Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):o2904–o2905. doi: 10.1107/S1600536809043827

Steviamine, a new class of indolizidine alkaloid [(1R,2S,3R,5R,8aR)-3-hydroxy­meth­yl-5-methyl­octa­hydro­indolizine-1,2-diol hydro­bromide]

Amber L Thompson a,*, Agnieszka Michalik b, Robert J Nash b, Francis X Wilson c, Renate van Well c, Peter Johnson c, George W J Fleet d, Chu-Yi Yu e, Xiang-Guo Hu e, Richard I Cooper a, David J Watkin a
PMCID: PMC2971327  PMID: 21578486

Abstract

X-ray crystallographic analysis of the title hydro­bromide salt, C10H20N+·Br, of (1R,2S,3R,5R,8aR)-3-hydroxy­meth­yl-5-methyl­octa­hydro­indolizine-1,2-diol defines the absolute and relative stereochemistry at the five chiral centres in steviamine, a new class of polyhydroxy­lated indolizidine alkaloid isolated from Stevia rebaudiana (Asteraceae) leaves. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯Br and N—H⋯Br hydrogen bonds, forming double chains around the twofold screw axes along the b-axis direction. Intra­molecular O—H⋯O inter­actions occur.

Related literature

For background to the biological activity of indolizidines, see: Asano et al. (2000a ,2000b ); Colegate et al. (1979); Davis et al. (1996); Donohoe et al. (2008); Durantel (2009); Hakansson et al. (2008); Hohenschutz et al. (1981); Kato et al. (1999, 2007); Klein et al. (1999); Lagana et al. (2006); Sengoku et al. (2009); Watson et al. (2001); Whitby et al. (2005); Yamashita et al. (2002). For the Hooft parameter, see: Hooft et al. (2008). For the extinction correction, see: Larson (1970).graphic file with name e-65-o2904-scheme1.jpg

Experimental

Crystal data

  • C10H20N+·Br

  • M r = 282.18

  • Orthorhombic, Inline graphic

  • a = 8.4616 (1) Å

  • b = 8.8762 (1) Å

  • c = 15.8270 (2) Å

  • V = 1188.72 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.45 mm−1

  • T = 150 K

  • 0.46 × 0.46 × 0.26 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer

  • Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) T min = 0.20, T max = 0.41

  • 2675 measured reflections

  • 2658 independent reflections

  • 2484 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.052

  • S = 1.00

  • 2658 reflections

  • 138 parameters

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.52 e Å−3

  • Absolute structure: Flack (1983), 1102 Friedel pairs

  • Flack parameter: 0.002 (10)

Data collection: COLLECT (Nonius, 2001).; cell refinement: DENZO/SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO/SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: CAMERON (Watkin et al., 1996); software used to prepare material for publication: CRYSTALS.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043827/lh2918sup1.cif

e-65-o2904-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043827/lh2918Isup2.hkl

e-65-o2904-Isup2.hkl (133KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H51⋯O2 0.84 2.34 2.684 (3) 105
O5—H51⋯O15 0.84 2.53 3.018 (3) 118
N7—H71⋯Br1 0.98 2.29 3.268 (2) 172
O2—H21⋯Br1i 0.82 2.55 3.364 (2) 177
O15—H151⋯Br1ii 0.84 2.39 3.211 (2) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

Well over 100 iminosugars - analogues of sugars in which the ring oxygen is replaced by nitrogen - have been isolated as natural products (Asano et al., 2000a; Watson et al., 2001). This paper establishes both the relative and absolute stereochemistry of the five chiral centres in steviamine (1), recently isolated from the leaves of Stevia rebaudiana (Asteraceae); (1) is the first example of a new class of indolizidine alkaloid with an alkyl group attached to the piperidine ring. Swainsonine (2, see Fig. 1), a trihydroxyindolizidine isolated from Swainsona canescens (Colegate et al., 1979), is a powerful inhibitor of α-mannosidases and has potential as a chemotherapeutic agent for the treatment of cancer (Lagana et al., 2006; Klein et al., 1999). l-Swainsonine 3, the enantiomer of 2, is a very powerful α-rhamnosidase inhibitor (Davis et al., 1996); 4 in which a methyl group is introduced into the piperidine ring is nearly 100 times more potent an inhibitor than 2 (Hakansson et al., 2008). Castanospermine 5, isolated from Castanospermum australe (Hohenschutz et al., 1981), is an inhibitor of some α-glucosidases and a potent inhibitor of dengue virus infection in vivo (Whitby et al., 2005); Celgosivir, a simple derivative of 5, is in development for the treatment of HCV infection (Durantel, 2009). Hyacinthacine A4 6, isolated from Scilla sibirica (Asano et al., 2000b; Yamashita et al., 2002), is the pyrrolizidine equivalent of steviamine 1. Many hyacinthacines have been isolated from a range of plants (Kato et al., 1999; Kato et al., 2007) and have attracted considerable attention from synthetic organic chemists (Sengoku et al., 2009; Donohoe et al., 2008). Steviamine 1 is unlikely to be the only naturally occurring indolizidine with a methyl branch which will provide similarly challenging synthetic targets.

As a natural product, the crystal was expected to be enantiopure and the Flack x parameter refined to 0.002 (10) (Flack, 1983). Analysis of the Bijvoet differences using within CRYSTALS (Betteridge et al., 2003) gives the Hooft y parameter as 0.023 (6), indicating that the probability that the configuration is incorrect allowing for the posibility of racemic twinning is less than 0.000001% (Hooft et al., 2008).

On examination of hydrogen bonding interactions in 1, the position of H51 initially seemed incorrect, lying between atoms O2 and O15. However, examination of the difference map indicates the presence of a peak believed to be a hydrogen atom which moves little on refinement suggesting the hydrogen bond is bifurcated (Fig. 2, Table 1). The molecules are linked together by three hydrogen bonds (two O—H···Br and one N—H···Br, Table 1) to form double chains around the twofold screw axes along the b direction (Fig. 3).

Experimental

Steviamine was isolated by a combination of strongly acidic cation, and strongly basic anion, exchange chromatography. The compound was retained on cation exchange resin (IR120) and was chromatographed on the anion exchange resin (CG400) from which it was eluted with water. Isolation was monitored using GC-MS of the trimethylsilyl-derivative (distinctive major ion at 314 amu). Steviamine was crystallized as its hydrobromide salt from ethanol.

Refinement

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined separately with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and Uiso(H) (in the range 1.2–1.5 times Ueq of the parent atom), after which the positions were refined with riding constraints.

On comparison of Fo and Fc, it was apparent that for large values, of Fo was noticably less than Fc, so an extinction parameter was refined (Larson, 1970).

Figures

Fig. 1.

Fig. 1.

Chemical structures of compounds 1 - 6.

Fig. 2.

Fig. 2.

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown with a dotted lines.

Fig. 3.

Fig. 3.

1 forms hydrogen bonded double chains around around the twofold screw axis parallel to the b-axis (viewed down the c-axis). Hydrogen bonding interactions are shown as dotted lines and all hydrogen atoms not involved are omitted for clarity.

Crystal data

C10H20N+·Br Dx = 1.577 Mg m3
Mr = 282.18 Melting point: not measured K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 1544 reflections
a = 8.4616 (1) Å θ = 5–27°
b = 8.8762 (1) Å µ = 3.45 mm1
c = 15.8270 (2) Å T = 150 K
V = 1188.72 (2) Å3 Plate, colourless
Z = 4 0.46 × 0.46 × 0.26 mm
F(000) = 584

Data collection

Nonius KappaCCD area-detector diffractometer 2484 reflections with I > 2σ(I)
graphite Rint = 0.042
ω scans θmax = 27.5°, θmin = 5.1°
Absorption correction: multi-scan (DENZO/SCALEPACK; Otwinowski & Minor, 1997) h = −10→10
Tmin = 0.20, Tmax = 0.41 k = −11→11
2675 measured reflections l = −20→20
2658 independent reflections

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full Method = Modified Sheldrick w = 1/[σ2(F2) + ( 0.01P)2 + 0.86P], where P = [max(Fo2,0) + 2Fc2]/3
R[F2 > 2σ(F2)] = 0.025 (Δ/σ)max = 0.001
wR(F2) = 0.052 Δρmax = 0.37 e Å3
S = 1.00 Δρmin = −0.52 e Å3
2658 reflections Extinction correction: Larson (1970), Equation 22
138 parameters Extinction coefficient: 75 (8)
0 restraints Absolute structure: Flack (1983), 1102 Friedel-pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.002 (10)
Hydrogen site location: inferred from neighbouring sites

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.29652 (3) 0.79140 (2) 0.693045 (16) 0.0373
O2 −0.0613 (2) 0.2681 (2) 0.63610 (12) 0.0470
C3 0.0377 (3) 0.3939 (3) 0.65007 (17) 0.0381
C4 0.1564 (4) 0.3703 (3) 0.72343 (15) 0.0436
O5 0.1230 (3) 0.2427 (2) 0.77338 (12) 0.0682
C6 0.3207 (4) 0.3611 (2) 0.68353 (14) 0.0362
N7 0.2994 (3) 0.45785 (19) 0.60566 (10) 0.0248
C8 0.1381 (3) 0.4183 (3) 0.57125 (14) 0.0267
C9 0.0873 (3) 0.5356 (3) 0.50829 (16) 0.0349
C10 0.2069 (4) 0.5435 (3) 0.43633 (14) 0.0389
C11 0.3726 (3) 0.5724 (3) 0.47093 (16) 0.0394
C12 0.4244 (3) 0.4594 (3) 0.53787 (15) 0.0330
C13 0.5841 (3) 0.4996 (4) 0.5756 (2) 0.0490
C14 0.3784 (4) 0.2019 (3) 0.66419 (17) 0.0517
O15 0.2695 (3) 0.12282 (19) 0.61308 (12) 0.0522
H31 −0.0258 0.4840 0.6613 0.0459*
H41 0.1545 0.4576 0.7609 0.0522*
H61 0.4003 0.4116 0.7186 0.0435*
H81 0.1481 0.3216 0.5435 0.0325*
H92 0.0822 0.6334 0.5366 0.0421*
H91 −0.0170 0.5096 0.4861 0.0419*
H102 0.1762 0.6219 0.3973 0.0473*
H101 0.2044 0.4458 0.4063 0.0468*
H111 0.3741 0.6720 0.4958 0.0478*
H112 0.4450 0.5700 0.4237 0.0485*
H121 0.4243 0.3580 0.5138 0.0384*
H132 0.6602 0.5024 0.5310 0.0746*
H131 0.5781 0.5970 0.6021 0.0735*
H133 0.6131 0.4254 0.6167 0.0738*
H141 0.3923 0.1509 0.7163 0.0614*
H142 0.4798 0.2080 0.6355 0.0607*
H151 0.2850 0.0336 0.6278 0.0778*
H21 −0.1216 0.2726 0.6762 0.0723*
H51 0.0999 0.1687 0.7424 0.1018*
H71 0.2900 0.5607 0.6279 0.0500*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.04557 (13) 0.02142 (11) 0.04505 (13) −0.00181 (11) 0.00573 (13) −0.00477 (10)
O2 0.0451 (11) 0.0463 (11) 0.0495 (11) −0.0168 (9) 0.0134 (8) 0.0013 (9)
C3 0.0472 (16) 0.0264 (12) 0.0406 (14) −0.0030 (11) 0.0188 (12) −0.0031 (10)
C4 0.078 (2) 0.0311 (12) 0.0220 (11) −0.0217 (13) 0.0128 (12) −0.0036 (9)
O5 0.1153 (19) 0.0591 (14) 0.0301 (9) −0.0488 (13) −0.0052 (11) 0.0145 (9)
C6 0.0647 (17) 0.0209 (10) 0.0230 (11) −0.0009 (11) −0.0096 (13) 0.0022 (9)
N7 0.0324 (9) 0.0199 (8) 0.0220 (8) −0.0004 (9) 0.0005 (9) −0.0002 (6)
C8 0.0307 (12) 0.0229 (10) 0.0266 (11) −0.0031 (9) 0.0027 (10) −0.0016 (8)
C9 0.0349 (13) 0.0358 (13) 0.0339 (13) 0.0056 (11) −0.0047 (11) −0.0005 (11)
C10 0.0489 (14) 0.0414 (13) 0.0263 (11) 0.0028 (14) −0.0021 (13) 0.0093 (10)
C11 0.0466 (15) 0.0391 (14) 0.0326 (13) −0.0071 (12) 0.0113 (12) 0.0065 (11)
C12 0.0317 (13) 0.0356 (13) 0.0316 (12) 0.0015 (10) 0.0044 (10) −0.0048 (10)
C13 0.0316 (14) 0.0627 (19) 0.0526 (17) 0.0008 (13) 0.0022 (13) −0.0101 (14)
C14 0.091 (2) 0.0238 (12) 0.0401 (13) 0.0082 (16) −0.0209 (14) −0.0002 (12)
O15 0.0927 (18) 0.0219 (8) 0.0419 (10) 0.0030 (10) −0.0184 (11) −0.0038 (7)

Geometric parameters (Å, °)

O2—C3 1.414 (3) C9—H92 0.978
O2—H21 0.815 C9—H91 0.977
C3—C4 1.549 (4) C10—C11 1.527 (4)
C3—C8 1.525 (3) C10—H102 0.965
C3—H31 0.980 C10—H101 0.989
C4—O5 1.409 (3) C11—C12 1.523 (4)
C4—C6 1.529 (4) C11—H111 0.968
C4—H41 0.976 C11—H112 0.967
O5—H51 0.843 C12—C13 1.519 (4)
C6—N7 1.513 (3) C12—H121 0.977
C6—C14 1.526 (3) C13—H132 0.955
C6—H61 0.981 C13—H131 0.963
N7—C8 1.511 (3) C13—H133 0.958
N7—C12 1.507 (3) C14—O15 1.412 (3)
N7—H71 0.982 C14—H141 0.949
C8—C9 1.504 (3) C14—H142 0.972
C8—H81 0.967 O15—H151 0.836
C9—C10 1.525 (4)
C3—O2—H21 102.1 C8—C9—H91 109.4
O2—C3—C4 113.2 (2) C10—C9—H91 110.0
O2—C3—C8 108.3 (2) H92—C9—H91 109.5
C4—C3—C8 105.7 (2) C9—C10—C11 110.44 (19)
O2—C3—H31 110.4 C9—C10—H102 109.4
C4—C3—H31 109.3 C11—C10—H102 110.8
C8—C3—H31 109.8 C9—C10—H101 107.7
C3—C4—O5 113.5 (2) C11—C10—H101 109.8
C3—C4—C6 106.69 (19) H102—C10—H101 108.6
O5—C4—C6 111.8 (2) C10—C11—C12 113.8 (2)
C3—C4—H41 109.7 C10—C11—H111 108.1
O5—C4—H41 107.1 C12—C11—H111 108.4
C6—C4—H41 107.9 C10—C11—H112 107.5
C4—O5—H51 110.3 C12—C11—H112 109.9
C4—C6—N7 101.4 (2) H111—C11—H112 109.0
C4—C6—C14 115.0 (2) C11—C12—N7 107.4 (2)
N7—C6—C14 113.58 (19) C11—C12—C13 112.0 (2)
C4—C6—H61 111.5 N7—C12—C13 110.3 (2)
N7—C6—H61 106.4 C11—C12—H121 109.6
C14—C6—H61 108.5 N7—C12—H121 105.6
C6—N7—C8 105.63 (18) C13—C12—H121 111.7
C6—N7—C12 120.1 (2) C12—C13—H132 108.4
C8—N7—C12 112.30 (16) C12—C13—H131 109.6
C6—N7—H71 104.2 H132—C13—H131 109.5
C8—N7—H71 105.8 C12—C13—H133 109.5
C12—N7—H71 107.6 H132—C13—H133 110.3
C3—C8—N7 103.98 (19) H131—C13—H133 109.6
C3—C8—C9 118.7 (2) C6—C14—O15 111.5 (2)
N7—C8—C9 109.66 (19) C6—C14—H141 107.9
C3—C8—H81 107.1 O15—C14—H141 110.0
N7—C8—H81 106.9 C6—C14—H142 108.9
C9—C8—H81 109.8 O15—C14—H142 109.6
C8—C9—C10 109.7 (2) H141—C14—H142 108.8
C8—C9—H92 108.9 C14—O15—H151 102.1
C10—C9—H92 109.3

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H51···O2 0.84 2.34 2.684 (3) 105
O5—H51···O15 0.84 2.53 3.018 (3) 118
N7—H71···Br1 0.98 2.29 3.268 (2) 172
O2—H21···Br1i 0.82 2.55 3.364 (2) 177
O15—H151···Br1ii 0.84 2.39 3.211 (2) 169

Symmetry codes: (i) −x, y−1/2, −z+3/2; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2918).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst.27, 435.
  2. Asano, N., Kuroi, H., Ikeda, K., Kizu, H., Kameda, Y., Kato, A., Adachi, I., Watson, A. A., Nash, R. J. & Fleet, G. W. J. (2000b). Tetrahedron Asymmetry, 11, 1–8.
  3. Asano, N., Nash, R. J., Molyneux, R. J. & Fleet, G. W. J. (2000a). Tetrahedron Asymmetry, 11, 1645–1680.
  4. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst.36, 1487.
  5. Colegate, S. M., Dorling, P. R. & Huxtable, C. R. (1979). Aust. J. Chem.32, 2257–2264.
  6. Davis, B., Bell, A. A., Nash, R. J., Watson, A. A., Griffiths, R. C., Jones, M. G., Smith, C. & Fleet, G. W. J. (1996). Tetrahedron Lett.37, 8565–8568.
  7. Donohoe, T. J., Thomas, R. E., Cheeseman, M. D., Rigby, C. L., Bhalay, G. & Linney, I. D. (2008). Org. Lett.10, 3615–3618. [DOI] [PubMed]
  8. Durantel, D. (2009). Curr. Opin. Invest. Drugs, 10, 860–870. [PubMed]
  9. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  10. Hakansson, A. E., van Ameijde, J., Horne, G., Nash, R. J., Wormald, M. R., Kato, A., Besra, G. S., Gurcha, S. & Fleet, G. W. J. (2008). Tetrahedron Lett.49, 179–184.
  11. Hohenschutz, L. D., Bell, E. A., Jewess, P. J., Leworthy, D. P., Pryce, R. J., Arnold, E. & Clardy, J. (1981). Phytochemistry, 20, 811–14.
  12. Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst.41, 96–103. [DOI] [PMC free article] [PubMed]
  13. Kato, A., Adachi, I., Miyauchi, M., Ikeda, K., Komae, T., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Wormald, M. R., Fleet, G. W. J. & Asano, N. (1999). Carbohydr. Res.316, 95–103. [DOI] [PubMed]
  14. Kato, A., Kato, N., Adachi, I., Hollinshead, J., Fleet, G. W. J., Kuriyama, C., Ikeda, K., Asano, N. & Nash, R. J. (2007). J. Nat. Prod.70, 993–997. [DOI] [PubMed]
  15. Klein, J. L. D., Roberts, J. D., George, M. D., Kurtzberg, J., Breton, P., Chermann, J. C. & Olden, K. (1999). Br. J. Cancer, 80, 87–95. [DOI] [PMC free article] [PubMed]
  16. Lagana, A., Goetz, J. G., Cheung, P., Raz, A., Dennis, J. W. & Nabi, I. R. (2006). Mol. Cell. Biol.26, 3181–3193. [DOI] [PMC free article] [PubMed]
  17. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  18. Nonius (2001). COLLECT Nonius BV, Delft, The Netherlands.
  19. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  20. Sengoku, T., Satoh, Y., Takahashi, M. & Yoda, H. (2009). Tetrahedron Lett.50, 4937–4940.
  21. Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON Chemical Crystallography Laboratory, Oxford, England.
  22. Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). Phytochemistry, 56, 265–295. [DOI] [PubMed]
  23. Whitby, K., Pierson, T. C., Geiss, B., Lane, K., Engle, M., Zhou, Y., Doms, R. W. & Diamond, M. S. (2005). J. Virol.79, 8698–8706. [DOI] [PMC free article] [PubMed]
  24. Yamashita, T., Yasuda, K., Kizu, H., Kameda, Y., Watson, A. A., Nash, R. J., Fleet, G. W. J. & Asano, N. (2002). J. Nat. Prod.65, 1875–1881. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809043827/lh2918sup1.cif

e-65-o2904-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043827/lh2918Isup2.hkl

e-65-o2904-Isup2.hkl (133KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES