Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 3;65(Pt 11):o2614. doi: 10.1107/S1600536809039488

(4-Hydr­oxy-2,5-dimethyl­phen­yl)phenyl­methanone

Rodolfo Moreno-Fuquen a,*, Leidy J Valencia a, Alan R Kennedy b, Denise Gilmour b, R H De Almeida Santos c
PMCID: PMC2971310  PMID: 21578230

Abstract

The title compound, C15H14O2, was obtained by Friedel–Crafts acyl­ation between 2,5-dimethyl­phenol and benzoyl chloride in the presence of aluminium chloride as a catalyst. The dihedral angle between the benzene rings is 61.95 (4)°. In the crystal, O—H⋯O hydrogen bonding and C—H⋯O weak inter­actions lead to polymeric C(6), C(8) and C(11) chains along the a, b and c-axis directions, respectively.

Related literature

For background information on the anti-fungal and anti-inflamatory biological activity of benzophenones, see: Naldoni et al. (2009); Selvi et al. (2003); Naveen et al. (2006). For 104 benzophenone mol­ecules, see: Cox et al. (2008). For hydrogen-bond motifs, see: Etter (1990).graphic file with name e-65-o2614-scheme1.jpg

Experimental

Crystal data

  • C15H14O2

  • M r = 226.26

  • Orthorhombic, Inline graphic

  • a = 12.1392 (10) Å

  • b = 8.1386 (7) Å

  • c = 23.665 (2) Å

  • V = 2338.0 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 123 K

  • 0.25 × 0.12 × 0.05 mm

Data collection

  • Oxford Diffraction Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009) T min = 0.904, T max = 1.000

  • 9067 measured reflections

  • 2059 independent reflections

  • 1061 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.058

  • S = 0.73

  • 2059 reflections

  • 158 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis CCD; data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039488/hg2568sup1.cif

e-65-o2614-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039488/hg2568Isup2.hkl

e-65-o2614-Isup2.hkl (101.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.84 1.92 2.6973 (15) 154
C15—H15B⋯O1ii 0.98 2.62 3.352 (2) 132
C4—H4⋯O2iii 0.95 2.67 3.454 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

RMF is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge licence to the Cambridge Structural Database (Allen, 2002). RMF also thanks the Universidad del Valle, Colombia, and the Instituto de Química de São Carlos, Brazil, for partial financial support.

supplementary crystallographic information

Comment

The title compound, C15H14O2, (4-Hydroxy-2,5-dimethyl-phenyl)-phenyl-methanone), (I), is part of a series of studies on benzophenone, which have been made in our research group. Benzophenone analogue systems show various anti-fungal and anti-inflamatory biological activities (Naldoni et al., 2009 and Selvi et al., 2003). The presence of various substituents in the benzophenone nucleus is essential to determining the quantitative structure-activity relationships of these systems. Some studies were carried out to show that methyl-substituted benzophenones exhibit anti-fungal properties (Naveen et al., 2006). In order to present the molecular conformation of (I), to analyse the type of hydrogen-bonds formed in (I) and to study its supramolecular behavior, the title compound was synthesized. The molecular structure of the title compound is shown in Fig. 1. The bond lengths and bond angles of (I) are in good agreement with the standard values and correspond to those observed in (4-Hydroxy-3-methylphenyl)(4- methylphenyl)methanone (Naveen et al., 2006). The two aromatic rings in the title structure form a dihedral angle of 61.95 (4)°. This value is greater than the value presented in the stable, orthorhombic form of unsubstituted benzophenone (54°) and follows the standard behavior of the majority of benzophenone molecules [104 benzophenone molecules, Cox et al., 2008]. The title molecule is characterized by the formation of O—H···O hydrogen-bonds and other C—H···O weak interactions (Table 1, Nardelli, 1995). The strongest hydrogen bond O—H···O interaction is responsible for crystal growth in [100] direction. Indeed, in a first substructure, atom O2 in the molecule at (x, y, z) acts as hydrogen bond donor to carbonyl O1 atom in the molecule at (x - 1/2, -y + 1/2, -z + 1). The propagation of this interaction forms a C(8) (Etter, 1990) chain running along [100] direction (Fig. 2). In a second substructure, atom C15 in the molecule at (x, y, z) links with weak interaction to carbonyl O1 atom in the molecule at (-x + 3/2, y - 1/2, z). The propagation of this interaction forms C(6) continuous chains via C15—H15B···O1 and running along [010] direction (Fig. 3). Finally in a third sub-structure, atom C4 in the molecule at (x, y, z) links with weak interaction to hydroxyl O2 atom in the molecule at (x, -y + 3/2, z - 1/2). The propagation of this interaction forms C(11) continuous chains and running along [001] direction. All of these interactions in [100], [010] and [001] directions define the bulk structure of the crystal.

Experimental

2,5-dimethylphenol (0.50 g, 4.10 mmol) was added to a solution of anhydrous aluminium chloride (0.40 g, 3.00 mmol) in dry dichloromethane (25 ml). The resulting solution was cooled and then a benzoyl chloride (0.80 g, 5.70 mmol) was slowly added at 0–5° C. After complete addition, the mixture was allowed to stir at room temperature for 0.5 h, and then it was heated up to 50° C for 1 h. The reaction mixture was poured onto ice (100 g) and conc. HCl (10 ml). The crude product was isolated by extraction with dichloromethane. The combined organic layers were washed with 10% aqueous NaOH, water, and then the solution was dried over Na2SO4 and it was evaporated at room temperature.

Refinement

All H-atoms were located from difference maps and were positioned geometrically and refined using a riding model with C–H= 0.93–0.97 Å and Uiso(H)= 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

An ORTEP-3 (Farrugia, 1997) plot of the title (I) compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the formation of C(8) chains running along [100] direction. Symmetry code: (i) x + 1/2, -y + 1/2, -z + 1; (ii) x - 1/2, -y + 1/2, -z + 1

Fig. 3.

Fig. 3.

Part of the crystal structure of (I), showing the formation of C(6) chain running along [010]. Symmetry code: (i) -x + 3/2, y - 1/2, z; (ii) -x + 3/2, y + 1/2, z.

Fig. 4.

Fig. 4.

Part of the crystal structure of (I), showing the formation of C(11) chain running along [001]. Symmetry code: (i) x, -y + 3/2, z - 1/2; (ii) x, -y + 3/2, z + 1/2

Crystal data

C15H14O2 Dx = 1.286 Mg m3
Mr = 226.26 Melting point: 443.0(10) K
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 1709 reflections
a = 12.1392 (10) Å θ = 2.5–30.7°
b = 8.1386 (7) Å µ = 0.08 mm1
c = 23.665 (2) Å T = 123 K
V = 2338.0 (3) Å3 Shard, colourless
Z = 8 0.25 × 0.12 × 0.05 mm
F(000) = 960

Data collection

Oxford Diffraction Gemini S diffractometer 2059 independent reflections
Radiation source: fine-focus sealed tube 1061 reflections with I > 2σ(I)
graphite Rint = 0.061
ω scans θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan (CrysAlis CCD; Oxford Diffraction, 2009) h = −12→14
Tmin = 0.904, Tmax = 1.000 k = −9→9
9067 measured reflections l = −28→26

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032 H-atom parameters constrained
wR(F2) = 0.058 w = 1/[σ2(Fo2) + (0.0224P)2] where P = (Fo2 + 2Fc2)/3
S = 0.73 (Δ/σ)max < 0.001
2059 reflections Δρmax = 0.15 e Å3
158 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0019 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.83004 (8) 0.77322 (14) 0.37654 (5) 0.0301 (3)
O2 0.51698 (9) 0.86337 (14) 0.58360 (5) 0.0261 (3)
H2 0.4559 0.8151 0.5849 0.039*
C1 0.67652 (14) 0.8006 (2) 0.31719 (7) 0.0211 (4)
C2 0.73020 (14) 0.7315 (2) 0.27099 (7) 0.0291 (5)
H2A 0.7986 0.6768 0.2761 0.035*
C3 0.68450 (16) 0.7422 (2) 0.21789 (7) 0.0370 (5)
H3 0.7213 0.6946 0.1865 0.044*
C4 0.58475 (16) 0.8226 (2) 0.21010 (8) 0.0363 (5)
H4 0.5527 0.8278 0.1735 0.044*
C5 0.53206 (15) 0.8948 (2) 0.25549 (7) 0.0306 (5)
H5 0.4649 0.9524 0.2499 0.037*
C6 0.57691 (14) 0.8834 (2) 0.30907 (7) 0.0248 (5)
H6 0.5400 0.9317 0.3403 0.030*
C7 0.72879 (13) 0.78937 (19) 0.37381 (7) 0.0210 (4)
C8 0.66409 (13) 0.80471 (19) 0.42695 (7) 0.0186 (4)
C9 0.71040 (13) 0.9034 (2) 0.46920 (7) 0.0209 (4)
H9 0.7782 0.9572 0.4616 0.025*
C10 0.66178 (13) 0.9261 (2) 0.52152 (7) 0.0185 (4)
C11 0.56262 (13) 0.8428 (2) 0.53126 (7) 0.0195 (4)
C12 0.51675 (13) 0.74203 (19) 0.49063 (7) 0.0210 (4)
H12 0.4505 0.6849 0.4990 0.025*
C13 0.56518 (13) 0.7218 (2) 0.43752 (7) 0.0189 (4)
C14 0.71190 (13) 1.0335 (2) 0.56630 (7) 0.0270 (5)
H14A 0.7342 0.9656 0.5986 0.040*
H14B 0.6577 1.1150 0.5787 0.040*
H14C 0.7766 1.0898 0.5509 0.040*
C15 0.51105 (14) 0.6050 (2) 0.39635 (7) 0.0266 (5)
H15A 0.4730 0.5180 0.4173 0.040*
H15B 0.5673 0.5560 0.3719 0.040*
H15C 0.4577 0.6653 0.3732 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0175 (6) 0.0449 (8) 0.0279 (7) 0.0032 (7) −0.0010 (6) 0.0015 (7)
O2 0.0221 (7) 0.0330 (8) 0.0231 (7) −0.0020 (6) 0.0038 (6) 0.0001 (6)
C1 0.0213 (10) 0.0219 (10) 0.0200 (10) −0.0005 (9) −0.0006 (9) 0.0020 (9)
C2 0.0321 (10) 0.0282 (12) 0.0269 (11) 0.0059 (9) 0.0025 (10) 0.0014 (9)
C3 0.0531 (13) 0.0374 (13) 0.0206 (11) 0.0084 (11) 0.0015 (11) −0.0035 (9)
C4 0.0521 (14) 0.0336 (13) 0.0231 (12) 0.0027 (11) −0.0110 (11) 0.0034 (10)
C5 0.0343 (12) 0.0256 (12) 0.0318 (12) 0.0013 (9) −0.0102 (10) 0.0043 (10)
C6 0.0256 (10) 0.0246 (11) 0.0241 (11) −0.0005 (9) 0.0002 (10) −0.0013 (9)
C7 0.0231 (9) 0.0179 (10) 0.0219 (10) 0.0001 (8) −0.0003 (9) 0.0007 (9)
C8 0.0176 (9) 0.0187 (10) 0.0196 (10) 0.0029 (8) −0.0009 (9) 0.0019 (9)
C9 0.0172 (9) 0.0203 (10) 0.0253 (11) −0.0006 (8) −0.0015 (9) 0.0069 (9)
C10 0.0199 (10) 0.0173 (10) 0.0185 (10) 0.0035 (8) −0.0030 (9) 0.0021 (8)
C11 0.0204 (10) 0.0207 (10) 0.0173 (10) 0.0063 (8) 0.0026 (9) 0.0037 (9)
C12 0.0170 (9) 0.0206 (11) 0.0253 (10) −0.0004 (9) 0.0004 (8) 0.0049 (9)
C13 0.0173 (9) 0.0181 (10) 0.0215 (10) 0.0023 (8) −0.0029 (8) 0.0006 (8)
C14 0.0252 (10) 0.0274 (11) 0.0283 (11) −0.0007 (9) 0.0004 (9) 0.0027 (9)
C15 0.0267 (10) 0.0248 (11) 0.0283 (11) −0.0032 (9) −0.0006 (9) −0.0002 (9)

Geometric parameters (Å, °)

O1—C7 1.2377 (17) C8—C13 1.400 (2)
O2—C11 1.3674 (18) C8—C9 1.400 (2)
O2—H2 0.8400 C9—C10 1.384 (2)
C1—C2 1.391 (2) C9—H9 0.9500
C1—C6 1.397 (2) C10—C11 1.401 (2)
C1—C7 1.486 (2) C10—C14 1.503 (2)
C2—C3 1.376 (2) C11—C12 1.381 (2)
C2—H2A 0.9500 C12—C13 1.397 (2)
C3—C4 1.388 (2) C12—H12 0.9500
C3—H3 0.9500 C13—C15 1.511 (2)
C4—C5 1.381 (2) C14—H14A 0.9800
C4—H4 0.9500 C14—H14B 0.9800
C5—C6 1.383 (2) C14—H14C 0.9800
C5—H5 0.9500 C15—H15A 0.9800
C6—H6 0.9500 C15—H15B 0.9800
C7—C8 1.488 (2) C15—H15C 0.9800
C11—O2—H2 109.5 C10—C9—H9 118.5
C2—C1—C6 119.48 (15) C8—C9—H9 118.5
C2—C1—C7 118.93 (15) C9—C10—C11 116.70 (16)
C6—C1—C7 121.56 (15) C9—C10—C14 122.40 (15)
C3—C2—C1 120.20 (16) C11—C10—C14 120.90 (15)
C3—C2—H2A 119.9 O2—C11—C12 122.69 (15)
C1—C2—H2A 119.9 O2—C11—C10 115.98 (15)
C2—C3—C4 120.17 (17) C12—C11—C10 121.29 (16)
C2—C3—H3 119.9 C11—C12—C13 121.78 (16)
C4—C3—H3 119.9 C11—C12—H12 119.1
C5—C4—C3 120.07 (17) C13—C12—H12 119.1
C5—C4—H4 120.0 C12—C13—C8 117.69 (15)
C3—C4—H4 120.0 C12—C13—C15 118.11 (15)
C4—C5—C6 120.13 (17) C8—C13—C15 124.11 (14)
C4—C5—H5 119.9 C10—C14—H14A 109.5
C6—C5—H5 119.9 C10—C14—H14B 109.5
C5—C6—C1 119.93 (16) H14A—C14—H14B 109.5
C5—C6—H6 120.0 C10—C14—H14C 109.5
C1—C6—H6 120.0 H14A—C14—H14C 109.5
O1—C7—C1 118.54 (16) H14B—C14—H14C 109.5
O1—C7—C8 119.27 (16) C13—C15—H15A 109.5
C1—C7—C8 122.12 (14) C13—C15—H15B 109.5
C13—C8—C9 119.56 (15) H15A—C15—H15B 109.5
C13—C8—C7 124.28 (15) C13—C15—H15C 109.5
C9—C8—C7 116.08 (15) H15A—C15—H15C 109.5
C10—C9—C8 122.95 (16) H15B—C15—H15C 109.5
C6—C1—C2—C3 −1.1 (3) C13—C8—C9—C10 −1.2 (2)
C7—C1—C2—C3 −179.02 (16) C7—C8—C9—C10 −178.15 (15)
C1—C2—C3—C4 0.2 (3) C8—C9—C10—C11 0.8 (2)
C2—C3—C4—C5 1.3 (3) C8—C9—C10—C14 −179.48 (16)
C3—C4—C5—C6 −1.8 (3) C9—C10—C11—O2 178.50 (14)
C4—C5—C6—C1 0.9 (3) C14—C10—C11—O2 −1.2 (2)
C2—C1—C6—C5 0.5 (3) C9—C10—C11—C12 0.6 (2)
C7—C1—C6—C5 178.40 (16) C14—C10—C11—C12 −179.08 (15)
C2—C1—C7—O1 24.8 (2) O2—C11—C12—C13 −179.51 (14)
C6—C1—C7—O1 −153.09 (16) C10—C11—C12—C13 −1.8 (2)
C2—C1—C7—C8 −158.14 (16) C11—C12—C13—C8 1.4 (2)
C6—C1—C7—C8 24.0 (2) C11—C12—C13—C15 178.17 (14)
O1—C7—C8—C13 −135.69 (17) C9—C8—C13—C12 0.0 (2)
C1—C7—C8—C13 47.3 (2) C7—C8—C13—C12 176.75 (15)
O1—C7—C8—C9 41.1 (2) C9—C8—C13—C15 −176.54 (15)
C1—C7—C8—C9 −135.91 (16) C7—C8—C13—C15 0.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.84 1.92 2.6973 (15) 154
C15—H15B···O1ii 0.98 2.62 3.352 (2) 132
C4—H4···O2iii 0.95 2.67 3.454 (2) 140

Symmetry codes: (i) x−1/2, −y+3/2, −z+1; (ii) −x+3/2, y−1/2, z; (iii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2568).

References

  1. Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
  2. Cox, P. J., Kechagias, D. & Kelly, O. (2008). Acta Cryst. B64, 206–216. [DOI] [PubMed]
  3. Etter, M. (1990). Acc. Chem. Res.23, 120–126.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  6. Naldoni, F. J., Claudino, A. L. R., Cruz, J. W., Chavasco, J. K., Faria e Silva, P. M., Veloso, M. P. & Dos Santos, M. H. (2009). J. Med. Food, 12, 403–407. [DOI] [PubMed]
  7. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  8. Naveen, S., Khanum, S. A., Devaiah, V. T., Shashikanth, S., Anandalwar, S. M. & Prasad, S. (2006). Anal. Sci.22, 183–184.
  9. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  10. Selvi, A. T., Joseph, G. S. & Jayaprakasha, G. K. (2003). Food Microbiol.20, 455–460.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809039488/hg2568sup1.cif

e-65-o2614-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809039488/hg2568Isup2.hkl

e-65-o2614-Isup2.hkl (101.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES