Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 7;65(Pt 11):o2663. doi: 10.1107/S160053680903966X

N,N-Dicyclo­hexyl-2-(5,7-dichloro-8-quinol­yloxy)acetamide

Jing-Lin Wang a,*
PMCID: PMC2971332  PMID: 21578274

Abstract

The mol­ecular and crystal structures of the title compound, C23H28Cl2N2O2, are very close to those of the bromine-substituted analogue N,N-dicyclo­hexyl-2-(5,7-dibromo-8-quinol­yloxy)acetamide. The two cyclo­hexyl groups adopt normal chair conformation. The amide N and C atoms have a planar configuration. The crystal packing is stabilized by inter­molecular C—H⋯O hydrogen bonds and aromatic π⋯π stacking inter­actions [centroid–centroid separation = 3.5715 (4) Å for symmetry-related pyridine rings]. In addition, the crystal structure exhibits Cl⋯Cl halogen contacts of 3.4675 (3) Å.

Related literature

For background to the applications of 8-hydroxy­quinoline and its derivatives, see: Bratzel et al. (1972); Hanna et al. (2002); Pierre et al. (2003); Tang et al. (1987); Zeng et al. (2006). For structures of 8-hydroxy­quinolinate amide compounds, see: Bi et al. (2007); Tang et al. (2007); Liu et al. (2007).graphic file with name e-65-o2663-scheme1.jpg

Experimental

Crystal data

  • C23H28Cl2N2O2

  • M r = 435.37

  • Triclinic, Inline graphic

  • a = 9.8476 (11) Å

  • b = 10.7542 (12) Å

  • c = 11.1376 (12) Å

  • α = 72.392 (2)°

  • β = 86.880 (2)°

  • γ = 80.208 (2)°

  • V = 1107.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick,1996) T min = 0.934, T max = 0.946

  • 5942 measured reflections

  • 4088 independent reflections

  • 3400 reflections with I > 2σ(I)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.112

  • S = 1.02

  • 4088 reflections

  • 262 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903966X/bh2246sup1.cif

e-65-o2663-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903966X/bh2246Isup2.hkl

e-65-o2663-Isup2.hkl (200.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O2i 0.93 2.50 3.414 (3) 169
C10—H10B⋯O2ii 0.97 2.38 3.323 (2) 164

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

8-Hydroxyquinoline and its derivatives have been used widely in analytical chemistry (Bratzel et al., 1972), coordination chemistry (Hanna et al., 2002), pharmaceutical chemistry (Pierre et al., 2003), materials chemistry (Tang et al., 1987) and many other topics. The synthesis and the development of novel 8-hydroxyquinoline derivatives have been a significant research subject (Zeng et al., 2006). Recently, the structures of 8-hydroxyquinolinate amide-type compounds, namely, N,N-diphenyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide (Bi et al., 2007), N,N-diphenyl-2-(5,7-dichloroquinolin-8-yloxy)acetamide (Tang et al., 2007), and N,N-dicyclohexyl-2-(5,7-dibromoquinolin-8-yloxy)acetamide (Liu et al., 2007) have been reported. Here, we report the synthesis and crystal structure of the title compound, (I, Fig. 1), a new amide-based 5,7-dichloro-8-hydroxyquinoline derivative.

All bond lengths and angles in (I) are within normal ranges and comparable with those in the related above-cited compounds. Compound (I) has the same crystal form as the bromine analogue. The quinoline fragment is essentially planar, with a dihedral angle of 0.35 (9)° between the benzene (C1···C4/C8/C9) ring and pyridine (N1/C4···C8) ring. The two cyclohexyl groups adopt the normal chair conformation. The amide N and C atoms have a planar configuration. The crystal packing exhibits intermolecular C6—H6···O2 and C10—H10···O2 hydrogen bonds (Table 1 and Fig. 2), and π···π interactions [shortest centroid-centroid separation = 3.5715 (4) Å] between the pyridine rings of the neighbouring molecules. In addition, the crystal structure exhibits Cl···Cl halogen contacts of 3.4675 (3) Å.

Experimental

To a solution of 5,7-dichloro-8-hydroxyquinoline (4.18 g, 20 mmol) in acetone (60 ml) were added 2-chloro-N,N-dicyclohexylacetamide (5.16 g, 20 mmol), K2CO3 (3.04 g, 22 mmol) and KI (0.5 g), and the resulting mixture was refluxed for 5 h. After cooling to room temperature, the mixture was washed three times with water and filtered. The filter cake was collected and purified by recrystallization with a mixture of ethanol/water. Colourless single crystals of (I) suitable for X-ray diffraction study were obtained by slow evaporation of an ethanol solution over a period of 15 d.

Refinement

All H atoms were located in a difference Fourier map and constrained to ride on their parent atoms, with C—H = 0.95–0.99 Å and with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with atom labels and 30% probability displacement ellipsoids.

Fig. 2.

Fig. 2.

The packing diagram of (I), viewed down the a axis, showing the intermolecular hydrogen bonds (dashed lines).

Crystal data

C23H28Cl2N2O2 Z = 2
Mr = 435.37 F(000) = 460
Triclinic, P1 Dx = 1.305 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.8476 (11) Å Cell parameters from 2570 reflections
b = 10.7542 (12) Å θ = 2.7–25.7°
c = 11.1376 (12) Å µ = 0.32 mm1
α = 72.392 (2)° T = 293 K
β = 86.880 (2)° Rhombus, colourless
γ = 80.208 (2)° 0.22 × 0.20 × 0.18 mm
V = 1107.9 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 4088 independent reflections
Radiation source: fine-focus sealed tube 3400 reflections with I > 2σ(I)
graphite Rint = 0.018
φ and ω scans θmax = 25.7°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick,1996) h = −11→11
Tmin = 0.934, Tmax = 0.946 k = −13→10
5942 measured reflections l = −13→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112 H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0584P)2 + 0.3083P] where P = (Fo2 + 2Fc2)/3
4088 reflections (Δ/σ)max = 0.001
262 parameters Δρmax = 0.33 e Å3
0 restraints Δρmin = −0.24 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.10108 (5) 0.94426 (5) 0.29221 (5) 0.03764 (15)
Cl2 −0.02741 (8) 1.39471 (7) 0.41588 (7) 0.0698 (2)
O1 0.22307 (12) 1.10728 (12) 0.06239 (11) 0.0293 (3)
O2 0.16900 (12) 0.91089 (12) −0.08811 (12) 0.0314 (3)
N1 0.21941 (17) 1.37466 (16) −0.00224 (16) 0.0359 (4)
N2 0.32140 (14) 1.04756 (14) −0.18351 (13) 0.0243 (3)
C1 0.10394 (18) 1.11220 (19) 0.25299 (17) 0.0299 (4)
C2 0.04676 (19) 1.1801 (2) 0.33885 (19) 0.0373 (5)
H2A 0.0100 1.1348 0.4150 0.045*
C3 0.0459 (2) 1.3124 (2) 0.3093 (2) 0.0400 (5)
C4 0.10273 (19) 1.3853 (2) 0.19466 (19) 0.0349 (5)
C5 0.1058 (2) 1.5229 (2) 0.1581 (2) 0.0444 (5)
H5A 0.0684 1.5730 0.2105 0.053*
C6 0.1636 (2) 1.5813 (2) 0.0463 (2) 0.0473 (6)
H6A 0.1666 1.6715 0.0210 0.057*
C7 0.2187 (2) 1.5027 (2) −0.0303 (2) 0.0439 (5)
H7A 0.2577 1.5442 −0.1067 0.053*
C8 0.16118 (18) 1.31440 (19) 0.11007 (18) 0.0301 (4)
C9 0.16069 (17) 1.17641 (18) 0.14113 (17) 0.0277 (4)
C10 0.13960 (17) 1.11664 (18) −0.04396 (17) 0.0263 (4)
H10A 0.1299 1.2052 −0.1025 0.032*
H10B 0.0485 1.0971 −0.0158 0.032*
C11 0.21283 (17) 1.01619 (17) −0.10754 (16) 0.0249 (4)
C12 0.38451 (17) 0.96001 (17) −0.25850 (16) 0.0246 (4)
H12A 0.4570 1.0035 −0.3095 0.030*
C13 0.45558 (18) 0.82518 (18) −0.17828 (17) 0.0284 (4)
H13A 0.3882 0.7785 −0.1242 0.034*
H13B 0.5241 0.8370 −0.1251 0.034*
C14 0.5251 (2) 0.7433 (2) −0.26245 (19) 0.0364 (5)
H14A 0.5999 0.7849 −0.3089 0.044*
H14B 0.5638 0.6558 −0.2102 0.044*
C15 0.4236 (2) 0.73116 (19) −0.35466 (19) 0.0360 (5)
H15A 0.3540 0.6814 −0.3084 0.043*
H15B 0.4718 0.6829 −0.4093 0.043*
C16 0.3540 (2) 0.8660 (2) −0.43435 (18) 0.0351 (4)
H16A 0.2867 0.8548 −0.4891 0.042*
H16B 0.4223 0.9126 −0.4869 0.042*
C17 0.28254 (19) 0.94781 (19) −0.35147 (17) 0.0322 (4)
H17A 0.2076 0.9060 −0.3054 0.039*
H17B 0.2439 1.0352 −0.4040 0.039*
C18 0.37854 (17) 1.17059 (17) −0.19956 (16) 0.0246 (4)
H18A 0.3305 1.2136 −0.1397 0.029*
C19 0.35073 (19) 1.26735 (18) −0.33206 (17) 0.0303 (4)
H19A 0.3936 1.2264 −0.3942 0.036*
H19B 0.2523 1.2884 −0.3475 0.036*
C20 0.4082 (2) 1.39395 (19) −0.34509 (19) 0.0364 (5)
H20A 0.3579 1.4397 −0.2893 0.044*
H20B 0.3948 1.4516 −0.4308 0.044*
C21 0.5614 (2) 1.36517 (19) −0.31312 (19) 0.0364 (5)
H21A 0.6130 1.3274 −0.3739 0.044*
H21B 0.5934 1.4470 −0.3181 0.044*
C22 0.5870 (2) 1.26914 (19) −0.18086 (18) 0.0336 (4)
H22A 0.6851 1.2489 −0.1638 0.040*
H22B 0.5422 1.3102 −0.1195 0.040*
C23 0.53174 (18) 1.14179 (18) −0.16782 (17) 0.0290 (4)
H23A 0.5456 1.0840 −0.0822 0.035*
H23B 0.5822 1.0967 −0.2240 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0375 (3) 0.0326 (3) 0.0393 (3) −0.0063 (2) −0.0005 (2) −0.0051 (2)
Cl2 0.0808 (5) 0.0768 (5) 0.0705 (4) −0.0121 (4) 0.0222 (4) −0.0538 (4)
O1 0.0266 (6) 0.0312 (7) 0.0302 (7) 0.0007 (5) −0.0003 (5) −0.0123 (5)
O2 0.0284 (7) 0.0265 (7) 0.0431 (8) −0.0122 (5) 0.0090 (6) −0.0135 (6)
N1 0.0348 (9) 0.0320 (9) 0.0406 (9) −0.0091 (7) −0.0001 (7) −0.0084 (7)
N2 0.0248 (7) 0.0204 (8) 0.0297 (8) −0.0077 (6) 0.0051 (6) −0.0090 (6)
C1 0.0253 (9) 0.0323 (10) 0.0330 (10) −0.0056 (7) −0.0024 (7) −0.0103 (8)
C2 0.0320 (10) 0.0505 (13) 0.0334 (10) −0.0103 (9) 0.0040 (8) −0.0170 (9)
C3 0.0349 (10) 0.0507 (14) 0.0439 (12) −0.0047 (9) 0.0025 (9) −0.0299 (10)
C4 0.0282 (10) 0.0358 (11) 0.0457 (12) −0.0021 (8) −0.0051 (8) −0.0205 (9)
C5 0.0383 (11) 0.0362 (12) 0.0661 (15) −0.0001 (9) −0.0099 (10) −0.0275 (11)
C6 0.0449 (12) 0.0289 (11) 0.0694 (16) −0.0073 (9) −0.0133 (11) −0.0136 (11)
C7 0.0446 (12) 0.0353 (12) 0.0507 (13) −0.0144 (9) −0.0026 (10) −0.0065 (10)
C8 0.0226 (9) 0.0312 (10) 0.0376 (10) −0.0035 (7) −0.0044 (8) −0.0115 (8)
C9 0.0209 (8) 0.0324 (10) 0.0314 (9) −0.0018 (7) −0.0020 (7) −0.0128 (8)
C10 0.0218 (8) 0.0265 (10) 0.0315 (9) −0.0054 (7) 0.0019 (7) −0.0094 (7)
C11 0.0213 (8) 0.0244 (10) 0.0287 (9) −0.0050 (7) −0.0012 (7) −0.0066 (7)
C12 0.0242 (9) 0.0239 (9) 0.0290 (9) −0.0092 (7) 0.0057 (7) −0.0108 (7)
C13 0.0286 (9) 0.0278 (10) 0.0301 (9) −0.0047 (7) −0.0024 (7) −0.0103 (8)
C14 0.0357 (10) 0.0316 (11) 0.0418 (11) 0.0012 (8) −0.0016 (9) −0.0139 (9)
C15 0.0465 (11) 0.0297 (11) 0.0371 (11) −0.0106 (9) 0.0046 (9) −0.0163 (9)
C16 0.0421 (11) 0.0367 (11) 0.0306 (10) −0.0092 (9) −0.0026 (8) −0.0140 (8)
C17 0.0322 (10) 0.0329 (11) 0.0321 (10) −0.0030 (8) −0.0050 (8) −0.0109 (8)
C18 0.0250 (9) 0.0209 (9) 0.0291 (9) −0.0074 (7) 0.0046 (7) −0.0082 (7)
C19 0.0298 (9) 0.0258 (10) 0.0340 (10) −0.0071 (7) −0.0012 (8) −0.0053 (8)
C20 0.0455 (12) 0.0231 (10) 0.0362 (11) −0.0087 (8) 0.0017 (9) −0.0009 (8)
C21 0.0440 (11) 0.0293 (11) 0.0392 (11) −0.0203 (9) 0.0064 (9) −0.0086 (8)
C22 0.0355 (10) 0.0313 (11) 0.0376 (11) −0.0150 (8) 0.0001 (8) −0.0104 (8)
C23 0.0294 (9) 0.0252 (10) 0.0315 (9) −0.0093 (7) −0.0017 (8) −0.0045 (8)

Geometric parameters (Å, °)

Cl1—C1 1.730 (2) C13—H13A 0.9700
Cl2—C3 1.743 (2) C13—H13B 0.9700
O1—C9 1.371 (2) C14—C15 1.519 (3)
O1—C10 1.447 (2) C14—H14A 0.9700
O2—C11 1.234 (2) C14—H14B 0.9700
N1—C7 1.315 (3) C15—C16 1.520 (3)
N1—C8 1.368 (2) C15—H15A 0.9700
N2—C11 1.351 (2) C15—H15B 0.9700
N2—C12 1.480 (2) C16—C17 1.527 (3)
N2—C18 1.483 (2) C16—H16A 0.9700
C1—C9 1.370 (3) C16—H16B 0.9700
C1—C2 1.410 (3) C17—H17A 0.9700
C2—C3 1.358 (3) C17—H17B 0.9700
C2—H2A 0.9300 C18—C23 1.526 (2)
C3—C4 1.422 (3) C18—C19 1.534 (2)
C4—C5 1.416 (3) C18—H18A 0.9800
C4—C8 1.424 (3) C19—C20 1.526 (3)
C5—C6 1.357 (3) C19—H19A 0.9700
C5—H5A 0.9300 C19—H19B 0.9700
C6—C7 1.402 (3) C20—C21 1.527 (3)
C6—H6A 0.9300 C20—H20A 0.9700
C7—H7A 0.9300 C20—H20B 0.9700
C8—C9 1.419 (3) C21—C22 1.527 (3)
C10—C11 1.527 (2) C21—H21A 0.9700
C10—H10A 0.9700 C21—H21B 0.9700
C10—H10B 0.9700 C22—C23 1.522 (2)
C12—C13 1.526 (2) C22—H22A 0.9700
C12—C17 1.529 (2) C22—H22B 0.9700
C12—H12A 0.9800 C23—H23A 0.9700
C13—C14 1.532 (3) C23—H23B 0.9700
C9—O1—C10 114.18 (13) C13—C14—H14B 109.3
C7—N1—C8 117.15 (18) H14A—C14—H14B 108.0
C11—N2—C12 119.90 (14) C14—C15—C16 111.50 (16)
C11—N2—C18 122.60 (14) C14—C15—H15A 109.3
C12—N2—C18 117.46 (13) C16—C15—H15A 109.3
C9—C1—C2 121.40 (18) C14—C15—H15B 109.3
C9—C1—Cl1 120.29 (15) C16—C15—H15B 109.3
C2—C1—Cl1 118.31 (15) H15A—C15—H15B 108.0
C3—C2—C1 119.38 (18) C15—C16—C17 110.99 (15)
C3—C2—H2A 120.3 C15—C16—H16A 109.4
C1—C2—H2A 120.3 C17—C16—H16A 109.4
C2—C3—C4 122.17 (18) C15—C16—H16B 109.4
C2—C3—Cl2 118.59 (16) C17—C16—H16B 109.4
C4—C3—Cl2 119.24 (16) H16A—C16—H16B 108.0
C5—C4—C3 125.15 (19) C16—C17—C12 110.61 (15)
C5—C4—C8 117.42 (19) C16—C17—H17A 109.5
C3—C4—C8 117.43 (18) C12—C17—H17A 109.5
C6—C5—C4 119.7 (2) C16—C17—H17B 109.5
C6—C5—H5A 120.2 C12—C17—H17B 109.5
C4—C5—H5A 120.2 H17A—C17—H17B 108.1
C5—C6—C7 118.6 (2) N2—C18—C23 111.79 (14)
C5—C6—H6A 120.7 N2—C18—C19 111.53 (14)
C7—C6—H6A 120.7 C23—C18—C19 111.35 (14)
N1—C7—C6 125.0 (2) N2—C18—H18A 107.3
N1—C7—H7A 117.5 C23—C18—H18A 107.3
C6—C7—H7A 117.5 C19—C18—H18A 107.3
N1—C8—C9 117.69 (17) C20—C19—C18 110.40 (15)
N1—C8—C4 122.22 (18) C20—C19—H19A 109.6
C9—C8—C4 120.09 (17) C18—C19—H19A 109.6
C1—C9—O1 120.48 (17) C20—C19—H19B 109.6
C1—C9—C8 119.52 (17) C18—C19—H19B 109.6
O1—C9—C8 119.92 (16) H19A—C19—H19B 108.1
O1—C10—C11 107.15 (13) C19—C20—C21 111.63 (16)
O1—C10—H10A 110.3 C19—C20—H20A 109.3
C11—C10—H10A 110.3 C21—C20—H20A 109.3
O1—C10—H10B 110.3 C19—C20—H20B 109.3
C11—C10—H10B 110.3 C21—C20—H20B 109.3
H10A—C10—H10B 108.5 H20A—C20—H20B 108.0
O2—C11—N2 123.20 (16) C22—C21—C20 110.66 (16)
O2—C11—C10 118.40 (15) C22—C21—H21A 109.5
N2—C11—C10 118.39 (15) C20—C21—H21A 109.5
N2—C12—C13 113.45 (14) C22—C21—H21B 109.5
N2—C12—C17 112.06 (14) C20—C21—H21B 109.5
C13—C12—C17 112.03 (15) H21A—C21—H21B 108.1
N2—C12—H12A 106.2 C23—C22—C21 110.94 (16)
C13—C12—H12A 106.2 C23—C22—H22A 109.5
C17—C12—H12A 106.2 C21—C22—H22A 109.5
C12—C13—C14 110.40 (15) C23—C22—H22B 109.5
C12—C13—H13A 109.6 C21—C22—H22B 109.5
C14—C13—H13A 109.6 H22A—C22—H22B 108.0
C12—C13—H13B 109.6 C22—C23—C18 110.84 (15)
C14—C13—H13B 109.6 C22—C23—H23A 109.5
H13A—C13—H13B 108.1 C18—C23—H23A 109.5
C15—C14—C13 111.47 (16) C22—C23—H23B 109.5
C15—C14—H14A 109.3 C18—C23—H23B 109.5
C13—C14—H14A 109.3 H23A—C23—H23B 108.1
C15—C14—H14B 109.3
C9—C1—C2—C3 1.0 (3) C12—N2—C11—O2 6.4 (2)
Cl1—C1—C2—C3 −179.00 (15) C18—N2—C11—O2 −175.96 (16)
C1—C2—C3—C4 −0.9 (3) C12—N2—C11—C10 −172.74 (14)
C1—C2—C3—Cl2 179.13 (15) C18—N2—C11—C10 4.9 (2)
C2—C3—C4—C5 −179.75 (19) O1—C10—C11—O2 102.13 (17)
Cl2—C3—C4—C5 0.2 (3) O1—C10—C11—N2 −78.66 (18)
C2—C3—C4—C8 0.2 (3) C11—N2—C12—C13 −66.8 (2)
Cl2—C3—C4—C8 −179.80 (14) C18—N2—C12—C13 115.52 (16)
C3—C4—C5—C6 179.7 (2) C11—N2—C12—C17 61.3 (2)
C8—C4—C5—C6 −0.3 (3) C18—N2—C12—C17 −116.39 (16)
C4—C5—C6—C7 0.1 (3) N2—C12—C13—C14 −176.85 (14)
C8—N1—C7—C6 0.3 (3) C17—C12—C13—C14 55.0 (2)
C5—C6—C7—N1 −0.2 (3) C12—C13—C14—C15 −54.8 (2)
C7—N1—C8—C9 179.69 (17) C13—C14—C15—C16 56.0 (2)
C7—N1—C8—C4 −0.5 (3) C14—C15—C16—C17 −56.3 (2)
C5—C4—C8—N1 0.4 (3) C15—C16—C17—C12 55.7 (2)
C3—C4—C8—N1 −179.53 (17) N2—C12—C17—C16 175.45 (14)
C5—C4—C8—C9 −179.73 (17) C13—C12—C17—C16 −55.7 (2)
C3—C4—C8—C9 0.3 (3) C11—N2—C18—C23 123.66 (17)
C2—C1—C9—O1 176.09 (16) C12—N2—C18—C23 −58.69 (19)
Cl1—C1—C9—O1 −3.9 (2) C11—N2—C18—C19 −110.94 (18)
C2—C1—C9—C8 −0.5 (3) C12—N2—C18—C19 66.71 (19)
Cl1—C1—C9—C8 179.51 (13) N2—C18—C19—C20 178.92 (14)
C10—O1—C9—C1 101.90 (19) C23—C18—C19—C20 −55.4 (2)
C10—O1—C9—C8 −81.49 (19) C18—C19—C20—C21 55.5 (2)
N1—C8—C9—C1 179.70 (16) C19—C20—C21—C22 −56.2 (2)
C4—C8—C9—C1 −0.1 (3) C20—C21—C22—C23 56.5 (2)
N1—C8—C9—O1 3.1 (2) C21—C22—C23—C18 −56.7 (2)
C4—C8—C9—O1 −176.79 (15) N2—C18—C23—C22 −178.16 (14)
C9—O1—C10—C11 −170.23 (14) C19—C18—C23—C22 56.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O2i 0.93 2.50 3.414 (3) 169
C10—H10B···O2ii 0.97 2.38 3.323 (2) 164

Symmetry codes: (i) x, y+1, z; (ii) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2246).

References

  1. Bi, S., Wu, X.-H., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4521.
  2. Bratzel, M. P., Aaron, J. J., Winefordner, J. D., Schulman, S. G. & Gershon, H. (1972). Anal. Chem.44, 1240–1245.
  3. Bruker (2001). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Hanna, W. G. & Moawad, M. M. (2002). J. Coord. Chem.55, 43–60.
  5. Liu, J.-F., Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4458.
  6. Pierre, J.-L., Baret, P. & Serratrice, G. (2003). Curr. Med. Chem.10, 1077–1084. [DOI] [PubMed]
  7. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Tang, C. W. & VanSlyke, S. A. (1987). Appl. Phys. Lett.51, 913–915.
  10. Tang, X.-F. & Wen, Y.-H. (2007). Acta Cryst. E63, o4598.
  11. Zeng, H.-P., OuYang, X.-H., Wang, T.-T., Yuan, G.-Z., Zhang, G.-H. & Zhang, X.-M. (2006). Cryst. Growth Des.6, 1697–1702.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680903966X/bh2246sup1.cif

e-65-o2663-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680903966X/bh2246Isup2.hkl

e-65-o2663-Isup2.hkl (200.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES