Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):o2859. doi: 10.1107/S1600536809043062

Diethyl [(4-bromo­phen­yl)(5-chloro-2-hydroxy­anilino)meth­yl]phospho­nate

V H H Surendra Babu a, M Krishnaiah a,*, G Syam Prasad b, C Suresh Reddy b, Rajni Kant c
PMCID: PMC2971341  PMID: 21578446

Abstract

In the title compound, C17H20BrClNO4P, inter­molecular C—H⋯O and N—H⋯O hydrogen bonds form centrosymmetric R 2 2(10) dimers linked through O—H⋯O inter­molecular hydrogen bonds, which form centrosymmetric R 2 2(16) dimers. All these hydrogen bonds form chains along [010]. In addition, the crystal structure is stabilized by weak C—H⋯Br hydrogen bonds. The very weak intramolecular N—H⋯O interaction forms a five-membered ring.

Related literature

For related structures, see: Krishnaiah et al. (2009); Yang et al. (2005).graphic file with name e-65-o2859-scheme1.jpg

Experimental

Crystal data

  • C17H20BrClNO4P

  • M r = 448.66

  • Triclinic, Inline graphic

  • a = 7.8596 (15) Å

  • b = 9.1887 (13) Å

  • c = 14.425 (2) Å

  • α = 82.921 (13)°

  • β = 80.372 (15)°

  • γ = 70.701 (16)°

  • V = 966.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 293 K

  • 0.30 × 0.24 × 0.18 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.511, T max = 0.653

  • 12477 measured reflections

  • 5846 independent reflections

  • 2891 reflections with I > 2σ(I)

  • R int = 0.031

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.140

  • S = 1.05

  • 5846 reflections

  • 226 parameters

  • H-atom parameters constrained

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.54 e Å−3

Data collection: CryAlis Pro (Oxford Diffraction, 2007); cell refinement: CryAlis Pro; data reduction: CryAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ZORTEPII (Zsolnai, 1997); software used to prepare material for publication: PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043062/hg2579sup1.cif

e-65-o2859-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043062/hg2579Isup2.hkl

e-65-o2859-Isup2.hkl (255.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯O8i 0.86 2.47 3.287 (4) 159
C24—H24A⋯O5ii 0.97 2.53 3.472 (7) 163
O8—H8⋯O5i 0.82 1.90 2.615 (4) 145
C15—H15⋯Br2iii 0.98 2.99 3.945 (4) 164
N4—H4⋯O8 0.86 2.27 2.626 (4) 104

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

MK thanks the University Grants Commission, New Delhi, for sanctioning the major research project for this work.

supplementary crystallographic information

Comment

A similar co-ordination in hydrogen bonding, diethyl[(5-chloro- 2-hydroxyanilino)(4-chlorophenyl)methyl]phosphonate has been reported by us (Krishnaiah et al., 2009). In continuation of our study on series of phosphonate compounds, we are now reporting the conformation of the structure of the title compound. The P=O(2) bond length is in good agreement with related structures (Krishnaiah et al., 2009; Yang et al., 2005). The bond angles O(2)—P(1)—O(1), O(2)—P(1)—O(3), O(2)—P(1)—C(7) are much larger than O(1)—P(1)—O(3) , O(1)—P(1)—C(7), O(3)—P(1)—C(7) bond angles, indicate a distorted tetrahedral around the phosphorus atom. The planar benzene rings are nearly perpendicular to each with dihedral angle of 78.1 (1)°. The P—O—C—C groups are in trans configuration avoiding steric interactions. The P(1)/O(1)/C(14)/C(15) group is nearly planar unlike the P(1)/O(3)/C(16)/C(17) group, the end atoms C(16)and C(17) are completely out of plane due to more thermal vibrations.

The O—H···O intermolecular hydrogen bonds act as a bridge between C—H···O intermolecular bonds, intra and intermolecular N—H···O hydrogen bonds. Here the phosphonate double bonded oxygen atom, which behaves as an acceptor participates in C—H···O intermolecular hydrogen bonding, whereas, the hydroxyl oxygen, which acts as both donor and acceptor, participates in the N—H···O intra and intermolecular hydrogen bonding. These hydrogen bond form chains along [010]. Additionally, the crystal structure is stabilized by C—H···Br hydrogen bonds.

Experimental

To a stirred solution of 2-amino-4-chlorophenol (0.72 g, 0.005 mol), 4-bromo benzaldehyde (0.005 mol) in anhydrous toluene (15 ml) was added dropwise. Stirring was continued at room temperature of lh. Then diethylphosphite (0.7 g, 0.005 mol) in anhydrous toulene (15 ml) was added dropwise. Stirring was continued at room temperature for another 0.5 h, later the mixture was heated under reflux for 4–6 h. After completion of reaction (monitored by TLC) and the solvent was removed under reduced pressure. The resulting residue was purified by column chromatography on silica gel using petroleum ether-ethyl acetate (8:2) as eluent. Colorless, rectangular shaped single crystals were obtained for diffraction studies using methanol by slow evaporation.

Refinement

H atoms bonded to N and O atoms were located in a difference map and refined with distance restraints of O—H = 0.82 and N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N,O). Other H-atoms bound to carbon were positioned geometrically and refined using a riding model with d(C—H) = 0.93Å Uiso=1.2eq (C) for aromatic, C—H = 0.980Å Uiso=1.2eq (C) for methine, 0.97Å Uiso = 1.2eq (C) for CH2 group and 0.96Å Uiso = 1.5eq (C) for CH3 group.

Figures

Fig. 1.

Fig. 1.

View of the molecule showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level.

Fig. 2.

Fig. 2.

Packing of the molecule in the unit cell

Crystal data

C17H20BrClNO4P Z = 2
Mr = 448.66 F(000) = 456
Triclinic, P1 Dx = 1.541 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.8596 (15) Å Cell parameters from 5846 reflections
b = 9.1887 (13) Å θ = 3.0–30.4°
c = 14.425 (2) Å µ = 2.37 mm1
α = 82.921 (13)° T = 293 K
β = 80.372 (15)° Rectangular, colorless
γ = 70.701 (16)° 0.30 × 0.24 × 0.18 mm
V = 966.8 (3) Å3

Data collection

Oxford Diffraction Xcalibur diffractometer 5846 independent reflections
Radiation source: fine-focus sealed tube 2891 reflections with I > 2σ(I)
graphite Rint = 0.031
ω–2θ scans θmax = 30.4°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −11→11
Tmin = 0.511, Tmax = 0.653 k = −13→12
12477 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0511P)2 + 0.6969P] where P = (Fo2 + 2Fc2)/3
5846 reflections (Δ/σ)max < 0.001
226 parameters Δρmax = 0.60 e Å3
0 restraints Δρmin = −0.54 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric.Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=dPlane 1 m1 = 0.92698(0.00062) m2 = 0.36804(0.00155) m3 = -0.07254(0.00162) D = 3.47552(0.01244) Atom d s d/s (d/s)**2 C1 * 0.0028 0.0034 0.823 0.678 C2 * 0.0007 0.0036 0.200 0.040 C3 * -0.0059 0.0040 - 1.479 2.188 C4 * 0.0072 0.0044 1.650 2.723 C5 * -0.0013 0.0041 - 0.319 0.102 C6 * -0.0029 0.0036 - 0.820 0.672 ============ Sum((d/s)**2) for starred atoms 6.403 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarityPlane 2 m1 = -0.16802(0.00159) m2 = 0.90248(0.00070) m3 = -0.39660(0.00142) D = 1.25137(0.01035) Atom d s d/s (d/s)**2 C8 * -0.0067 0.0030 - 2.243 5.033 C9 * 0.0049 0.0037 1.315 1.729 C10 * 0.0025 0.0039 0.638 0.407 C11 * -0.0045 0.0040 - 1.120 1.255 C12 * -0.0028 0.0048 - 0.589 0.347 C13 * 0.0112 0.0042 2.665 7.102 ============ Sum((d/s)**2) for starred atoms 15.874 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarityPlane 3 m1 = -0.36915(0.00155) m2 = 0.61070(0.00101) m3 = -0.70056(0.00061) D = -2.91653(0.00529) Atom d s d/s (d/s)**2 C15 * 0.0308 0.0053 5.844 34.149 C14 * -0.5236 0.0050 - 104.869 10997.448 O1 * 0.2184 0.0026 83.495 6971.443 P1 * -0.0205 0.0009 - 21.861 477.911 O3 * 0.2076 0.0031 66.126 4372.694 C16 * -0.5226 0.0056 - 93.878 8813.083 C17 * 0.3577 0.0071 50.270 2527.044 ============ Sum((d/s)**2) for starred atoms 34193.770 Chi-squared at 95% for 4 degrees of freedom: 9.49 The group of atoms deviates significantly from planarityPlane 4 m1 = -0.94870(0.00212) m2 = 0.26578(0.00425) m3 = -0.17128(0.00538) D = -2.37887(0.01364) Atom d s d/s (d/s)**2 P1 * 0.0007 0.0011 0.612 0.374 O1 * -0.0074 0.0032 - 2.332 5.440 C14 * -0.0127 0.0062 - 2.026 4.105 C15 * 0.0198 0.0063 3.175 10.079 ============ Sum((d/s)**2) for starred atoms 19.998 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarityPlane 5 m1 = 0.04035(0.00645) m2 = -0.93317(0.00349) m3 = 0.35715(0.00840) D = -0.00355(0.05973) Atom d s d/s (d/s)**2 P1 * -0.0057 0.0010 - 5.996 35.958 O3 * 0.0497 0.0032 15.570 242.410 C16 * 0.3855 0.0058 66.981 4486.437 C17 * -0.5407 0.0073 - 74.471 5545.978 ============ Sum((d/s)**2) for starred atoms 10310.782 Chi-squared at 95% for 1 degrees of freedom: 3.84 The group of atoms deviates significantly from planarityDihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 78.16 (0.12) 101.84 (0.12) 1 3 86.18 (0.11) 93.82 (0.11) 1 4 39.72 (1/4) 140.28 (1/4) 1 5 70.61 (0.38) 109.39 (0.38) 2 3 27.00 (0.10) 153.00 (0.10) 2 4 62.15 (0.26) 117.85 (0.26) 2 5 7.86 (0.39) 172.14 (0.39) 3 4 50.76 (0.29) 129.24 (0.29) 3 5 33.39 (0.43) 146.61 (0.43) 4 5 69.67 (0.45) 110.33 (0.45)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br2 0.84116 (6) 0.35425 (7) 0.05533 (3) 0.0831 (2)
P1 0.10786 (13) 0.17964 (11) 0.33103 (6) 0.0449 (2)
Cl3 −0.27410 (17) 0.89126 (14) 0.07732 (7) 0.0780 (4)
C14 −0.2049 (4) 0.7262 (4) 0.3792 (2) 0.0411 (7)
C16 0.2724 (4) 0.3699 (3) 0.2163 (2) 0.0376 (7)
N4 0.0040 (4) 0.4840 (3) 0.3349 (2) 0.0485 (7)
H4 0.0234 0.4629 0.3927 0.058*
O8 −0.1765 (4) 0.6665 (3) 0.46936 (17) 0.0567 (7)
H8 −0.2379 0.7304 0.5067 0.085*
C9 −0.1081 (4) 0.6286 (4) 0.3084 (2) 0.0382 (7)
C15 0.0895 (5) 0.3672 (4) 0.2688 (2) 0.0423 (8)
H15 0.0074 0.3829 0.2217 0.051*
O5 0.2300 (4) 0.1371 (3) 0.40377 (17) 0.0572 (7)
C11 −0.2492 (5) 0.8281 (4) 0.1956 (3) 0.0502 (9)
O6 0.1667 (4) 0.0744 (3) 0.24775 (18) 0.0593 (7)
C19 0.6080 (5) 0.3641 (5) 0.1206 (3) 0.0524 (9)
C10 −0.1319 (4) 0.6816 (4) 0.2156 (2) 0.0419 (8)
H10 −0.0691 0.6189 0.1669 0.050*
O7 −0.0912 (4) 0.1837 (4) 0.3670 (2) 0.0753 (8)
C17 0.3277 (5) 0.3198 (4) 0.1277 (2) 0.0487 (8)
H17 0.2498 0.2873 0.0994 0.058*
C13 −0.3194 (5) 0.8713 (4) 0.3567 (3) 0.0537 (9)
H13 −0.3830 0.9349 0.4049 0.064*
C18 0.4954 (5) 0.3157 (5) 0.0789 (2) 0.0538 (9)
H18 0.5308 0.2806 0.0187 0.065*
C20 0.5580 (6) 0.4167 (6) 0.2087 (3) 0.0685 (12)
H20 0.6367 0.4491 0.2365 0.082*
C12 −0.3424 (5) 0.9249 (4) 0.2649 (3) 0.0588 (10)
H12 −0.4188 1.0238 0.2503 0.071*
C21 0.3876 (5) 0.4210 (5) 0.2563 (3) 0.0581 (10)
H21 0.3510 0.4587 0.3158 0.070*
C22 0.1764 (8) −0.0834 (5) 0.2531 (3) 0.0801 (14)
H22A 0.0584 −0.0939 0.2786 0.096*
H22B 0.2633 −0.1438 0.2948 0.096*
C23 0.2321 (8) −0.1402 (6) 0.1596 (4) 0.0888 (16)
H23A 0.2394 −0.2471 0.1633 0.133*
H23B 0.3491 −0.1299 0.1348 0.133*
H23C 0.1447 −0.0812 0.1189 0.133*
C24 −0.1716 (7) 0.1893 (7) 0.4638 (4) 0.0946 (17)
H24A −0.1842 0.0893 0.4873 0.114*
H24B −0.0929 0.2121 0.5011 0.114*
C25 −0.3443 (8) 0.3037 (8) 0.4734 (5) 0.139 (3)
H25A −0.3946 0.3076 0.5388 0.208*
H25B −0.4236 0.2788 0.4386 0.208*
H25C −0.3319 0.4024 0.4495 0.208*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br2 0.0512 (3) 0.1413 (5) 0.0571 (3) −0.0336 (3) −0.00024 (19) −0.0086 (3)
P1 0.0521 (5) 0.0414 (5) 0.0367 (5) −0.0119 (4) 0.0040 (4) −0.0078 (4)
Cl3 0.0924 (8) 0.0726 (7) 0.0466 (6) 0.0013 (6) −0.0128 (5) 0.0068 (5)
C14 0.0396 (17) 0.0430 (19) 0.0380 (17) −0.0091 (14) −0.0025 (14) −0.0076 (14)
C16 0.0396 (17) 0.0295 (16) 0.0382 (17) −0.0026 (13) −0.0092 (13) −0.0004 (13)
N4 0.0571 (18) 0.0409 (16) 0.0337 (14) 0.0050 (13) −0.0057 (13) −0.0092 (12)
O8 0.0659 (16) 0.0500 (15) 0.0417 (14) 0.0012 (12) −0.0063 (12) −0.0128 (11)
C9 0.0331 (16) 0.0372 (18) 0.0404 (17) −0.0076 (13) 0.0013 (13) −0.0060 (14)
C15 0.0479 (19) 0.0409 (18) 0.0328 (16) −0.0046 (15) −0.0060 (14) −0.0085 (14)
O5 0.0761 (18) 0.0456 (15) 0.0406 (14) −0.0071 (13) −0.0073 (12) −0.0033 (11)
C11 0.046 (2) 0.053 (2) 0.047 (2) −0.0094 (17) −0.0110 (16) 0.0035 (17)
O6 0.0845 (19) 0.0450 (15) 0.0504 (15) −0.0265 (13) 0.0051 (13) −0.0142 (12)
C19 0.0420 (19) 0.065 (2) 0.048 (2) −0.0172 (17) −0.0069 (16) 0.0058 (18)
C10 0.0411 (18) 0.0381 (18) 0.0394 (18) −0.0041 (14) 0.0005 (14) −0.0077 (14)
O7 0.0709 (19) 0.092 (2) 0.0655 (19) −0.0371 (17) 0.0143 (15) −0.0151 (16)
C17 0.052 (2) 0.062 (2) 0.0355 (18) −0.0195 (18) −0.0062 (15) −0.0102 (16)
C13 0.056 (2) 0.041 (2) 0.050 (2) 0.0055 (17) −0.0049 (17) −0.0109 (16)
C18 0.054 (2) 0.070 (3) 0.0354 (18) −0.0170 (19) 0.0011 (16) −0.0130 (17)
C20 0.061 (3) 0.100 (3) 0.054 (2) −0.033 (2) −0.007 (2) −0.019 (2)
C12 0.056 (2) 0.042 (2) 0.065 (3) 0.0038 (17) −0.0085 (19) −0.0071 (18)
C21 0.056 (2) 0.079 (3) 0.043 (2) −0.022 (2) −0.0002 (17) −0.0222 (19)
C22 0.115 (4) 0.065 (3) 0.068 (3) −0.048 (3) 0.019 (3) −0.023 (2)
C23 0.113 (4) 0.074 (3) 0.086 (4) −0.040 (3) 0.018 (3) −0.042 (3)
C24 0.077 (3) 0.105 (4) 0.080 (3) −0.023 (3) 0.021 (3) 0.015 (3)
C25 0.086 (4) 0.154 (6) 0.115 (5) 0.015 (4) 0.039 (4) 0.002 (4)

Geometric parameters (Å, °)

Br2—C19 1.894 (4) C10—H10 0.9300
P1—O5 1.471 (3) O7—C24 1.433 (6)
P1—O6 1.548 (3) C17—C18 1.378 (5)
P1—O7 1.553 (3) C17—H17 0.9300
P1—C15 1.815 (3) C13—C12 1.375 (5)
Cl3—C11 1.755 (4) C13—H13 0.9300
C14—O8 1.372 (4) C18—H18 0.9300
C14—C13 1.375 (5) C20—C21 1.389 (6)
C14—C9 1.394 (4) C20—H20 0.9300
C16—C17 1.364 (5) C12—H12 0.9300
C16—C21 1.377 (5) C21—H21 0.9300
C16—C15 1.515 (5) C22—C23 1.452 (6)
N4—C9 1.379 (4) C22—H22A 0.9700
N4—C15 1.440 (4) C22—H22B 0.9700
N4—H4 0.8600 C23—H23A 0.9600
O8—H8 0.8200 C23—H23B 0.9600
C9—C10 1.388 (4) C23—H23C 0.9600
C15—H15 0.9800 C24—C25 1.413 (7)
C11—C12 1.367 (5) C24—H24A 0.9700
C11—C10 1.385 (5) C24—H24B 0.9700
O6—C22 1.420 (5) C25—H25A 0.9600
C19—C18 1.358 (5) C25—H25B 0.9600
C19—C20 1.365 (6) C25—H25C 0.9600
O5—P1—O6 115.61 (15) C12—C13—C14 121.8 (3)
O5—P1—O7 115.13 (17) C12—C13—H13 119.1
O6—P1—O7 104.18 (16) C14—C13—H13 119.1
O5—P1—C15 114.15 (16) C19—C18—C17 118.7 (3)
O6—P1—C15 100.95 (15) C19—C18—H18 120.7
O7—P1—C15 105.21 (17) C17—C18—H18 120.7
O8—C14—C13 124.4 (3) C19—C20—C21 118.9 (4)
O8—C14—C9 115.3 (3) C19—C20—H20 120.6
C13—C14—C9 120.3 (3) C21—C20—H20 120.6
C17—C16—C21 118.2 (3) C11—C12—C13 117.8 (3)
C17—C16—C15 120.3 (3) C11—C12—H12 121.1
C21—C16—C15 121.4 (3) C13—C12—H12 121.1
C9—N4—C15 122.0 (3) C16—C21—C20 120.7 (3)
C9—N4—H4 119.0 C16—C21—H21 119.6
C15—N4—H4 119.0 C20—C21—H21 119.6
C14—O8—H8 109.5 O6—C22—C23 109.5 (4)
N4—C9—C10 123.9 (3) O6—C22—H22A 109.8
N4—C9—C14 117.9 (3) C23—C22—H22A 109.8
C10—C9—C14 118.2 (3) O6—C22—H22B 109.8
N4—C15—C16 115.6 (3) C23—C22—H22B 109.8
N4—C15—P1 108.2 (2) H22A—C22—H22B 108.2
C16—C15—P1 110.7 (2) C22—C23—H23A 109.5
N4—C15—H15 107.4 C22—C23—H23B 109.5
C16—C15—H15 107.4 H23A—C23—H23B 109.5
P1—C15—H15 107.4 C22—C23—H23C 109.5
C12—C11—C10 122.0 (3) H23A—C23—H23C 109.5
C12—C11—Cl3 119.5 (3) H23B—C23—H23C 109.5
C10—C11—Cl3 118.5 (3) C25—C24—O7 110.6 (5)
C22—O6—P1 126.1 (3) C25—C24—H24A 109.5
C18—C19—C20 121.5 (4) O7—C24—H24A 109.5
C18—C19—Br2 119.0 (3) C25—C24—H24B 109.5
C20—C19—Br2 119.6 (3) O7—C24—H24B 109.5
C11—C10—C9 119.9 (3) H24A—C24—H24B 108.1
C11—C10—H10 120.0 C24—C25—H25A 109.5
C9—C10—H10 120.0 C24—C25—H25B 109.5
C24—O7—P1 124.8 (3) H25A—C25—H25B 109.5
C16—C17—C18 122.0 (3) C24—C25—H25C 109.5
C16—C17—H17 119.0 H25A—C25—H25C 109.5
C18—C17—H17 119.0 H25B—C25—H25C 109.5
C15—N4—C9—C10 −8.0 (5) N4—C9—C10—C11 179.2 (3)
C15—N4—C9—C14 171.1 (3) C14—C9—C10—C11 0.1 (5)
O8—C14—C9—N4 0.3 (4) O5—P1—O7—C24 16.9 (4)
C13—C14—C9—N4 −179.6 (3) O6—P1—O7—C24 144.5 (4)
O8—C14—C9—C10 179.5 (3) C15—P1—O7—C24 −109.7 (4)
C13—C14—C9—C10 −0.4 (5) C21—C16—C17—C18 1.5 (5)
C9—N4—C15—C16 88.1 (4) C15—C16—C17—C18 −177.9 (3)
C9—N4—C15—P1 −147.2 (3) O8—C14—C13—C12 −180.0 (4)
C17—C16—C15—N4 −150.5 (3) C9—C14—C13—C12 −0.1 (6)
C21—C16—C15—N4 30.1 (4) C20—C19—C18—C17 −0.3 (6)
C17—C16—C15—P1 86.1 (3) Br2—C19—C18—C17 178.5 (3)
C21—C16—C15—P1 −93.3 (3) C16—C17—C18—C19 −0.4 (6)
O5—P1—C15—N4 −65.4 (3) C18—C19—C20—C21 −0.2 (7)
O6—P1—C15—N4 169.9 (2) Br2—C19—C20—C21 −179.0 (3)
O7—P1—C15—N4 61.7 (3) C10—C11—C12—C13 −1.4 (6)
O5—P1—C15—C16 62.1 (3) Cl3—C11—C12—C13 180.0 (3)
O6—P1—C15—C16 −62.6 (3) C14—C13—C12—C11 0.9 (6)
O7—P1—C15—C16 −170.7 (2) C17—C16—C21—C20 −2.1 (6)
O5—P1—O6—C22 66.1 (4) C15—C16—C21—C20 177.3 (4)
O7—P1—O6—C22 −61.3 (4) C19—C20—C21—C16 1.4 (7)
C15—P1—O6—C22 −170.2 (4) P1—O6—C22—C23 178.3 (3)
C12—C11—C10—C9 0.9 (6) P1—O7—C24—C25 132.8 (5)
Cl3—C11—C10—C9 179.5 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4···O8i 0.86 2.47 3.287 (4) 159
C24—H24A···O5ii 0.97 2.53 3.472 (7) 163
O8—H8···O5i 0.82 1.90 2.615 (4) 145
C15—H15···Br2iii 0.98 2.99 3.945 (4) 164
N4—H4···O8 0.86 2.27 2.626 (4) 104

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2579).

References

  1. Krishnaiah, M., Surendra Babu, V. H. H., Syam Prasad, G., Suresh Reddy, C. & Puranik, V. G. (2009). Acta Cryst. E65, o2506–o2507. [DOI] [PMC free article] [PubMed]
  2. Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  3. Oxford Diffraction (2007). CrysAlis Pro and CrysAlis RED Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
  4. Sheldrick, G. M. (2004). SADABS University of Gottingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Yang, S., Song, B., Zhang, G. P., Jin, L.-H., Hu, D.-Y. & Xue, W. (2005). Acta Cryst. E61, o1662–o1664.
  7. Zsolnai, L. (1997). ZORTEPII University of Heidelberg, Germany.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809043062/hg2579sup1.cif

e-65-o2859-sup1.cif (23.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809043062/hg2579Isup2.hkl

e-65-o2859-Isup2.hkl (255.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES