Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Oct 28;65(Pt 11):o2879. doi: 10.1107/S1600536809044080

Trichodermol (4α-hydr­oxy-12,13-epoxy­trichothec-9-ene)

Jing-Li Cheng a, Yong Zhou a, Fu-Cheng Lin b, Jin-Hao Zhao a,*, Guo-Nian Zhu a
PMCID: PMC2971347  PMID: 21578465

Abstract

In the title compound, C15H22O3, the five-membered ring displays an envelope conformation, whereas the two six-membered rings show different conformations, viz. chair and half-chair. In the crystal, mol­ecules are linked through inter­molecular O—H⋯O hydrogen bonds, forming chains running along the b axis.

Related literature

For the fungicidal activity of the endophytic fungus Trichoderma taxi sp. nov. from Taxus mairei, see: Nielsen et al. (2005); Zhang et al. (2007). For the related Trichodermin structure, see: Chen et al. (2008). For the extinction correction, see: Larson (1970).graphic file with name e-65-o2879-scheme1.jpg

Experimental

Crystal data

  • C15H22O3

  • M r = 250.34

  • Monoclinic, Inline graphic

  • a = 6.8284 (2) Å

  • b = 6.6209 (3) Å

  • c = 14.7170 (6) Å

  • β = 96.7507 (11)°

  • V = 660.74 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.66 × 0.49 × 0.28 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.934, T max = 0.976

  • 6503 measured reflections

  • 1634 independent reflections

  • 1540 reflections with F 2 > 2σ(F 2)

  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.095

  • S = 1.00

  • 1634 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.15 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SIR97 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044080/si2217sup1.cif

e-65-o2879-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044080/si2217Isup2.hkl

e-65-o2879-Isup2.hkl (80.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H201⋯O1i 0.84 2.02 2.839 (2) 165

Symmetry code: (i) Inline graphic.

Acknowledgments

The work was supported by the Science and Technology Project of Zhejiang Province (No. 2008 C02007–3) and the National Natural Science Foundation of China (No. 30700532).

supplementary crystallographic information

Comment

The endophytic fungi Trichoderma taxi sp. nov. from Taxus mairei can produce a compound with fungicidal activity-Trichodermin (Zhang et al., 2007), which is a member of the 4β-aceoxy-12,13-epoxytrichothecene family (Nielsen et al., 2005). Bioassays showed Trichodermin strongly inhibited Rhizoctonia solani and Botrytis cinere. In order to find the relationship between the stereochemistry of the C4 position and biological activities, the title compound had been designed and synthesized. Its molecular structure is shown in Fig. 1. In the molecule, the five membered ring displays an envelope conformation with atom C11 at the flap position 0.715 (3) Å out of the mean plane formed by the other four atoms. The O1-containing six-membered ring displays a chair conformation. The typical C2=C3 double bond length of 1.325 (2) Å suggests that C2 and C3 atoms are sp2 hybridized, which correlates with the larger C1—C2—C3 bond angle of 124.36 (16) ° and C2—C3—C4 bond angle of 122.95 (18) ° and a small C1—C2—C3—C4 torsion angle of -3.0 (3) °, as compared to 3.0 (3) ° in the compound of Trichodermin. And the C3-containing six-membered ring displays a half-chair conformation, as well as the compound of Trichodermin (Chen et al.). There are intermolecular O—H···O hydrogen bonds (Table 1) in the crystal structure, which lead to the formation of chains running along the b axis (Fig. 2).

Experimental

To a solution of 12,13-Epoxytrichothec-9-ene-4-one (1 g) in THF(100 ml) containing 10 ml of methanol was added sodium borohydride (100 mg) and the reactant was partitioned between 100 ml of ethyl acetate and water. The organic layer was dried with MgSO4 and concentrated, and the residue was chromatographed to give 620 mg solid precipitate. The solid was filtrated and recrystallized with 95% ethanol to colourless blocks.

[α]D = 65.7 (c 0.052). ESI-MS: 251 (M+H)+ (100%); 1H-NMR (500 MHz, CDCl3, ppm): 5.46 (1H, d, J=5.5Hz, H-10), 4.27 (1H, t, H-4), 4.22 (1H, d, J=5.5Hz, H-2), 3.67 (1H, d, J=5.5Hz, H-11), 3.05 (1H, d, J=4.0Hz, H-13), 2.78 (1H, d, J=4.0Hz, H-13), 2.56-2.49 (1H, m, H-3), 2.00-1.97 (2H, m, H-8), 1.97-1.96 (1H, m, H-3), 1.96-1.94 (1H, m, H-7), 1.71 (3H, s, H-16), 1.33-1.31 (1H, m, H-7), 1.09 (3H, s, H-14), 0.86 (3H, s, H-15).

Refinement

In the absence of significant anomalous scattering effects, Friedel pairs were averaged; the absolute configuration was not determined. The H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). The methyl group was allowed to rotate, but not to tip, to best fit the electron density.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

View showing the O—H···O hydrogen bonding (dashed lines). Symmetry code: (i) = (1+x, y, 1+z).

Crystal data

C15H22O3 F(000) = 272.00
Mr = 250.34 Dx = 1.258 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71075 Å
Hall symbol: P 2yb Cell parameters from 6124 reflections
a = 6.8284 (2) Å θ = 3.0–27.4°
b = 6.6209 (3) Å µ = 0.09 mm1
c = 14.7170 (6) Å T = 296 K
β = 96.7507 (11)° Chunk, colorless
V = 660.74 (4) Å3 0.66 × 0.49 × 0.28 mm
Z = 2

Data collection

Rigaku R-AXIS RAPID IP diffractometer 1540 reflections with F2 > 2σ(F2)
Detector resolution: 10.00 pixels mm-1 Rint = 0.018
ω scans θmax = 27.4°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −7→8
Tmin = 0.934, Tmax = 0.976 k = −8→8
6503 measured reflections l = −19→18
1634 independent reflections

Refinement

Refinement on F2 w = 1/[0.0012Fo2 + 1.5σ(Fo2)]/(4Fo2)
R[F2 > 2σ(F2)] = 0.034 (Δ/σ)max < 0.001
wR(F2) = 0.095 Δρmax = 0.17 e Å3
S = 1.00 Δρmin = −0.15 e Å3
1634 reflections Extinction correction: Larson (1970), equation 22
164 parameters Extinction coefficient: 184 (28)
H-atom parameters constrained

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY
Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.84609 (16) 0.3577 (2) 0.83213 (8) 0.0329 (3)
O2 0.9112 (2) 0.9341 (2) 0.83678 (11) 0.0535 (4)
O3 0.44991 (17) 0.5728 (2) 0.95141 (8) 0.0428 (3)
C1 0.8680 (2) 0.4910 (2) 0.75578 (11) 0.0295 (4)
C2 0.9296 (2) 0.3595 (3) 0.68075 (12) 0.0389 (4)
C3 0.8120 (2) 0.3061 (3) 0.60656 (12) 0.0423 (5)
C4 0.5978 (2) 0.3670 (3) 0.59348 (12) 0.0484 (5)
C5 0.5275 (2) 0.4606 (3) 0.67912 (12) 0.0394 (4)
C6 0.6784 (2) 0.6115 (2) 0.72646 (11) 0.0307 (4)
C7 0.6045 (2) 0.7082 (2) 0.81427 (11) 0.0298 (4)
C8 0.7735 (2) 0.8181 (2) 0.87935 (12) 0.0374 (4)
C9 0.8824 (2) 0.6492 (3) 0.93698 (12) 0.0398 (4)
C10 0.7723 (2) 0.4555 (3) 0.90883 (11) 0.0326 (4)
C11 0.5685 (2) 0.5348 (2) 0.87747 (11) 0.0294 (4)
C12 0.3896 (2) 0.4194 (3) 0.88380 (12) 0.0418 (5)
C13 0.8819 (4) 0.1859 (4) 0.52998 (14) 0.0596 (6)
C14 0.7229 (3) 0.7762 (3) 0.65783 (14) 0.0505 (5)
C15 0.4273 (2) 0.8481 (3) 0.79217 (14) 0.0485 (5)
H1 0.9748 0.5866 0.7745 0.035*
H2 1.0589 0.3125 0.6868 0.047*
H8 0.7109 0.9068 0.9207 0.045*
H10 0.7711 0.3629 0.9607 0.039*
H41 0.5787 0.4649 0.5442 0.058*
H42 0.5188 0.2479 0.5769 0.058*
H51 0.4041 0.5308 0.6617 0.047*
H52 0.5066 0.3534 0.7219 0.047*
H91 1.0183 0.6401 0.9241 0.048*
H92 0.8794 0.6749 1.0017 0.048*
H121 0.3980 0.2778 0.9006 0.050*
H122 0.2745 0.4411 0.8396 0.050*
H131 0.8038 0.0656 0.5201 0.072*
H132 1.0178 0.1497 0.5458 0.072*
H133 0.8688 0.2656 0.4751 0.072*
H141 0.7607 0.7139 0.6036 0.061*
H142 0.8285 0.8602 0.6850 0.061*
H143 0.6072 0.8572 0.6421 0.061*
H151 0.3317 0.7839 0.7485 0.058*
H152 0.4697 0.9723 0.7670 0.058*
H153 0.3691 0.8760 0.8471 0.058*
H201 0.8723 1.0539 0.8294 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0392 (5) 0.0274 (6) 0.0324 (5) 0.0083 (5) 0.0063 (4) −0.0003 (5)
O2 0.0587 (8) 0.0287 (7) 0.0781 (10) −0.0102 (7) 0.0296 (7) −0.0093 (7)
O3 0.0493 (7) 0.0455 (8) 0.0377 (6) 0.0024 (6) 0.0226 (5) −0.0016 (6)
C1 0.0308 (7) 0.0267 (9) 0.0320 (7) −0.0024 (6) 0.0076 (5) −0.0016 (6)
C2 0.0398 (8) 0.0335 (10) 0.0466 (9) −0.0012 (8) 0.0179 (7) −0.0075 (8)
C3 0.0633 (10) 0.0326 (10) 0.0344 (9) −0.0079 (9) 0.0207 (8) −0.0044 (8)
C4 0.0632 (11) 0.0501 (13) 0.0308 (8) −0.0053 (11) 0.0004 (7) −0.0065 (9)
C5 0.0381 (7) 0.0463 (12) 0.0330 (8) 0.0009 (8) 0.0007 (6) 0.0002 (9)
C6 0.0386 (7) 0.0272 (9) 0.0273 (7) 0.0021 (7) 0.0083 (5) 0.0025 (6)
C7 0.0336 (7) 0.0241 (8) 0.0329 (8) 0.0043 (6) 0.0093 (5) 0.0022 (7)
C8 0.0424 (8) 0.0303 (10) 0.0419 (9) −0.0012 (7) 0.0153 (7) −0.0106 (8)
C9 0.0393 (8) 0.0459 (11) 0.0337 (8) 0.0021 (8) 0.0023 (6) −0.0101 (8)
C10 0.0383 (7) 0.0342 (10) 0.0254 (7) 0.0076 (7) 0.0049 (5) 0.0043 (7)
C11 0.0343 (7) 0.0293 (9) 0.0261 (7) 0.0030 (7) 0.0103 (5) 0.0001 (7)
C12 0.0393 (8) 0.0427 (11) 0.0455 (9) −0.0034 (8) 0.0145 (7) 0.0013 (9)
C13 0.0909 (15) 0.0460 (13) 0.0478 (11) −0.0127 (13) 0.0322 (11) −0.0138 (11)
C14 0.0785 (13) 0.0354 (11) 0.0413 (10) 0.0041 (10) 0.0229 (9) 0.0086 (9)
C15 0.0516 (9) 0.0397 (12) 0.0563 (11) 0.0188 (10) 0.0144 (8) 0.0089 (10)

Geometric parameters (Å, °)

O1—C1 1.450 (2) C1—H1 0.980
O1—C10 1.443 (2) C2—H2 0.930
O2—C8 1.416 (2) C4—H41 0.970
O3—C11 1.453 (2) C4—H42 0.970
O3—C12 1.447 (2) C5—H51 0.970
C1—C2 1.504 (2) C5—H52 0.970
C1—C6 1.539 (2) C8—H8 0.980
C2—C3 1.325 (2) C9—H91 0.970
C3—C4 1.508 (2) C9—H92 0.970
C3—C13 1.503 (3) C10—H10 0.980
C4—C5 1.531 (2) C12—H121 0.970
C5—C6 1.542 (2) C12—H122 0.970
C6—C7 1.577 (2) C13—H131 0.960
C6—C14 1.541 (2) C13—H132 0.960
C7—C8 1.587 (2) C13—H133 0.960
C7—C11 1.516 (2) C14—H141 0.960
C7—C15 1.528 (2) C14—H142 0.960
C8—C9 1.541 (2) C14—H143 0.960
C9—C10 1.520 (2) C15—H151 0.960
C10—C11 1.508 (2) C15—H152 0.960
C11—C12 1.453 (2) C15—H153 0.960
O2—H201 0.840
C1—O1—C10 114.24 (13) C3—C4—H42 108.5
C11—O3—C12 60.14 (11) C5—C4—H41 108.5
O1—C1—C2 106.26 (14) C5—C4—H42 108.5
O1—C1—C6 111.87 (12) H41—C4—H42 109.5
C2—C1—C6 113.14 (12) C4—C5—H51 108.8
C1—C2—C3 124.36 (16) C4—C5—H52 108.8
C2—C3—C4 121.26 (18) C6—C5—H51 108.8
C2—C3—C13 122.95 (18) C6—C5—H52 108.8
C4—C3—C13 115.78 (17) H51—C5—H52 109.5
C3—C4—C5 113.36 (15) O2—C8—H8 108.1
C4—C5—C6 112.11 (15) C7—C8—H8 108.1
C1—C6—C5 106.63 (14) C9—C8—H8 108.1
C1—C6—C7 108.69 (12) C8—C9—H91 110.4
C1—C6—C14 109.07 (15) C8—C9—H92 110.4
C5—C6—C7 111.85 (13) C10—C9—H91 110.4
C5—C6—C14 109.60 (14) C10—C9—H92 110.4
C7—C6—C14 110.88 (15) H91—C9—H92 109.5
C6—C7—C8 113.63 (13) O1—C10—H10 111.4
C6—C7—C11 106.61 (14) C9—C10—H10 111.4
C6—C7—C15 113.16 (13) C11—C10—H10 111.4
C8—C7—C11 97.80 (12) O3—C12—H121 120.0
C8—C7—C15 110.62 (15) O3—C12—H122 120.0
C11—C7—C15 114.07 (14) C11—C12—H121 120.0
O2—C8—C7 117.07 (15) C11—C12—H122 120.0
O2—C8—C9 109.54 (14) H121—C12—H122 109.5
C7—C8—C9 105.64 (15) C3—C13—H131 109.5
C8—C9—C10 105.72 (13) C3—C13—H132 109.5
O1—C10—C9 112.64 (14) C3—C13—H133 109.5
O1—C10—C11 108.15 (12) H131—C13—H132 109.5
C9—C10—C11 101.46 (15) H131—C13—H133 109.5
O3—C11—C7 118.26 (15) H132—C13—H133 109.5
O3—C11—C10 113.99 (12) C6—C14—H141 109.5
O3—C11—C12 59.75 (11) C6—C14—H142 109.5
C7—C11—C10 103.95 (13) C6—C14—H143 109.5
C7—C11—C12 129.49 (14) H141—C14—H142 109.5
C10—C11—C12 123.35 (16) H141—C14—H143 109.5
O3—C12—C11 60.11 (11) H142—C14—H143 109.5
C8—O2—H201 110.7 C7—C15—H151 109.5
O1—C1—H1 108.5 C7—C15—H152 109.5
C2—C1—H1 108.5 C7—C15—H153 109.5
C6—C1—H1 108.5 H151—C15—H152 109.5
C1—C2—H2 117.8 H151—C15—H153 109.5
C3—C2—H2 117.8 H152—C15—H153 109.5
C3—C4—H41 108.5
C1—O1—C10—C9 −48.89 (16) C14—C6—C7—C11 −179.10 (14)
C1—O1—C10—C11 62.42 (17) C14—C6—C7—C15 54.7 (2)
C10—O1—C1—C2 −175.48 (11) C6—C7—C8—O2 40.8 (2)
C10—O1—C1—C6 −51.55 (16) C6—C7—C8—C9 −81.40 (17)
C12—O3—C11—C7 121.49 (16) C6—C7—C11—O3 −163.39 (12)
C12—O3—C11—C10 −115.92 (18) C6—C7—C11—C10 69.08 (15)
O1—C1—C2—C3 105.4 (2) C6—C7—C11—C12 −90.7 (2)
O1—C1—C6—C5 −71.96 (16) C8—C7—C11—O3 79.03 (15)
O1—C1—C6—C7 48.78 (17) C8—C7—C11—C10 −48.50 (15)
O1—C1—C6—C14 169.78 (14) C8—C7—C11—C12 151.67 (18)
C2—C1—C6—C5 48.01 (18) C11—C7—C8—O2 152.82 (15)
C2—C1—C6—C7 168.75 (14) C11—C7—C8—C9 30.61 (16)
C2—C1—C6—C14 −70.25 (19) C15—C7—C8—O2 −87.74 (19)
C6—C1—C2—C3 −17.7 (2) C15—C7—C8—C9 150.05 (15)
C1—C2—C3—C4 −3.0 (3) C15—C7—C11—O3 −37.8 (2)
C1—C2—C3—C13 175.8 (2) C15—C7—C11—C10 −165.28 (15)
C2—C3—C4—C5 −9.8 (3) C15—C7—C11—C12 34.9 (2)
C13—C3—C4—C5 171.3 (2) O2—C8—C9—C10 −129.73 (15)
C3—C4—C5—C6 43.1 (2) C7—C8—C9—C10 −2.80 (18)
C4—C5—C6—C1 −61.64 (19) C8—C9—C10—O1 88.78 (16)
C4—C5—C6—C7 179.67 (15) C8—C9—C10—C11 −26.62 (17)
C4—C5—C6—C14 56.3 (2) O1—C10—C11—O3 159.65 (14)
C1—C6—C7—C8 47.34 (19) O1—C10—C11—C7 −70.22 (17)
C1—C6—C7—C11 −59.22 (16) O1—C10—C11—C12 91.20 (19)
C1—C6—C7—C15 174.58 (15) C9—C10—C11—O3 −81.67 (17)
C5—C6—C7—C8 164.80 (14) C9—C10—C11—C7 48.45 (16)
C5—C6—C7—C11 58.24 (16) C9—C10—C11—C12 −150.13 (16)
C5—C6—C7—C15 −68.0 (2) C7—C11—C12—O3 −103.3 (2)
C14—C6—C7—C8 −72.54 (18) C10—C11—C12—O3 100.35 (17)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H201···O1i 0.84 2.02 2.839 (2) 165

Symmetry codes: (i) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2217).

References

  1. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst.26, 343–350.
  2. Chen, S.-Y., Zhang, C.-L., Chen, Y.-Z. & Lin, F.-C. (2008). Acta Cryst. E64, o702. [DOI] [PMC free article] [PubMed]
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  6. Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
  7. Nielsen, K. F., Grafenhan, T., Zafari, D. & Thrane, U. (2005). J. Agric. Food Chem.53, 8190–8196. [DOI] [PubMed]
  8. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  9. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Watkin, D. J., Prout, C. K., Carruthers, J. R. & Betteridge, P. W. (1996). CRYSTALS Chemical Crystallography Laboratory, Oxford, England.
  12. Zhang, C., Liu, S., Lin, F., Kubicek, C. P. & Druzhinina, I. S. (2007). FEMS Microbiol. Lett.270, 90–96. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809044080/si2217sup1.cif

e-65-o2879-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809044080/si2217Isup2.hkl

e-65-o2879-Isup2.hkl (80.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES