.13 × 0.12 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2472 independent reflections
Radiation source: fine-focus sealed tube 1807 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 7.50 pixels mm-1 θmax = 27.1°, θmin = 2.9°
ω scans h = −22→22
Absorption correction: multi-scan (SADABS; Bruker, 2007) k = −13→15
Tmin = 0.942, Tmax = 0.955 l = −5→8
7574 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0145P)2 + 0.2762P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
2472 reflections Δρmax = 0.17 e Å3
185 parameters Δρmin = −0.21 e Å3
1 restraint Absolute structure: Flack (1983), 829 Friedal Pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.01 (8)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
S1 0.36194 (4) 0.02090 (7) 0.57918 (14) 0.0440 (3)
S2 0.41466 (5) −0.10304 (9) 0.20833 (15) 0.0609 (4)
O1 0.30380 (12) 0.3234 (2) 1.4811 (3) 0.0514 (9)
O2 0.41511 (11) 0.2575 (2) 1.2416 (3) 0.0540 (9)
O3 0.15476 (12) −0.0232 (2) 0.4387 (3) 0.0531 (9)
N1 0.27209 (14) −0.0654 (2) 0.3174 (4) 0.0403 (9)
C1 0.25139 (18) 0.1479 (3) 0.9536 (4) 0.0352 (10)
C2 0.32661 (18) 0.1714 (3) 1.0013 (5) 0.0383 (11)
C3 0.34462 (16) 0.2296 (3) 1.1767 (5) 0.0377 (11)
C4 0.28684 (17) 0.2662 (3) 1.3082 (4) 0.0373 (11)
C5 0.21274 (17) 0.2455 (3) 1.2609 (5) 0.0412 (11)
C6 0.19503 (16) 0.1858 (3) 1.0864 (5) 0.0411 (11)
C7 0.22722 (18) 0.0873 (3) 0.7745 (5) 0.0410 (11)
C8 0.26494 (16) 0.0363 (3) 0.6206 (4) 0.0376 (11)
C9 0.22317 (17) −0.0188 (3) 0.4558 (5) 0.0405 (11)
C10 0.34766 (17) −0.0547 (3) 0.3526 (5) 0.0392 (11)
C11 0.47733 (18) 0.2154 (4) 1.1321 (6) 0.0780 (18)
O4A 0.4252 (3) 0.4356 (7) 0.5888 (10) 0.078 (3) 0.542 (9)
C12A 0.5055 (2) 0.4123 (5) 0.6066 (13) 0.096 (2) 0.542 (9)
O4B 0.4343 (2) 0.3568 (4) 0.6677 (9) 0.059 (3) 0.458 (9)
C12B 0.4913 (2) 0.4044 (4) 0.6141 (9) 0.096 (2) 0.458 (9)
H1 0.3525 (17) 0.334 (3) 1.499 (5) 0.0617*
H1N 0.25564 −0.10029 0.21132 0.0483*
H2 0.36478 0.14769 0.91393 0.0460*
H5 0.17457 0.27152 1.34604 0.0495*
H6 0.14477 0.17047 1.05653 0.0492*
H7 0.17507 0.08219 0.76231 0.0494*
H11A 0.47613 0.13375 1.13217 0.1166*
H11B 0.52316 0.24114 1.19480 0.1166*
H11C 0.47516 0.24266 0.99447 0.1166*
H4A 0.401 (4) 0.449 (6) 0.717 (13) 0.0935* 0.542 (9)
H12C 0.51734 0.39385 0.74524 0.1441* 0.542 (9)
H12A 0.53358 0.47831 0.56588 0.1441* 0.542 (9)
H12B 0.51849 0.34937 0.52036 0.1441* 0.542 (9)
H4B 0.40848 0.40061 0.73547 0.0709* 0.458 (9)
H12D 0.50918 0.45230 0.72210 0.1441* 0.458 (9)
H12E 0.48086 0.44993 0.49615 0.1441* 0.458 (9)
H12F 0.52902 0.34877 0.58154 0.1441* 0.458 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0445 (4) 0.0523 (5) 0.0353 (4) 0.0038 (4) −0.0056 (4) −0.0094 (5)
S2 0.0552 (5) 0.0804 (8) 0.0472 (5) 0.0164 (5) 0.0008 (5) −0.0137 (6)
O1 0.0444 (14) 0.0726 (19) 0.0372 (13) 0.0026 (13) 0.0019 (11) −0.0231 (12)
O2 0.0383 (13) 0.0796 (17) 0.0442 (14) −0.0046 (12) 0.0060 (11) −0.0230 (13)
O3 0.0435 (13) 0.0691 (18) 0.0467 (14) 0.0004 (12) −0.0084 (11) −0.0146 (13)
N1 0.0527 (17) 0.0388 (18) 0.0293 (14) 0.0048 (14) −0.0049 (12) −0.0101 (13)
C1 0.0417 (17) 0.0343 (19) 0.0295 (17) 0.0022 (14) 0.0031 (14) −0.0013 (14)
C2 0.0442 (19) 0.041 (2) 0.0297 (17) 0.0029 (16) 0.0060 (14) −0.0062 (16)
C3 0.0389 (17) 0.040 (2) 0.0341 (19) 0.0002 (15) 0.0035 (15) −0.0030 (17)
C4 0.047 (2) 0.037 (2) 0.0278 (18) 0.0023 (15) 0.0007 (15) −0.0093 (16)
C5 0.0414 (19) 0.051 (2) 0.0313 (18) 0.0070 (17) 0.0024 (15) −0.0069 (16)
C6 0.0372 (17) 0.045 (2) 0.0410 (18) 0.0037 (14) −0.0008 (18) −0.001 (2)
C7 0.0437 (18) 0.041 (2) 0.0383 (19) 0.0002 (16) −0.0016 (15) 0.0005 (17)
C8 0.0464 (17) 0.039 (2) 0.0275 (19) 0.0024 (14) −0.0081 (14) −0.0034 (15)
C9 0.048 (2) 0.037 (2) 0.0364 (18) 0.0040 (17) −0.0041 (16) −0.0005 (16)
C10 0.047 (2) 0.038 (2) 0.0327 (18) 0.0049 (15) −0.0088 (15) −0.0018 (15)
C11 0.044 (2) 0.113 (4) 0.077 (3) −0.005 (2) 0.0177 (18) −0.026 (3)
O4A 0.048 (3) 0.119 (6) 0.067 (4) 0.004 (3) 0.005 (3) −0.039 (5)
C12A 0.064 (3) 0.131 (5) 0.093 (4) −0.008 (3) 0.011 (3) −0.019 (4)
O4B 0.043 (3) 0.079 (6) 0.055 (4) −0.001 (3) 0.006 (3) −0.020 (4)
C12B 0.064 (3) 0.131 (5) 0.093 (4) −0.008 (3) 0.011 (3) −0.019 (4)

Geometric parameters (Å, °)

S1—C8 1.751 (3) C3—C4 1.408 (4)
S1—C10 1.752 (3) C4—C5 1.372 (4)
S2—C10 1.623 (3) C5—C6 1.381 (5)
O1—C4 1.354 (4) C7—C8 1.353 (4)
O2—C3 1.361 (4) C8—C9 1.463 (4)
O2—C11 1.407 (4) C2—H2 0.9300
O3—C9 1.219 (4) C5—H5 0.9300
O1—H1 0.88 (3) C6—H6 0.9300
O4A—C12A 1.455 (7) C7—H7 0.9300
O4B—C12B 1.208 (6) C11—H11A 0.9600
O4A—H4A 0.96 (8) C11—H11B 0.9600
O4B—H4B 0.8200 C11—H11C 0.9600
N1—C10 1.366 (4) C12A—H12B 0.9600
N1—C9 1.371 (4) C12A—H12C 0.9600
N1—H1N 0.8600 C12A—H12A 0.9600
C1—C2 1.398 (5) C12B—H12D 0.9600
C1—C7 1.441 (4) C12B—H12E 0.9600
C1—C6 1.400 (4) C12B—H12F 0.9600
C2—C3 1.378 (5)
C8—S1—C10 92.44 (14) S2—C10—N1 126.0 (3)
C3—O2—C11 118.4 (3) S1—C10—S2 124.63 (19)
C4—O1—H1 114 (2) C3—C2—H2 120.00
C12A—O4A—H4A 114 (4) C1—C2—H2 120.00
C12B—O4B—H4B 110.00 C4—C5—H5 120.00
C9—N1—C10 118.1 (3) C6—C5—H5 120.00
C10—N1—H1N 121.00 C5—C6—H6 119.00
C9—N1—H1N 121.00 C1—C6—H6 119.00
C2—C1—C7 124.4 (3) C8—C7—H7 113.00
C2—C1—C6 118.6 (3) C1—C7—H7 113.00
C6—C1—C7 117.0 (3) O2—C11—H11C 109.00
C1—C2—C3 120.5 (3) O2—C11—H11A 110.00
O2—C3—C4 113.7 (3) O2—C11—H11B 109.00
O2—C3—C2 126.5 (3) H11B—C11—H11C 109.00
C2—C3—C4 119.8 (3) H11A—C11—H11B 109.00
O1—C4—C5 119.4 (3) H11A—C11—H11C 109.00
C3—C4—C5 120.3 (3) O4A—C12A—H12B 109.00
O1—C4—C3 120.4 (3) O4A—C12A—H12C 109.00
C4—C5—C6 119.8 (3) O4A—C12A—H12A 109.00
C1—C6—C5 121.2 (3) H12A—C12A—H12C 109.00
C1—C7—C8 133.1 (3) H12B—C12A—H12C 110.00
S1—C8—C9 109.7 (2) H12A—C12A—H12B 109.00
S1—C8—C7 130.4 (2) O4B—C12B—H12D 109.00
C7—C8—C9 120.0 (3) O4B—C12B—H12E 109.00
O3—C9—C8 126.2 (3) O4B—C12B—H12F 109.00
N1—C9—C8 110.3 (3) H12D—C12B—H12E 110.00
O3—C9—N1 123.5 (3) H12D—C12B—H12F 110.00
S1—C10—N1 109.4 (2) H12E—C12B—H12F 110.00
C10—S1—C8—C7 179.4 (4) C1—C2—C3—O2 179.7 (3)
C10—S1—C8—C9 0.3 (3) C1—C2—C3—C4 −0.4 (5)
C8—S1—C10—S2 179.6 (3) O2—C3—C4—O1 −0.1 (5)
C8—S1—C10—N1 −0.1 (3) O2—C3—C4—C5 179.1 (3)
C11—O2—C3—C2 −6.2 (5) C2—C3—C4—O1 180.0 (3)
C11—O2—C3—C4 173.9 (3) C2—C3—C4—C5 −0.9 (5)
C10—N1—C9—O3 179.8 (3) O1—C4—C5—C6 −179.1 (3)
C10—N1—C9—C8 0.4 (4) C3—C4—C5—C6 1.8 (5)
C9—N1—C10—S1 −0.2 (4) C4—C5—C6—C1 −1.4 (5)
C9—N1—C10—S2 −179.8 (3) C1—C7—C8—S1 1.4 (6)
C6—C1—C2—C3 0.7 (5) C1—C7—C8—C9 −179.5 (4)
C7—C1—C2—C3 −179.7 (3) S1—C8—C9—O3 −179.8 (3)
C2—C1—C6—C5 0.2 (5) S1—C8—C9—N1 −0.4 (3)
C7—C1—C6—C5 −179.4 (3) C7—C8—C9—O3 1.0 (5)
C2—C1—C7—C8 3.1 (6) C7—C8—C9—N1 −179.6 (3)
C6—C1—C7—C8 −177.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2 0.88 (3) 2.21 (3) 2.641 (3) 109 (3)
C2—H2···S1 0.93 2.66 3.349 (3) 132
O1—H1···O4Ai 0.88 (3) 1.85 (3) 2.622 (7) 145 (3)
N1—H1N···O1ii 0.86 2.05 2.899 (3) 169
O4A—H4A···O3iii 0.96 (8) 1.79 (8) 2.744 (7) 173 (7)
C12A—H12A···O3iv 0.96 2.37 3.150 (5) 139

Symmetry codes: (i) x, y, z+1; (ii) −x+1/2, y−1/2, z−3/2; (iii) −x+1/2, y+1/2, z+1/2; (iv) x+1/2, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5118).

References

  1. Barreiro, E., Casas, J. S., Couce, M. D., Sanchez, A., Sordo, J., Varela, J. M. & Vazquez-Lopez, E. M. (2007). Cryst. Growth Des.7, 1964–1973.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Shahwar, D., Tahir, M. N., Raza, M. A., Iqbal, B. & Naz, S. (2009). Acta Cryst. E65, o2637. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809039567/hb5118sup1.cif

e-65-o2638-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039567/hb5118Isup2.hkl

e-65-o2638-Isup2.hkl (119KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES