Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 17;65(Pt 11):o2752. doi: 10.1107/S1600536809041476

Diethyl 2,2′-[(5-dimethyl­amino-1-naphth­yl)sulfonyl­imino]diacetate

Yong Zhang a,*, Yuan Qu a, Ting Liu a
PMCID: PMC2971309  PMID: 21578346

Abstract

In the title compound, C20H26N2O6S, the N atom of the dimethyl­amino group is displaced by 0.113 (2) Å from the plane of the naphthalene ring system. The two eth­oxy groups adopt zigzag conformations. In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules, forming a three-dimensional network. Both ethyl groups are disordered over two sites with the ratios of refined occupancies being 0.857 (16):0.143 (16) and 0.517 (14):0.483 (14).

Related literature

For applications of ligands containing the 5-(dimethyl­amino) naphthalene-1-sulfonyl (dans­yl) group, see: Corradini et al. (1997); Christoforou et al. (2006); Zhang et al. (2009).graphic file with name e-65-o2752-scheme1.jpg

Experimental

Crystal data

  • C20H26N2O6S

  • M r = 422.49

  • Monoclinic, Inline graphic

  • a = 13.1266 (9) Å

  • b = 8.4592 (5) Å

  • c = 19.3206 (12) Å

  • β = 93.530 (1)°

  • V = 2141.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 298 K

  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.970, T max = 0.981

  • 16359 measured reflections

  • 4201 independent reflections

  • 3705 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.145

  • S = 1.05

  • 4201 reflections

  • 306 parameters

  • 12 restraints

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041476/lh2912sup1.cif

e-65-o2752-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041476/lh2912Isup2.hkl

e-65-o2752-Isup2.hkl (205.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O1 0.93 2.36 3.006 (3) 126
C13—H13A⋯O2i 0.97 2.36 3.272 (3) 157

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Dansyl (5-(dimethylamino)naphthalene-1-sulfonyl) derivatives are of considerable interest because of their good fluorescent properties. Many fluorescent ligands bearing dansyl group have been reported in recent years (e.g. Corradini et al., 1997; Christoforou et al., 2006; Zhang et al., 2009). We are interested in preparing fluorescent ligands that are expected to bind to hydrophobic sites in proteins or membranes. With this in mind, the title compound, (I), was prepared and we report herein the crystal stucture.

In the molecular structure (Fig. 1), the N atom of the dimethylamino group is displaced by 0.113 (2) Å from the plane of the naphthalene ring system. The two ethoxycarbonyl groups adopt coiled conformations with C14—O4—C15—C16 and C18—O6—C119—C20 torsion angles of 90.1 (10)° and 159.6 (9)°, respectively. All bond lengths and bond angles are as expected. In the crystal structure (Fig.2) weak intermolecular C—H···O hydrogen bonds lead to the formation of a three-dimension network.

Experimental

Diethyl iminodiacetate(0.38 g, 2 mmol) was added to a stirred solution of dansyl chloride(0.27 g, 1 mmol) in dry acetonitrile(40 ml). The reaction mixture was allowed to stir for 12 hr at 353 K. The progress of the reaction was monitored by TLC, untill the completion of reaction. The solvent was evaporated and the residue was purified by column chromatography (hexane-ethyl acetate,1:5 v/v) to afford the title compound as a yellow solid. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethyl acetate at room temperature.

Refinement

Both the C15/C16 and C18/C19 ethyl groups are disordered over two positions with the final refined occupancies of 0.857 (16):0.143 (16) and 0.517 (14):0.483 (14) for the major and minor components, respectively. In the refinement, commands 'DFIX' and 'SADI' were used (Sheldrick, 2008). Some B-level alert using PLATON were resulted from the disorder.

All H atoms were placed in idealized positions [C–H=0.96 Å (methyl), 0.97Å (methylene) and 0.93 Å (aromatic)] and included in the refinement in the riding-model approximation, with Uiso(H)= 1.5Ueq(methyl C) and 1.2Ueq(methylene and aromatic C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsoids drawn at the 50% probability level. The disorder is not shown.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) showing weak hydrogen bonds as dashed lines.

Crystal data

C20H26N2O6S F(000) = 896
Mr = 422.49 Dx = 1.311 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 7099 reflections
a = 13.1266 (9) Å θ = 2.4–27.8°
b = 8.4592 (5) Å µ = 0.19 mm1
c = 19.3206 (12) Å T = 298 K
β = 93.530 (1)° Block, yellow
V = 2141.3 (2) Å3 0.20 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer 4201 independent reflections
Radiation source: fine-focus sealed tube 3705 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 26.0°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→16
Tmin = 0.970, Tmax = 0.981 k = −10→10
16359 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0753P)2 + 0.7093P] where P = (Fo2 + 2Fc2)/3
4201 reflections (Δ/σ)max < 0.001
306 parameters Δρmax = 0.35 e Å3
12 restraints Δρmin = −0.27 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.95264 (17) 0.5912 (3) 0.37909 (11) 0.0578 (5)
C2 1.02352 (18) 0.4871 (3) 0.35796 (14) 0.0715 (7)
H2 1.0911 0.4969 0.3750 0.086*
C3 0.99669 (18) 0.3659 (3) 0.31122 (15) 0.0737 (7)
H3 1.0466 0.2959 0.2981 0.088*
C4 0.89929 (16) 0.3482 (3) 0.28453 (13) 0.0622 (6)
H4 0.8836 0.2689 0.2523 0.075*
C5 0.82149 (15) 0.4499 (2) 0.30558 (10) 0.0466 (4)
C6 0.71621 (15) 0.4373 (2) 0.28232 (10) 0.0446 (4)
C7 0.64297 (16) 0.5326 (2) 0.30780 (11) 0.0522 (5)
H7 0.5752 0.5227 0.2912 0.063*
C8 0.67007 (17) 0.6443 (3) 0.35867 (12) 0.0588 (5)
H8 0.6200 0.7065 0.3771 0.071*
C9 0.76932 (17) 0.6628 (3) 0.38138 (12) 0.0575 (5)
H9 0.7861 0.7382 0.4153 0.069*
C10 0.84776 (15) 0.5708 (2) 0.35492 (10) 0.0490 (5)
C11 0.9684 (3) 0.8725 (4) 0.39713 (18) 0.0941 (10)
H11A 1.0269 0.8936 0.3712 0.141*
H11B 0.9651 0.9487 0.4337 0.141*
H11C 0.9076 0.8794 0.3669 0.141*
C12 1.0732 (2) 0.6972 (5) 0.46859 (16) 0.0957 (10)
H12A 1.0791 0.5906 0.4854 0.144*
H12B 1.0742 0.7688 0.5072 0.144*
H12C 1.1293 0.7203 0.4406 0.144*
C13 0.59995 (17) 0.1130 (3) 0.32052 (11) 0.0548 (5)
H13A 0.5668 0.0108 0.3159 0.066*
H13B 0.5478 0.1937 0.3136 0.066*
C14 0.64919 (19) 0.1283 (3) 0.39272 (12) 0.0588 (5)
C15 0.6061 (8) 0.1733 (7) 0.5102 (2) 0.0874 (19) 0.857 (16)
H15A 0.6740 0.1337 0.5230 0.105* 0.857 (16)
H15B 0.5583 0.1241 0.5399 0.105* 0.857 (16)
C16 0.6032 (10) 0.3472 (8) 0.5176 (3) 0.149 (4) 0.857 (16)
H16A 0.6565 0.3935 0.4925 0.223* 0.857 (16)
H16B 0.6128 0.3748 0.5658 0.223* 0.857 (16)
H16C 0.5383 0.3861 0.4994 0.223* 0.857 (16)
C17 0.73411 (17) −0.0060 (3) 0.24933 (12) 0.0552 (5)
H17A 0.7484 −0.0699 0.2905 0.066*
H17B 0.7988 0.0315 0.2339 0.066*
C18 0.68302 (16) −0.1075 (2) 0.19336 (11) 0.0520 (5)
C19 0.7087 (7) −0.2942 (12) 0.1072 (5) 0.073 (3) 0.517 (14)
H19A 0.6722 −0.2204 0.0762 0.088* 0.517 (14)
H19B 0.6624 −0.3784 0.1185 0.088* 0.517 (14)
C20 0.8001 (6) −0.3609 (15) 0.0734 (5) 0.100 (3) 0.517 (14)
H20A 0.8432 −0.2759 0.0600 0.150* 0.517 (14)
H20B 0.7776 −0.4207 0.0331 0.150* 0.517 (14)
H20C 0.8378 −0.4285 0.1057 0.150* 0.517 (14)
C15' 0.626 (2) 0.223 (5) 0.4978 (12) 0.069 (9) 0.143 (16)
H15C 0.6659 0.3117 0.4825 0.083* 0.143 (16)
H15D 0.6711 0.1531 0.5253 0.083* 0.143 (16)
C16' 0.539 (3) 0.281 (6) 0.5403 (16) 0.122 (14) 0.143 (16)
H16D 0.5088 0.3735 0.5189 0.182* 0.143 (16)
H16E 0.5652 0.3060 0.5864 0.182* 0.143 (16)
H16F 0.4883 0.1993 0.5421 0.182* 0.143 (16)
C19' 0.7221 (11) −0.3420 (9) 0.1268 (4) 0.069 (3) 0.483 (14)
H19C 0.6507 −0.3697 0.1290 0.083* 0.483 (14)
H19D 0.7638 −0.4342 0.1382 0.083* 0.483 (14)
C20' 0.7438 (12) −0.2768 (12) 0.0564 (4) 0.101 (4) 0.483 (14)
H20D 0.7039 −0.1831 0.0474 0.152* 0.483 (14)
H20E 0.7263 −0.3544 0.0215 0.152* 0.483 (14)
H20F 0.8150 −0.2515 0.0556 0.152* 0.483 (14)
N1 0.97658 (16) 0.7153 (3) 0.42652 (11) 0.0706 (6)
N2 0.67264 (13) 0.1287 (2) 0.26716 (9) 0.0524 (4)
O1 0.74296 (13) 0.2660 (2) 0.16995 (8) 0.0631 (4)
O2 0.56924 (12) 0.3303 (2) 0.20057 (8) 0.0635 (4)
O3 0.73809 (15) 0.1308 (3) 0.40732 (10) 0.0988 (7)
O4 0.57813 (15) 0.1376 (3) 0.43757 (9) 0.0934 (7)
O5 0.59653 (12) −0.0973 (2) 0.17180 (10) 0.0751 (5)
O6 0.74949 (13) −0.2111 (2) 0.17216 (11) 0.0783 (6)
S1 0.67202 (4) 0.28980 (6) 0.22222 (3) 0.04759 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0469 (12) 0.0728 (14) 0.0531 (12) −0.0099 (10) −0.0019 (9) 0.0004 (10)
C2 0.0377 (12) 0.0952 (19) 0.0807 (17) −0.0057 (12) −0.0047 (11) −0.0049 (14)
C3 0.0409 (12) 0.0834 (18) 0.0969 (19) 0.0088 (12) 0.0039 (12) −0.0136 (15)
C4 0.0439 (12) 0.0645 (13) 0.0783 (15) 0.0032 (10) 0.0028 (10) −0.0126 (12)
C5 0.0390 (10) 0.0492 (10) 0.0516 (11) −0.0017 (8) 0.0024 (8) 0.0026 (9)
C6 0.0416 (10) 0.0439 (10) 0.0479 (10) −0.0013 (8) −0.0012 (8) 0.0002 (8)
C7 0.0409 (11) 0.0525 (11) 0.0625 (12) 0.0024 (9) −0.0020 (9) −0.0013 (10)
C8 0.0492 (12) 0.0585 (12) 0.0691 (14) 0.0070 (10) 0.0073 (10) −0.0115 (11)
C9 0.0574 (13) 0.0585 (12) 0.0567 (12) −0.0042 (10) 0.0027 (10) −0.0115 (10)
C10 0.0433 (11) 0.0553 (11) 0.0481 (11) −0.0033 (9) −0.0003 (8) 0.0032 (9)
C11 0.094 (2) 0.086 (2) 0.100 (2) −0.0227 (17) −0.0109 (18) −0.0207 (18)
C12 0.0681 (18) 0.139 (3) 0.0770 (18) −0.0235 (18) −0.0197 (14) −0.0136 (18)
C13 0.0504 (12) 0.0551 (12) 0.0586 (12) −0.0068 (9) 0.0010 (9) −0.0018 (10)
C14 0.0591 (14) 0.0581 (13) 0.0587 (13) 0.0007 (11) 0.0002 (11) −0.0021 (10)
C15 0.106 (4) 0.108 (4) 0.048 (2) 0.013 (3) 0.008 (2) 0.010 (2)
C16 0.252 (12) 0.115 (4) 0.075 (3) 0.068 (5) −0.026 (4) −0.014 (3)
C17 0.0509 (12) 0.0492 (11) 0.0642 (13) 0.0078 (9) −0.0064 (10) −0.0050 (9)
C18 0.0450 (12) 0.0507 (11) 0.0612 (12) −0.0067 (9) 0.0104 (9) −0.0046 (9)
C19 0.070 (4) 0.055 (5) 0.093 (7) 0.002 (4) −0.003 (5) −0.027 (5)
C20 0.091 (5) 0.108 (7) 0.103 (5) 0.003 (4) 0.019 (4) −0.038 (5)
C15' 0.078 (16) 0.09 (2) 0.044 (12) 0.002 (13) 0.007 (11) 0.002 (13)
C16' 0.11 (3) 0.13 (3) 0.12 (2) 0.04 (2) −0.006 (19) 0.01 (2)
C19' 0.092 (7) 0.044 (4) 0.074 (4) −0.011 (4) 0.018 (4) −0.005 (3)
C20' 0.153 (11) 0.085 (6) 0.067 (4) −0.032 (6) 0.025 (5) −0.010 (4)
N1 0.0575 (12) 0.0899 (16) 0.0630 (12) −0.0152 (11) −0.0086 (9) −0.0105 (11)
N2 0.0545 (10) 0.0458 (9) 0.0570 (10) 0.0032 (8) 0.0041 (8) −0.0042 (8)
O1 0.0666 (10) 0.0730 (10) 0.0499 (8) 0.0011 (8) 0.0046 (7) −0.0043 (7)
O2 0.0521 (9) 0.0667 (9) 0.0688 (10) 0.0086 (7) −0.0194 (7) −0.0052 (8)
O3 0.0622 (12) 0.161 (2) 0.0711 (12) 0.0146 (13) −0.0128 (9) −0.0102 (13)
O4 0.0767 (13) 0.1434 (19) 0.0607 (11) −0.0036 (13) 0.0095 (9) −0.0127 (12)
O5 0.0455 (9) 0.0878 (12) 0.0910 (12) −0.0035 (8) −0.0051 (8) −0.0257 (10)
O6 0.0566 (10) 0.0703 (11) 0.1090 (14) −0.0017 (8) 0.0126 (9) −0.0396 (10)
S1 0.0445 (3) 0.0501 (3) 0.0474 (3) 0.0023 (2) −0.0045 (2) −0.0020 (2)

Geometric parameters (Å, °)

C1—C2 1.362 (4) C15—H15A 0.9700
C1—N1 1.416 (3) C15—H15B 0.9700
C1—C10 1.437 (3) C16—H16A 0.9600
C2—C3 1.397 (4) C16—H16B 0.9600
C2—H2 0.9300 C16—H16C 0.9600
C3—C4 1.357 (3) C17—N2 1.450 (3)
C3—H3 0.9300 C17—C18 1.506 (3)
C4—C5 1.414 (3) C17—H17A 0.9700
C4—H4 0.9300 C17—H17B 0.9700
C5—C10 1.426 (3) C18—O5 1.188 (3)
C5—C6 1.431 (3) C18—O6 1.319 (3)
C6—C7 1.369 (3) C19—O6 1.509 (7)
C6—S1 1.777 (2) C19—C20 1.510 (8)
C7—C8 1.394 (3) C19—H19A 0.9700
C7—H7 0.9300 C19—H19B 0.9700
C8—C9 1.358 (3) C20—H20A 0.9600
C8—H8 0.9300 C20—H20B 0.9600
C9—C10 1.412 (3) C20—H20C 0.9600
C9—H9 0.9300 C15'—O4 1.477 (10)
C11—N1 1.447 (4) C15'—C16' 1.529 (10)
C11—H11A 0.9600 C15'—H15C 0.9700
C11—H11B 0.9600 C15'—H15D 0.9700
C11—H11C 0.9600 C16'—H16D 0.9600
C12—N1 1.472 (3) C16'—H16E 0.9600
C12—H12A 0.9600 C16'—H16F 0.9600
C12—H12B 0.9600 C19'—O6 1.444 (8)
C12—H12C 0.9600 C19'—C20' 1.511 (8)
C13—N2 1.453 (3) C19'—H19C 0.9700
C13—C14 1.506 (3) C19'—H19D 0.9700
C13—H13A 0.9700 C20'—H20D 0.9600
C13—H13B 0.9700 C20'—H20E 0.9600
C14—O3 1.184 (3) C20'—H20F 0.9600
C14—O4 1.314 (3) N2—S1 1.6160 (18)
C15—O4 1.460 (5) O1—S1 1.4295 (17)
C15—C16 1.478 (7) O2—S1 1.4292 (15)
C2—C1—N1 123.0 (2) H15A—C15—H15B 108.6
C2—C1—C10 118.9 (2) N2—C17—C18 112.89 (18)
N1—C1—C10 118.0 (2) N2—C17—H17A 109.0
C1—C2—C3 121.2 (2) C18—C17—H17A 109.0
C1—C2—H2 119.4 N2—C17—H17B 109.0
C3—C2—H2 119.4 C18—C17—H17B 109.0
C4—C3—C2 121.4 (2) H17A—C17—H17B 107.8
C4—C3—H3 119.3 O5—C18—O6 125.1 (2)
C2—C3—H3 119.3 O5—C18—C17 125.7 (2)
C3—C4—C5 120.2 (2) O6—C18—C17 109.14 (19)
C3—C4—H4 119.9 O6—C19—C20 106.4 (6)
C5—C4—H4 119.9 O6—C19—H19A 110.4
C4—C5—C10 118.66 (19) C20—C19—H19A 110.4
C4—C5—C6 124.39 (19) O6—C19—H19B 110.4
C10—C5—C6 116.92 (18) C20—C19—H19B 110.4
C7—C6—C5 121.96 (18) H19A—C19—H19B 108.6
C7—C6—S1 116.10 (15) O4—C15'—C16' 106.3 (13)
C5—C6—S1 121.85 (15) O4—C15'—H15C 110.5
C6—C7—C8 119.89 (19) C16'—C15'—H15C 110.5
C6—C7—H7 120.1 O4—C15'—H15D 110.5
C8—C7—H7 120.1 C16'—C15'—H15D 110.5
C9—C8—C7 120.3 (2) H15C—C15'—H15D 108.7
C9—C8—H8 119.9 C15'—C16'—H16D 109.5
C7—C8—H8 119.9 C15'—C16'—H16E 109.5
C8—C9—C10 121.7 (2) H16D—C16'—H16E 109.5
C8—C9—H9 119.1 C15'—C16'—H16F 109.5
C10—C9—H9 119.1 H16D—C16'—H16F 109.5
C9—C10—C5 119.07 (18) H16E—C16'—H16F 109.5
C9—C10—C1 121.5 (2) O6—C19'—C20' 102.3 (6)
C5—C10—C1 119.39 (19) O6—C19'—H19C 111.3
N1—C11—H11A 109.5 C20'—C19'—H19C 111.3
N1—C11—H11B 109.5 O6—C19'—H19D 111.3
H11A—C11—H11B 109.5 C20'—C19'—H19D 111.3
N1—C11—H11C 109.5 H19C—C19'—H19D 109.2
H11A—C11—H11C 109.5 C19'—C20'—H20D 109.5
H11B—C11—H11C 109.5 C19'—C20'—H20E 109.5
N1—C12—H12A 109.5 H20D—C20'—H20E 109.5
N1—C12—H12B 109.5 C19'—C20'—H20F 109.5
H12A—C12—H12B 109.5 H20D—C20'—H20F 109.5
N1—C12—H12C 109.5 H20E—C20'—H20F 109.5
H12A—C12—H12C 109.5 C1—N1—C11 114.8 (2)
H12B—C12—H12C 109.5 C1—N1—C12 115.4 (2)
N2—C13—C14 112.71 (18) C11—N1—C12 110.7 (2)
N2—C13—H13A 109.0 C17—N2—C13 119.76 (18)
C14—C13—H13A 109.0 C17—N2—S1 121.31 (15)
N2—C13—H13B 109.0 C13—N2—S1 118.44 (14)
C14—C13—H13B 109.0 C14—O4—C15 120.0 (4)
H13A—C13—H13B 107.8 C14—O4—C15' 105.2 (9)
O3—C14—O4 124.8 (2) C18—O6—C19' 123.6 (6)
O3—C14—C13 125.6 (2) C18—O6—C19 111.1 (4)
O4—C14—C13 109.5 (2) O2—S1—O1 118.12 (10)
O4—C15—C16 107.0 (4) O2—S1—N2 109.44 (10)
O4—C15—H15A 110.3 O1—S1—N2 106.18 (9)
C16—C15—H15A 110.3 O2—S1—C6 106.70 (9)
O4—C15—H15B 110.3 O1—S1—C6 111.09 (10)
C16—C15—H15B 110.3 N2—S1—C6 104.51 (9)
N1—C1—C2—C3 179.8 (2) C18—C17—N2—C13 88.7 (2)
C10—C1—C2—C3 2.7 (4) C18—C17—N2—S1 −83.1 (2)
C1—C2—C3—C4 0.7 (4) C14—C13—N2—C17 81.6 (2)
C2—C3—C4—C5 −2.2 (4) C14—C13—N2—S1 −106.41 (19)
C3—C4—C5—C10 0.2 (4) O3—C14—O4—C15 8.1 (5)
C3—C4—C5—C6 −177.7 (2) C13—C14—O4—C15 −172.2 (3)
C4—C5—C6—C7 175.7 (2) O3—C14—O4—C15' 26 (2)
C10—C5—C6—C7 −2.3 (3) C13—C14—O4—C15' −155 (2)
C4—C5—C6—S1 −0.8 (3) C16—C15—O4—C14 90.1 (10)
C10—C5—C6—S1 −178.75 (15) C16—C15—O4—C15' 39 (4)
C5—C6—C7—C8 −1.0 (3) C16'—C15'—O4—C14 163 (3)
S1—C6—C7—C8 175.69 (17) C16'—C15'—O4—C15 −62 (3)
C6—C7—C8—C9 2.2 (3) O5—C18—O6—C19' −9.6 (5)
C7—C8—C9—C10 −0.2 (4) C17—C18—O6—C19' 170.0 (4)
C8—C9—C10—C5 −3.2 (3) O5—C18—O6—C19 11.4 (6)
C8—C9—C10—C1 179.9 (2) C17—C18—O6—C19 −169.0 (6)
C4—C5—C10—C9 −173.8 (2) C20'—C19'—O6—C18 95.9 (12)
C6—C5—C10—C9 4.3 (3) C20'—C19'—O6—C19 34.6 (15)
C4—C5—C10—C1 3.2 (3) C20—C19—O6—C18 159.6 (9)
C6—C5—C10—C1 −178.75 (18) C20—C19—O6—C19' −72.0 (19)
C2—C1—C10—C9 172.3 (2) C17—N2—S1—O2 126.11 (17)
N1—C1—C10—C9 −4.9 (3) C13—N2—S1—O2 −45.80 (18)
C2—C1—C10—C5 −4.6 (3) C17—N2—S1—O1 −2.41 (19)
N1—C1—C10—C5 178.17 (19) C13—N2—S1—O1 −174.32 (15)
N2—C13—C14—O3 −10.0 (4) C17—N2—S1—C6 −119.93 (17)
N2—C13—C14—O4 170.3 (2) C13—N2—S1—C6 68.16 (17)
N2—C17—C18—O5 −10.7 (3) C7—C6—S1—O2 14.37 (19)
N2—C17—C18—O6 169.75 (19) C5—C6—S1—O2 −168.98 (16)
C2—C1—N1—C11 111.9 (3) C7—C6—S1—O1 144.39 (16)
C10—C1—N1—C11 −71.0 (3) C5—C6—S1—O1 −38.95 (19)
C2—C1—N1—C12 −18.7 (4) C7—C6—S1—N2 −101.51 (17)
C10—C1—N1—C12 158.4 (2) C5—C6—S1—N2 75.14 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4···O1 0.93 2.36 3.006 (3) 126
C13—H13A···O2i 0.97 2.36 3.272 (3) 157

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2912).

References

  1. Bruker (2007). SAINT-Plus and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Christoforou, A. M., Marzilli, P. A. & Marzilli, L. G. (2006). Inorg. Chem.45, 6771–6781. [DOI] [PubMed]
  3. Corradini, R., Dossena, A., Galaverna, G., Marchelli, R., Panagia, A. & Sarto, G. (1997). J. Org. Chem.62, 6283–6289.
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Zhang, S., Zhao, B., Su, Z., Xia, X. & Zhang, Y. (2009). Acta Cryst. E65, o1452. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809041476/lh2912sup1.cif

e-65-o2752-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809041476/lh2912Isup2.hkl

e-65-o2752-Isup2.hkl (205.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES